首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The minor U12-dependent class of eukaryotic nuclear pre-mRNA introns is spliced by a distinct spliceosomal mechanism that requires the function of U11, U12, U5, U4atac, and U6atac snRNAs. Previous work has shown that U11 snRNA plays a role similar to U1 snRNA in the major class spliceosome by base pairing to the conserved 5'' splice site sequence. Here we show that U6atac snRNA also base pairs to the 5'' splice site in a manner analogous to that of U6 snRNA in the major class spliceosome. We show that splicing defective mutants of the 5'' splice site can be activated for splicing in vivo by the coexpression of compensatory U6atac snRNA mutants. In some cases, maximal restoration of splicing required the coexpression of compensatory U11 snRNA mutants. The allelic specificity of mutant phenotype suppression is consistent with Watson-Crick base pairing between the pre-mRNA and the snRNAs. These results provide support for a model of the RNA-RNA interactions at the core of the U12-dependent spliceosome that is strikingly similar to that of the major class U2-dependent spliceosome.  相似文献   

2.
3.
B Patterson  C Guthrie 《Cell》1987,49(5):613-624
Yeast contains at least 24 snRNAs, many of which are dispensable for viability. We recently demonstrated that a small subset of these RNAs has a functional binding site for the Sm antigen, a hallmark of metazoan snRNAs involved in mRNA processing. Here we show that one of these snRNAs, snR7, is required for growth. To determine the biochemical basis of lethality in cells lacking snR7, we engineered the conditional synthesis of snR7 by fusing the snRNA coding sequences to the yeast GAL1 control region. Cells depleted for the SNR7 gene product by growth on glucose for five generations show marked accumulation of unspliced mRNA precursors from the four intron-containing genes tested. In some cases, intron-exon 2 lariats also accumulate. We have identified a 70 nucleotide domain within snR7 with limited sequence-specific but striking structural homology to the mammalian snRNA U5. We conclude that mRNA splicing in yeast requires the function of a U5-like snRNA.  相似文献   

4.
U6 snRNA sequences required for assembly of U4/U6 snRNP and splicing complexes were determined by in vitro reconstitution of snRNPs. Both mutagenesis and chemical modification/interference assays identify a U6 snRNA domain required for U4/U6 snRNP formation. The results support the existence of a U4/U6 snRNA interaction domain previously proposed on the basis of phylogenetic evidence. In addition, two short U6 snRNA regions flanking the U4/U6 interaction domain are essential to assemble the U4/U6 snRNP into splicing complexes. These two regions may represent binding sites for splicing factors or may facilitate the formation of an alternative U6 snRNA secondary structure during spliceosome assembly.  相似文献   

5.
Two classes of spliceosome are present in eukaryotic cells. Most introns in nuclear pre-mRNAs are removed by a spliceosome that requires U1, U2, U4, U5, and U6 small nuclear ribonucleoprotein particles (snRNPs). A minor class of introns are removed by a spliceosome containing U11, U12, U5, U4atac, and U6 atac snRNPs. We describe experiments that demonstrate that splicing of exon 5 of the rat calcitonin/CGRP gene requires both U2 snRNA and U12 snRNA. In vitro, splicing to calcitonin/ CGRP exon 5 RNA was dependent on U2 snRNA, as preincubation of nuclear extract with an oligonucleotide complementary to U2 snRNA abolished exon 5 splicing. Addition of an oligonucleotide complementary to U12 snRNA increased splicing at a cryptic splice site in exon 5 from <5% to 50% of total spliced RNA. Point mutations in a candidate U12 branch sequence in calcitonin/CGRP intron 4, predicted to decrease U12-pre-mRNA base-pairing, also significantly increased cryptic splicing in vitro. Calcitonin/CGRP genes containing base changes disrupting the U12 branch sequence expressed significantly decreased CGRP mRNA levels when expressed in cultured cells. Coexpression of U12 snRNAs containing base changes predicted to restore U12-pre-mRNA base pairing increased CGRP mRNA synthesis to the level of the wild-type gene. These observations indicate that accurate, efficient splicing of calcitonin/CGRP exon 5 is dependent upon both U2 and U12 snRNAs.  相似文献   

6.
The U6 spliceosomal snRNA forms an intramolecular stem-loop structure during spliceosome assembly that is required for splicing and is proposed to be at or near the catalytic center of the spliceosome. U6atac snRNA, the analog of U6 snRNA used in the U12-dependent splicing of the minor class of spliceosomal introns, contains a similar stem-loop whose structure but not sequence is conserved between humans and plants. To determine if the U6 and U6atac stem-loops are functionally analogous, the stem-loops from human and budding yeast U6 snRNAs were substituted for the U6atac snRNA structure and tested in an in vivo genetic suppression assay. Both chimeric U6/U6atac snRNA constructs were active for splicing in vivo. In contrast, several mutations of the native U6atac stem-loop that either delete putatively unpaired residues or disrupt the putative stem regions were inactive for splicing. Compensatory mutations that are expected to restore base pairing within the stem regions restored splicing activity. However, other mutants that retained base pairing potential were inactive, suggesting that functional groups within the stem regions may contribute to function. These results show that the U6atac snRNA stem-loop structure is required for in vivo splicing within the U12-dependent spliceosome and that its role is likely to be similar to that of the U6 snRNA intramolecular stem-loop.  相似文献   

7.
Alternative splicing increases the coding capacity of genes through the production of multiple protein isoforms by the conditional use of splice sites and exons. Many alternative splice sites are regulated by the presence of purine-rich splicing enhancer elements (ESEs) located in the downstream exon. Although the role of ESEs in alternative splicing of the major class U2-dependent introns is well established, no alternatively spliced minor class U12-dependent introns have so far been described. Although in vitro studies have shown that ESEs can stimulate splicing of individual U12-dependent introns, there is no direct evidence that the U12-dependent splicing system can respond to ESEs in vivo. To investigate the ability of U12-dependent introns to use alternative splice sites and to respond to ESEs in an in vivo context, we have constructed two sets of artificial minigenes with alternative splicing pathways and evaluated the effects of ESEs on their alternative splicing patterns. In minigenes with alternative U12-dependent 3' splice sites, a purine-rich ESE promotes splicing to the immediately upstream 3' splice site. As a control, a mutant ESE has no stimulatory effect. In minigene constructs with two adjacent U12-dependent introns, the predominant in vivo splicing pattern results in the skipping of the internal exon. Insertion of a purine-rich ESE into the internal exon promotes the inclusion of the internal exon. These results show that U12-dependent introns can participate in alternative splicing pathways and that U12-dependent splice sites can respond to enhancer elements in vivo.  相似文献   

8.
U4 snRNA is phylogenetically highly conserved and organized in several domains. To determine the function of each of the domains of human U4 snRNA in the multi-step process of snRNP and spliceosome assembly, we used reconstitution procedures in combination with snRNA mutagenesis. The highly conserved 5' terminal domain of U4 snRNA consists of the stem I and stem II regions that have been proposed to base pair with U6 snRNA, and the 5' stem-loop structure. We found that each of these structural elements is essential for spliceosome assembly. However, only the stem II region is required for U4-U6 interaction, and none of these elements for Sm protein binding. In contrast, the 3' terminal domain of U4 snRNA containing the Sm binding site is dispensable for both U4-U6 interaction and spliceosome assembly. Our results support an organization of the U4 snRNP into multiple functional domains, each of which acts at distinct stages of snRNP and spliceosome assembly.  相似文献   

9.
P Vankan  C McGuigan    I W Mattaj 《The EMBO journal》1990,9(10):3397-3404
Structure-function relationships in the vertebrate U4-U6 snRNP have been analysed by assaying the ability of mutant RNAs to form U4-U6 snRNPs and to function in splicing complementation in Xenopus oocytes. The mutants define three categories of domain within the RNAs. First, domains which are not essential for splicing. These include regions of U6 which have previously been implicated in the capping and transport to the nucleus of U6 RNA as well as, less surprisingly, regions of U4 and U6 which have been poorly conserved in evolution. Second, domains whose mutation reduces U4-U6 snRNP assembly or stability. This group includes mutations in both the proposed U4-U6 interaction domain, and also, in the case of U6, in a highly conserve sequence flanking stem I of the interaction domain. These mutants are all defective in splicing. Third, regions not required for U4-U6 assembly, but required for splicing complementation. This category defines domains which are likely to be required for specific contacts with other components of the splicing machinery. Combinations of mutants in the U4 and U6 interaction domain are used to show that there are not only requirements for base complementarity but also for specific sequences in these regions.  相似文献   

10.
Y T Yu  M D Shu    J A Steitz 《The EMBO journal》1998,17(19):5783-5795
Among the spliceosomal snRNAs, U2 has the most extensive modifications, including a 5' trimethyl guanosine (TMG) cap, ten 2'-O-methylated residues and 13 pseudouridines. At short times after injection, cellularly derived (modified) U2 but not synthetic (unmodified) U2 rescues splicing in Xenopus oocytes depleted of endogenous U2 by RNase H targeting. After prolonged reconstitution, synthetic U2 regenerates splicing activity; a correlation between the extent of U2 modification and U2 function in splicing is observed. Moreover, 5-fluorouridine-containing U2 RNA, a potent inhibitor of U2 pseudouridylation, specifically abolishes rescue by synthetic U2, while rescue by cellularly derived U2 is not affected. By creating chimeric U2 molecules in which some sequences are from cellularly derived U2 and others are from in vitro transcribed U2, we demonstrate that the functionally important modifications reside within the 27 nucleotides at the 5' end of U2. We further show that 2'-O-methylation and pseudouridylation activities reside in the nucleus and that the 5' TMG cap is not necessary for internal modification but is crucial for splicing activity. Native gel analysis reveals that unmodified U2 is not incorporated into the spliceosome. Examination of the U2 protein profile and glycerol-gradient analysis argue that U2 modifications directly contribute to conversion of the 12S to the 17S U2 snRNP particle, which is essential for spliceosome assembly.  相似文献   

11.
Factors affecting splicing of plant U12-dependent introns have been examined by extensive mutational analyses in an in vivo tobacco (Nicotiana tabacum) protoplast system using introns from three different Arabidopsis thaliana genes: CBP20, GSH2, and LD. The results provide evidence that splicing efficiency of plant U12 introns depends on a combination of factors, including UA content, exon bridging interactions between the U12 intron and flanking U2-dependent introns, and exon splicing enhancer sequences (ESEs). Unexpectedly, all three plant U12 introns required an adenosine at the upstream purine position in the branchpoint consensus UCCUURAUY. The exon upstream of the LD U12 intron is a major determinant of its higher level of splicing efficiency and potentially contains two ESE regions. These results suggest that in plants, U12 introns represent a level at which expression of their host genes can be regulated.  相似文献   

12.
A notable feature of the newly described U12 snRNA-dependent class of eukaryotic nuclear pre-mRNA introns is the highly conserved 8-nt 5'' splice site sequence. This sequence is virtually invariant in all known members of this class from plants to mammals. Based on sequence complementarity between this sequence and the 5'' end of the U11 snRNA, we proposed that U11 snRNP may play a role in identifying and/or activating the 5'' splice site for splicing. Here we show that mutations of the conserved 5'' splice site sequence of a U12-dependent intron severely reduce correct splicing in vivo and that compensatory mutations in U11 snRNA can suppress the effects of the 5'' splice site mutations to varying extents. This provides evidence for a required interaction between U11 snRNA and the 5'' splice site sequence involving Watson-Crick base pairing. This data, in addition to a report that U11 snRNP is bound transiently to the U12-dependent spliceosome, suggests that U11 snRNP is the analogue of U1 snRNP in splicing this rare class of introns.  相似文献   

13.
14.
J Hamm  N A Dathan  D Scherly    I W Mattaj 《The EMBO journal》1990,9(4):1237-1244
Domains of U1 snRNA which are functionally important have been identified using a splicing complementation assay in Xenopus oocytes. Mutations in, and deletions of, all three of the hairpin loop structures near the 5' end of the RNA are strongly deleterious. Similarly, mutation of the Sm binding site abolishes complementation activity. Analysis of the protein binding properties of the mutant U1 snRNAs reveals that three of the functionally important domains, the first two hairpin loops and the Sm binding site, are required for interaction with U1 snRNP proteins. The fourth functionally important domain does not detectably affect snRNP protein binding and is not evolutionarily conserved. All of the deleterious mutations are shown to have similar effects on in vivo splicing complex formation.  相似文献   

15.
The U5 snRNA loop 1 is characterized by the conserved sequence G1C2C3U4U5U6Y7A8Y9 and is essential for the alignment of exons during the second step of pre-mRNA splicing in Saccharo myces cerevisiae. Despite this sequence conservation the size, rather than sequence, of loop 1 is critical for exon alignment in vitro. To determine the in vivo requirements for U5 loop 1 a library of loop 1 sequences was transformed into a yeast strain where the endogenous U5 gene was deleted. Comparison of viable mutations in loop 1 revealed that position 6 was invariant and positions 5 and 7 displayed some sequence conservation. These data indicate positions 5, 6 and 7 in loop 1 are important for U5 function in vivo. A screen for mutations that suppress the temperature-sensitive phenotype of three loop 1 mutants produced eight intragenic suppressors all containing alterations in loop 1. Further analysis of these temperature-sensitive mutants revealed that each displayed distinct cell cycle arrest phenotypes and pre-mRNA splicing inhibition patterns. The cell cycle arrest is likely attributed to inefficient splicing of α-tubulin pre-mRNA in one mutant and actin pre-mRNA in another. These results suggest that various mutations in loop 1 may affect the splicing of different pre-mRNAs in vivo.  相似文献   

16.
In metazoans, splicing of introns from pre-mRNAs can occur by two pathways: the major U2-dependent or the minor U12-dependent pathways. Whereas the U2-dependent pathway has been well characterized, much about the U12-dependent pathway remains to be discovered. Most of the information regarding U12-type introns has come from in vitro studies of a very few known introns of this class. To expand our understanding of U12-type splicing, especially to test the hypothesis that the simple base-pairing mechanism between the intron and U12 snRNA defines the branchpoint of U12-dependent introns, additional in vitro splicing substrates were created from three putative U12-type introns: the third intron of the Xenopus RPL1 a gene (XRP), the sixth intron of the Xenopus TFIIS.oA gene (XTF), and the first intron of the human Sm E gene (SME). In vitro splicing in HeLa nuclear extract confirmed U12-dependent splicing of each of these introns. Surprisingly, branchpoint mapping of the XRP splicing intermediate shows use of the upstream rather than the downstream of two consecutive adenosines within the branchpoint sequence (BPS), contrary to the prediction based on alignment with the sixth intron of human P120, a U12-dependent intron whose branch site was previously determined. Also, in the SME intron, the position of the branchpoint A residue within the region base paired with U12 differs from that in P120 and XTF. Analysis of these three additional introns therefore rules out simple models for branchpoint selection by the U12-type spliceosome.  相似文献   

17.
5-fluorouracil (5FU) is an effective anti-cancer drug, yet its mechanism of action remains unclear. Here, we examine the effect of 5FU on pre-mRNA splicing in vivo. Using RT–PCR, we show that the splicing of a number of pre-mRNAs is inhibited in HeLa cells that have been exposed to a low dose of 5FU. It appears that this inhibitory effect is not due to its incorporation into pre-mRNA, because partially or fully 5FU-substituted pre-mRNA, when injected into Xenopus oocytes, is spliced just as well as is the unsubstituted pre-mRNA. Detailed analyses of 5FU-treated cells indicate that 5FU is incorporated into U2 snRNA at important naturally occurring pseudouridylation sites. Remarkably, 5FU incorporation effectively blocks the formation of important pseudouridines in U2 snRNA, as only a trace of pseudouridine is detected when cells are exposed to a low dose of 5FU for 5 days. Injection of the hypopseudouridylated HeLa U2 snRNA into U2-depleted Xenopus oocytes fails to reconstitute pre-mRNA splicing, whereas control U2 isolated from untreated or uracil-treated HeLa cells completely reconstitutes the splicing. Our results demonstrate for the first time that 5FU incorporates into a spliceosomal snRNA at natural pseudouridylation sites in vivo, thereby inhibiting snRNA pseudouridylation and splicing. This mechanism may contribute substantially to 5FU-mediated cell death.  相似文献   

18.
The influenza virus NS1 protein inhibits the splicing of the major class of mammalian pre-mRNAs (GU-AG Introns) by binding to a specific stem-bulge in U6 snRNA, thereby blocking the formation of U4/U6 and U2/U6 complexes. The splicing of the minor class of AT-AC introns takes place on spliceosomes that do not contain U6 snRNA, but rather U6atac snRNA-a highly divergent U6 snRNA counterpart. Nonetheless, we demonstrate that the NS1 protein inhibits AT-AC splicing in vitro, and specifically binds to only U6atac snRNA among the five minor class snRNAs. Chemical modification/interference assays show that the NS1 protein binds to the stem-bulge near the 3'' end of U6atac snRNA, encompassing nt 82-95 and nt 105-114. Although the sequence of this stem-bulge differs significantly from the sequence of the stem-bulge to which the NS1 protein binds in U6 snRNA, RNA competition experiments Indicate that U6 and U6atac snRNAs likely share the same binding site on the NS1 protein. Previously, the region of U6atac snRNA containing this 3'' stem-bulge had not been implicated in any interactions of this snRNA with either U4atac or U12 snRNA. However, as assayed by psoralen crosslinking, we show that the NS1 protein inhibits the formation of U12/U6atac complexes, but not the formation of U4atac/U6atac complexes. We can conclude that the inhibition of AT-AC splicing results largely from the inhibition of formation of U12/U6atac complexes caused by the binding of the NS1 protein to the 3'' stem-bulge of U6atac snRNA.  相似文献   

19.
The U2 and U6 snRNAs contribute to the catalysis of intron removal while U5 snRNA loop 1 holds the exons for ligation during pre-mRNA splicing. It is unclear how different exons are positioned precisely with U5 loop 1. Here, we investigate the role of U2 and U6 in positioning the exons with U5 loop 1. Reconstitution in vitro of spliceosomes with mutations in U2 allows U5-pre-mRNA interactions before the first step of splicing. However, insertion in U2 helix Ia disrupts U5-exon interactions with the intron lariat-3' exon splicing intermediate. Conversely, U6 helix Ia insertions prevent U5-pre-mRNA interactions before the first step of splicing. In vivo, synthetic lethal interactions have been identified between U2 insertion and U5 loop 1 insertion mutants. Additionally, analysis of U2 insertion mutants in vivo reveals that they influence the efficiency, but not the accuracy of splicing. Our data suggest that U2 aligns the exons with U5 loop 1 for ligation during the second step of pre-mRNA splicing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号