首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The incorporation of [14C]arginine and [14C]ornithine into various polyamines was studied in mung bean (Vigna radiata [L.] Wilczek) hypocotyl cuttings with respect to the effect of indole-3-butyric acid on adventitious root formation.

Both [14C]arginine and [14C]ornithine are rapidly incorporated into putrescine, spermidine, and spermine, with similar kinetics, during 5- to 24-hour incubation periods. The incorporation of arginine into putrescine is generally higher than that of ornithine. The biosynthesis of putrescine and spermidine from the precursors, in the hypocotyls, is closely related to the pattern of root formation: a first peak at 0 to 24 hours corresponding to the period of root primordia development, and a second peak of putrescine biosynthesis at 48 to 72 hours corresponding to root growth and elongation. Indole-3-butyric acid considerably enhances putrescine biosynthesis in both phases, resulting in an increase of the putrescine/spermidine ratio.

It is concluded that the promotive effect of indole-3-butyric acid on putrescine biosynthesis, from both arginine and ornithine, supports the hypothesis that auxin-induced root formation may require the promotion of polyamine biosynthesis.

  相似文献   

2.
The activity of L-arginine decarboxylase (EC 4.1.1.19) and L-ornithine decarboxylase (EC 4.1.1.17), polyamine content, and incorporation of arginine and ornithine into polyamines, were determined in mung bean [Vigna radiata (L.) Wilczek] plants subjected to salt (hypertonic) stress (NaCl at 0.51–2.27 MPa). Changes in enzyme activity in response to hypotonic stress were determined as well in several halophytes [Pulicaria undulata (L.), Kostei, Salsola rosmarinus (Ehr.) Solms-Laub, Mesembryanthemum forskahlei Hochst, and Atriplex halimus L.]. NaCl stress, possibly combined with other types of stress that accompanied the experimental conditions, resulted in organ-specific changes in polyamine biosynthesis and content in mung bean plants. The activity of both enzymes was inhibited in salt-stressed leaves. In roots, however, NaCl induced a 2 to 8-fold increase in ornithine decarboxylase activity. Promotion of ornithine decarboxylase in roots could be detected already 2 h after exposure of excised roots to NaCl, and iso-osmotic concentrations of NaCl and KCl resulted in similar changes in the activity of both enzymes. Putrescine level in shoots of salt-stressed mung bean plants increased considerably, but its level in roots decreased. The effect of NaCl stress on spermidine content was similar, but generally more moderate, resulting in an increased putrescine/spermidine ratio in salt-stressed plants. Exposure of plants to NaCl resulted also in organ-specific changes in the incorporation of both arginine and ornithine into putrescine: incorporation was inhibited in leaf discs but promoted in excised roots of salt-stressed mung bean plants. In contrast to mung bean (and several other glycophytes), ornithine and arginine decarboxylase activity in roots of halophytes increased when plants were exposed to tap water or grown in a pre-washed soil—i.e. a hypotonic stress with respect to their natural habitat. NaCl, when present in the enzymatic assay mixture, inhibited arginine and ornithine decarboxylase in curde extracts of mung bean roots, but did not affect the activity of enzymes extracted from roots of the halophyte Pulicaria. Although no distinct separation between NaCl stress and osmotic stress could be made in the present study, the data suggest that changes in polyamines in response to NaCl stress in mung bean plants are coordinated at the organ level: activation of biosynthetic enzymes concomitant with increased putrescine biosynthesis from its precursors in the root system, and accumulation of putrescine in leaves of salt-stressed plants. In addition, hypertonic stress applied to glycophytes and hypotonic stress applied to halophytes both resulted in an increase in the activity of polyamine biosynthetic enzymes in roots.  相似文献   

3.
The effects of the inhibitors of polyamine biosynthesis, canavanineand -methyl ornithine on growth, the activities of argininedecarboxylase (EC 4.1.1.19 [EC] ) and ornithine decarboxylase (EC4.1.1.17 [EC] ) and on polyamine content were examined in two differentgrowth regions of Phaseolus vulgaris L. cv. Taylor's Horticulturalroots. Separately, in the same manner, in the same bean rootsystem exogenous putrescine effect and the interaction of canavaninewith putrescine were determined. The arginine and ornithine decarboxylase activities found inroot apex were high where cell division activity was highest.Polyamine (putrescine and spermine) content did not correlatewith these activities, but polyamine level was high in the rootbase where cell elongation is the main process. The arginineanalogue, canavanine, inhibited arginine decayboxylase activityand polymine liters. Putrescine partially reversed the canavanineinhibition of root growth as well as arginine decarboxylaseactivity and polyamine content. Similarly -methyl ornithineslightly inhibited the root length and ornithine decarboxylaseactivity in the root apex. Besides, exogenous putrescine didnot effect significantly the endogenous polyamine titers. Theseresults reinforce the growing connection between polyaminesand the rates of cell devision in the roots of bean plants.Separately, arginine decarboxylase is the main enzyme in thebean roots. (Received November 10, 1986; Accepted March 3, 1987)  相似文献   

4.
Polyamine content and the activity of arginine decarboxylase (EC 4.1.1.19) and ornithine decarboxylase (EC 4.1.1.17) were studied with respect to meristematic activity in primary roots and in developing lateral roots of Zea mays L. (cv. Neve Ya'ar 170) seedlings. Comparative localization of active ornithine decarboxylase and of meristematic activity were determined by labelling roots either with α-[5-14C]-difluoromethyl ornithine or with [3H]-thymidine, respectively.
Lateral roots were formed during the 72 h post-decapitation period, accompanied by an initial decline in putrescine content and by a significant increase in spennidine con-tent at 48–72 h. High levels of spermidine and lower levels of putrescine were found in the primary root apex as well. A marked increase in ornithine and arginine decarboxylase activity, as measured by 14CO2 release, was found during the 72 h post-decapitation period of lateral root development. This increase in ornithine decarboxylase activity was confirmed also by a parallel rise in the incorporation of α-[5-14C]-difluoromethyl ornithine into trichloroacetic acid-insoluble fractions. Microautoradiographs of longitudinal and cross sections of roots, labelled with α-[5-14C]-difluoromethyl ornithine, showed that ornithine decarboxylase is localized mainly in the meristematic zones, as evidenced by [3H]-thymidine incorporation. A close correlation between meristematic activity and polyamines was demonstrated in situ , suggesting that polyamine content and biosynthesis may have a role in meristematic activity in corn roots.  相似文献   

5.
A purified preparation of arginine decarboxylase fromCucumis sativus seedlings displayed ornithine decarboxylase activity as well. The two decarboxylase activities associated with the single protein responded differentially to agmatine, putrescine andPi. While agmatine was inhibitory (50 %) to arginine decarboxylase activity, ornithine decarboxylase activity was stimulated by about 3-fold by the guanido arnine. Agmatine-stimulation of ornithine decarboxylase activity was only observed at higher concentrations of the amine. Inorganic phosphate enhanced arginine decarboxylase activity (2-fold) but ornithine decarboxylase activity was largely uninfluenced. Although both arginine and ornithine decarboxylase activities were inhibited by putrescine, ornithine decarboxylase activity was profoundly curtailed even at 1 mM concentration of the diamine. The enzyme-activated irreversible inhibitor for mammalian ornithine decarboxylase,viz. α-difluoromethyl ornithine, dramatically enhanced arginine decarboxylase activity (3–4 fold), whereas ornithine decarboxylase activity was partially (50%) inhibited by this inhibitor. At substrate level concentrations, the decarboxylation of arginine was not influenced by ornithine andvice-versa. Preliminary evidence for the existence of a specific inhibitor of ornithine decarboxylase activity in the crude extracts of the plant is presented. The above results suggest that these two amino acids could be decarboxylated at two different catalytic sites on a single protein.  相似文献   

6.
DL-alpha-Difluoromethylornithine, an enzyme-activated irreversible inhibitor of eukaryotic ornithine decarboxylase and consequently of putrescine biosynthesis, inhibited ornithine decarboxylase in enzyme extracts from Pseudomonas aeruginosa in a time-dependent manner t1/2 1 min, and also effectively blocked the enzyme activity in situ in the cell. Difluoromethylornithine, however, had no effect on the activity of ornithine decarboxylase assayed in enzyme extracts from either Escherichia coli or Klebsiella pneumoniae. However, the presence of the inhibitor in cell cultures did partially lower ornithine decarboxylase activity intracellularly in E. coli. Any decrease in the intracellular ornithine decarboxylase activity observed in E. coli and Pseudomonas was accompanied by a concomitant increase in arginine decarboxylase activity, arguing for a co-ordinated control of putrescine biosynthesis in these cells.  相似文献   

7.
Growth of Tetrahymena thermophila in a synthetic nutrient medium with or without the essential amino acid L-arginine was studied in the presence or absence of the arginine metabolites L-citrulline and L-ornithine and the polyamines putrescine, spermidine, and spermine. The effects of the growth conditions on the stimulations of the enzymes of the arginine metabolic and polyamine biosynthetic pathway, arginine deiminase (ADI), citrulline hydrolase (CH), ornithine decarboxylase (ODC), and ornithine-oxo-acid aminotransferase were determined. Tetrahymena cells were unable to grow in the absence of L-arginine and the amino-acid utilization was greatly impaired. None of the metabolites or polyamines was able to substitute for arginine. In the presence of arginine, Tetrahymena cultures grew well and citrulline and ornithine did not alter the growth behaviour in any way. In the presence of putrescine, the lag period was decreased from 3 h to 2 h. Spermidine and spermine acted similar to putrescine but less pronounced. The stimulation of the activity of ADI, the key enzyme of arginine degradation, was absolutely dependent upon the presence of arginine in the medium: in the absence of arginine, the low ADI activity which was present in the cells before inoculation was decreased to zero levels within 30 min. In the presence of arginine, the stimulation of ADI was not altered by citrulline and ornithine but putrescine, spermidine, and spermine decreased ADI-stimulation to half of the control values. The stimulation of CH activity in the presence of arginine was not altered by any added metabolite or polyamine. In the media without arginine, stimulation of CH was greatly reduced, in the presence of ornithine more than in its absence, and even more in the presence of putrescine and spermidine. Stimulation of ODC activity in the presence of arginine was not affected by citrulline and ornithine but in the presence of polyamines it was rapidly decreased to unstimulated levels after an initial ca. 10-fold increase. The "hyperstimulation" of ODC in the absence of free arginine was reduced to normal in the presence of citrulline, the stimulation was decreased even below normal levels in the presence of ornithine and polyamines decreased ODC activity to zero levels. O delta T activity was stimulated more in the presence of arginine than in its absence. In both cases the stimulation was enhanced in the presence of polyamines and only in the absence of arginine--by ornithine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Ornithine and arginine (5 to 20 mM), but not glutamic acid or proline, exerted a concentration-dependent stimulatory effect on the biosynthesis of clavulanic acid in both resting-cell cultures and long-term fermentations of Streptomyces clavuligerus. Ornithine strongly inhibited cephamycin biosynthesis in the same strain. [1-14C]-, [5-14C]-, or [U-14 C] ornithine was efficiently incorporated into clavulanic acid, whereas the incorporation of uniformly labeled glutamic acid was very poor. [U-14C] citrulline were not incorporated at all. Mutant nca-1, a strain that is blocked in clavulanic acid biosynthesis, did not incorporate arginine into clavulanic acid. S. clavuligerus showed arginase activity, converting arginine into ornithine, but not amidinotransferase activity. Both arginase activity and clavulanic acid formation were enhanced simultaneously by supplementing the production medium with 10 mM arginine.  相似文献   

9.
Polyamine synthesis in maize cell lines   总被引:1,自引:0,他引:1       下载免费PDF全文
Hiatt A 《Plant physiology》1989,90(4):1378-1381
Uptake of [14C]putrescine, [14C]arginine, and [14C]ornithine was measured in five separate callus cell lines of Zea mays. Each precursor was rapidly taken into the intracellular pool in each culture where, on the average, 25 to 50% of the total putrescine was found in a conjugated form, detected after acid hydrolysis. Half-maximal labeling of each culture was achieved in less than 1 minute. Within this time frame of precursor incorporation, only putrescine derived from arginine was conjugated, indicating that putrescine pools derived from arginine may initially be sequestered from ornithine-derived putrescine. The decarboxylase activities were measured in each culture after addition of exogenous polyamine to the growth medium to assess differential regulation of the decarboxylases. Arginine and ornithine decarboxylase activities were augmented by added polyamine, the effect on arginine decarboxylase being eightfold greater than on ornithine decarboxylase. Levels of extractable ornithine decarboxylase were consistently 15- to 100-fold higher than arginine decarboxylase, depending on the titer of extracellular polyamine. Taken as whole the results support the idea that there are distinct populations of polyamine that are initially sequestered after the decarboxylase reactions and that give rise to separate end products and possibly have separate functions.  相似文献   

10.
Ornithine and arginine (5 to 20 mM), but not glutamic acid or proline, exerted a concentration-dependent stimulatory effect on the biosynthesis of clavulanic acid in both resting-cell cultures and long-term fermentations of Streptomyces clavuligerus. Ornithine strongly inhibited cephamycin biosynthesis in the same strain. [1-14C]-, [5-14C]-, or [U-14 C] ornithine was efficiently incorporated into clavulanic acid, whereas the incorporation of uniformly labeled glutamic acid was very poor. [U-14C] citrulline were not incorporated at all. Mutant nca-1, a strain that is blocked in clavulanic acid biosynthesis, did not incorporate arginine into clavulanic acid. S. clavuligerus showed arginase activity, converting arginine into ornithine, but not amidinotransferase activity. Both arginase activity and clavulanic acid formation were enhanced simultaneously by supplementing the production medium with 10 mM arginine.  相似文献   

11.
Qualitative and quantitative determinations of polyamines have been done in 4 photosynthetic eubacteria and 6 extreme-halophilic archaebacteria. For comparison, 5 moderate-halophilic eubacteria were also analyzed to determine their polyamine contents. Not only putrescine and spermidine but also homospermidine were found in the photosynthetic eubacteria, especially in the N2-fixing species, Rhodospirillum and Chromatium. Norspermidine, norspermine, and spermine were not detected in the phototrophic eubacteria. No appreciable amount of any polyamine was found in extreme-halophilic archaebacteria, Halobacterium and Halococcus, while moderate-halophilic eubacteria contained quite high concentrations of putrescine and spermidine and cadaverine. When arginine was incubated with cell lysates of these two archaebacteria, appreciable amounts of agmatine were produced; neither putrescine nor cadaverine was formed in the presence of ornithine or lysine. No detectable amount of spermidine was produced by the lysates on incubation with putrescine.  相似文献   

12.
K M Yao  W F Fong    S F Ng 《The Biochemical journal》1984,222(3):679-684
The putrescine-biosynthesis pathway in Tetrahymena thermophila was delineated by studying crude extracts prepared from exponentially growing cultures. A pyridoxal phosphate-stimulated ornithine decarboxylase activity competitively inhibited by putrescine was detected. CO2 was also liberated from L-arginine, but analyses by t.l.c. and enzyme studies suggested that the activity was not due to arginine decarboxylase, nor could enzyme activities converting agmatine into putrescine be detected. We conclude that the decarboxylation of L-ornithine is probably the only major route for putrescine biosynthesis in this organism during exponential growth.  相似文献   

13.
The growth rate of several polyamine-deficient mutants of Escherichia coli was very low in minimal medium and increased markedly upon the addition of putrescine, spermidine, arginine, citrulline, or argininosuccinic acid. The endogenous content of polyamines was not significantly altered by the supplementation of polyamine-starved cultures with arginine or its precursors. In contrast, these compounds as well as putrescine or spermidine caused a 40-fold reduction in intracellular ornithine levels when added to polyamine-depleted bacteria. In vivo experiments with radioactive glutamic acid as a precursor and in vitro assays of the related enzymes showed that the decrease in ornithine levels was due to the inhibition of its biosynthesis rather than to an increase in its conversion to citrulline or delta 1-pyrroline-5-carboxylic acid and proline. High endogenous concentrations of ornithine were toxic for the E. coli strains tested. The described results indicate that the stimulatory effect of putrescine and spermidine on the growth of certain polyamine-starved bacteria may be partially due to the control of ornithine biosynthesis by polyamines.  相似文献   

14.
L-Arginine iminohydrolase (arginine deiminase, ADI) from Tetrahymena thermophila was purified approx. 75-fold by means of gel permeation chromatography. The Km of the purified enzyme for L-arginine was 412 +/- 25 microM and L-ornithine inhibited the reaction competitively with a Ki of 985 +/- 105 microM. D-Ornithine was a weak inhibitor with a Ki of greater than 10mM. The polyamines putrescine and spermidine inhibited ADI incompetitively with a Kii of 2.8mM for putrescine and 4.3mM for spermidine. Since the concentrations required for inhibition were within the range of the normal intracellular polyamine concentrations in Tetrahymena (maximally 14mM putrescine and 4mM spermidine), it is suggested that the polyamine effects on ADI are of regulatory nature. Thus, polyamine biosynthesis in Tetrahymena thermophila is regulated not only on the level of ornithine decarboxylase activity, but also on an earlier step, the supply of ODC with substrates.  相似文献   

15.
A p-fluorophenylalanine- (PFP) resistant cell line of Nicotiana tabacum and wild type cells accumulating high and low levels of cinnamoyl putrescines, respectively, were used to study the formation of putrescine in the biosynthesis of cinnamoyl putrescines. Labelled arginine and ornithine were equally well incorporated into the main conjugates caffeoyl and feruloyl putrescine. Trapping experiments indicated that both amino acids were decarboxylated for putrescine biosynthesis. Nearly all alcohol-extractable radioactivity from the labelled amino acids was found as cinnamoyl putrescines in the PFP-resistant cell line, whereas wild type cells retained significant radioactivity in the amino acids. The enzyme activities of arginine and ornithine decarboxylases in the resistant cell line were increased 3- to 6-fold.  相似文献   

16.
We investigated the ability of intracellular ornithine to alter both the biosynthesis of putrescine and the activity of ornithine decarboxylase in Reuber H35 hepatoma cells in culture incubated with 12-O-tetradecanoylphorbol 13-acetate (TPA). In confluent cultures of H35 cells, the addition of TPA (1.6 μM) caused the activity of ornithine decarboxylase to increase by more than 100-fold within 4 h. When exogenous ornithine (0.1–1.0 mM) was added to the culture medium with TPA, a marked dose-dependent increase in the production of putrescine was observed. The activity of ornithine decarboxylase in the same cultures incubated with ornithine decreased in a similar dose-dependent manner. The addition of arginine (0.1–1.0 mM) (but not lysine or histidine) to the H35 cells in culture concomitant with TPA also led to a relative increase in putrescine biosynthesis and a decrease in ornithine decarboxylase activity compared to cultures not receiving the amino acids. A similar response to exogenous ornithine and TPA was observed in a series of less confluent rapidly growing cultures which were in culture for a shorter period of time. The confluent cultures possessed a basal level of arginase (55 units/mg protein) which increased approx. 2-fold upon treatment with TPA. The intracellular concentration of ornithine in the unstimulated cells was in the order of 0.02–0.03 mM. Upon incubation of the cells with exogenous ornithine or arginine, the intracellular pools of these amino acids increased 4- to 8-fold.  相似文献   

17.
The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and γ-aminobutyric acid, metabolites that play important roles in plant development and stress response. Suspension cultures of poplar (Populus nigra × maximowiczii), transformed with a constitutively expressing mouse ornithine decarboxylase gene, were used to study the effect of up-regulation of putrescine biosynthesis (and concomitantly its enhanced catabolism) on cellular contents of various protein and non-protein amino acids. It was observed that up-regulation of putrescine metabolism affected the steady state concentrations of most amino acids in the cells. While there was a decrease in the cellular contents of glutamine, glutamate, ornithine, arginine, histidine, serine, glycine, cysteine, phenylalanine, tryptophan, aspartate, lysine, leucine and methionine, an increase was seen in the contents of alanine, threonine, valine, isoleucine and γ-aminobutyric acid. An overall increase in percent cellular nitrogen and carbon content was also observed in high putrescine metabolizing cells compared to control cells. It is concluded that genetic manipulation of putrescine biosynthesis affecting ornithine consumption caused a major change in the entire ornithine biosynthetic pathway and had pleiotropic effects on other amino acids and total cellular carbon and nitrogen, as well. We suggest that ornithine plays a key role in regulating this pathway.  相似文献   

18.
Biosynthetic arginine decarboxylase in phytopathogenic fungi   总被引:3,自引:0,他引:3  
A J Khan  S C Minocha 《Life sciences》1989,44(17):1215-1222
It has been reported that while bacteria and higher plants possess two different pathways for the biosynthesis of putrescine, via ornithine decarboxylase (ODC) and arginine decarboxylase (ADC); the fungi, like animals, only use the former pathway. We found that contrary to the earlier reports, two of the phytopathogenic fungi (Ceratocystis minor and Verticillium dahliae) contain significant levels of ADC activity with very little ODC. The ADC in these fungi has high pH optimum (8.4) and low Km (0.237 mM for C. minor, 0.103 mM for V. dahliae), and is strongly inhibited by alpha-difluoromethylarginine (DFMA), putrescine and spermidine, further showing that this enzyme is probably involved in the biosynthesis of polyamines and not in the catabolism of arginine as in Escherichia coli. The growth of these fungi is strongly inhibited by DFMA while alpha-difluoromethylornithine (DFMO) has little effect.  相似文献   

19.
20.
The biosynthetic pathways for putrescine (Put) in Vibrio parahaemolyticus were delineated by measuring activities of the enzymes which would be involved in its biosynthesis. Experiments with labeled arginine and ornithine revealed that both of these amino acids were converted into Put by intact cells. The activities of three enzymes, arginine decarboxylase (ADC), ornithine decarboxylase (ODC), and agmatine ureohydrolase (AUH), were detected in cell extracts. ADC and ODC of V. parahaemolyticus were similar in the following properties to the corresponding enzymes of Escherichia coli: 1) both decarboxylases showed a pH optimum at 8.25 and required pyridoxal phosphate and dithiothreitol for full activity; 2) while ODC was considerably activated by GTP, ADC was only slightly; 3) both decarboxylases were inhibited by polyamines; 4) ADC was inhibited by difluoromethylarginine, a potent inhibitor of bacterial ADC. However, in contrast to the corresponding enzymes of E. coli, the V. parahaemolyticus ADC showed no requirement for Mg2+, and the AUH was active over a wide pH range of 8.5-9.5 with a maximum at pH 9.0. Furthermore, in all 6 strains tested, the activity of ADC was obviously high compared with that of ODC, and AUH was present with a relatively high activity. Cultivation of these strains at a suboptimal NaCl concentration (0.5%) resulted in a pronounced increase in both ADC and AUH activities. These observations suggest that the important pathway for Put biosynthesis in V. parahaemolyticus is the decarboxylation of arginine by ADC and the subsequent hydrolysis of its product, agmatine, by AUH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号