首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
We cloned cDNAs for gelatinase A and gelatinase B from an ovary cDNA library of the medaka fish Oryzias latipes. The gelatinase A clone encodes a protein of 657 amino acids, whereas the gelatinase B clone encodes a protein of 690 amino acids. Gelatinase A mRNA was expressed in the testis, ovary, intestine, heart, spleen and kidney of the animal. In contrast, gelatinase B mRNA was detected in the ovary. Localization of the respective mRNAs in the ovary was examined using in situ hybridization. Gelatinase A mRNA was found only in the oocytes of small and middle-sized follicles. In contrast, gelatinase B was expressed exclusively in follicular tissues that had ovulated. In situ zymographic analysis revealed that gelatinolytic activity, presumably due to matrix metalloproteinase activity, was detectable in the areas surrounding small and middle-sized follicles, interstitial stromal tissues and the cytoplasm of oocytes. Using extracts of the whole ovary and of ovulated oocytes, several gelatin-degrading enzymes, which probably represent the intermediate and active forms of medaka fish gelatinase A and gelatinase B, were detected by gelatin zymographic analysis. These results clearly indicate that gelatinase A and gelatinase B play a discrete role in the ovary of this lower vertebrate animal.  相似文献   

5.
G E Shull  J Greeb  J B Lingrel 《Biochemistry》1986,25(25):8125-8132
Rat brain and kidney cDNA libraries were constructed and screened with a cDNA insert corresponding to the mRNA for the sheep kidney Na+,K+-ATPase catalytic subunit. The alpha-subunit cDNAs isolated from the kidney library were derived from a single class of messenger RNA, and the brain cDNAs were derived from three classes of messenger RNA. The most abundant brain cDNA, which spans 5.1 kilobases, encodes the alpha(+) form of the enzyme. The second most abundant brain cDNA, which spans 3.65 kilobases, is identical with that of the kidney form and therefore encodes the alpha isoform. The third class of cDNA, which spans 3.55 kilobases, was present at low abundance and encodes an isoform of the alpha-subunit, designated alpha III, which has not been identified previously. The complete nucleotide sequence and deduced amino acid sequence for each of the brain and kidney cDNAs have been determined. In addition, we have identified a lysine-rich sequence that may function as a movable, ion-selective gate during cation binding and occlusion and have also identified several amino acid sequence variations that appear to explain some of the well-known species and tissue differences in cardiac glycoside sensitivity.  相似文献   

6.
7.
Full- and partial-length cDNAs encoding calmodulin mRNA have been cloned and sequenced from barley (Hordeum vulgare L.). Barley leaf mRNA, size-fractionated in sucrose density gradients, was used to synthesize double-stranded cDNA. The cDNA was cloned in λgt10 and screened with a synthetic, 14-nucleotide oligonucleotide probe, which was designed using the predicted coding sequences of the carboxy termini of spinach and wheat calmodulin proteins. The primary structure of barley calmodulin, predicted from DNA sequencing experiments, consists of 148 amino acids and differs from that of wheat calmodulin in only three positions. In two of the three positions, the amino acid changes are conservative, while the third change consists of an apparent deletion/insertion. The overall nucleotide sequence similarity between the amino acid coding regions of barley and vertebrate calmodulin mRNAs is approximately 77%. However, a region encoding 11 amino acids of the second Ca2+-binding domain is very highly conserved at the nucleotide level compared with the rest of the coding sequences (94% sequence identity between barley and chicken calmodulin mRNAs). Genomic Southern blots reveal that barley calmodulin is encoded by a single copy gene. This gene is expressed as a single size class of mRNA in all tissues of 7-day-old barley seedlings. In addition, these analyses indicate that a barley calmodulin cDNA coding region subclone is suitable as a probe for isolating calmodulin genes from other plants.  相似文献   

8.
Pregnancy-specific beta 1-glycoprotein (PS beta G) isolated from human placenta consists of a set of at least three glycoproteins with apparent molecular masses of 72, 64, and 54 kDa, respectively. This heterogeneity is confirmed by the detection of three nonglycosylated polypeptides of 50, 48, and 36 kDa, which can be immunoprecipitated by antiserum to placental PS beta G obtained by in vitro translation of placental poly(A)+ RNA. To examine the structural relationships between these proteins, two cDNA clones of 1912 base pairs (PSG16) and 2131 base pairs (PSG93) encoding human PS beta Gs were isolated from a human placental lambda gt11 cDNA library. The sequenced portions of these two cDNAs are identical with the exception that clone PSG93 contains an additional 86 base pairs at the end of the common 3'-coding region. This insertion could result in the generation of a PS beta G species of 419 amino acid residues instead of the 417 amino acid residues predicted by the sequence of clone PSG16. The calculated molecular masses of the two polypeptides encoded by PSG16 and PSG93 are 46.9 and 47.2 kDa, close to the size of the major nonglycosylated PS beta G of 48 kDa. The identity of proteins coded for by these cDNA clones was confirmed by comparing the predicted amino acid sequences to sequences determined from endoproteinase Lys-C peptides obtained from human placental PS beta G. Two placental PS beta G mRNAs of 2200 bases (major) and 1700 bases (minor) have been detected by Northern hybridization analysis. Primer extension and S1 nuclease mapping experiments demonstrated that PS beta G mRNAs have heterogeneous 5' termini.  相似文献   

9.
We present evidence for the existence of two forms of the catalytic (C) subunit of the cAMP-dependent protein kinase. A lambda gt-11 cDNA library constructed from poly(A)-rich RNA from the porcine kidney cell line, LLC-PK1, was screened using a 1.5-kb EcoRI fragment from a bovine cDNA for the C subunit. Two independent classes of cDNAs were identified on the basis of partial restriction map and sequence data. These two cDNAs, lambda CAT4 and lambda CAT3, apparently encode two forms of C subunit designated C alpha and C beta, respectively. The nucleotide sequence of the C alpha and C beta cDNAs revealed differences in the coding region and particularly in the 3' untranslated region. However, the deducted amino acid sequences of C alpha and C beta subunits were 96% homologous to the sequences so far determined. Specific probes from the 3' coding region of the two cDNA species were used to investigate C subunit mRNA expression in LLC-PK1 cells. Northern analysis showed a major mRNA species of 2.8 kb with the C alpha probe while the C beta probe detected two mRNA species of 5.0 kb and 3.8 kb. These data were supported by genomic blot analysis which showed distinct hybridization patterns with either the C alpha or C beta probes. All the available evidence suggests that at least two distinct genes encode the C subunit which are expressed in LLC-PK1 cells.  相似文献   

10.
A novel alpha subunit in rat brain GABAA receptors   总被引:16,自引:0,他引:16  
Two cDNAs (alpha 1 and alpha 4) from rat brain cDNA libraries encode isoforms of the alpha subunit of the GABA/benzodiazepine receptor, which differ at 30% of their amino acid residues. Northern blot analysis and in situ hybridization histochemistry show that alpha 1 and alpha 4 mRNAs have distinct sizes and distinct regional and cellular distributions in rat brain: both mRNAs are found in the cortex and hippocampus; however, only the alpha 1 mRNA is detected in the cerebellum. We injected RNA transcribed from alpha 1 and alpha 4 cDNAs into Xenopus oocytes, together with an RNA for a rat beta subunit. We obtained GABA-dependent inward currents that were reversibly blocked by picrotoxin. Picrotoxin alone, applied to oocytes producing the alpha and beta polypeptides, elicited an outward current. We suggest that these polypeptides together produce GABA-gated ion channels that can also open spontaneously.  相似文献   

11.
cDNAs containing the entire coding regions of the alpha and beta subunits of calmodulin-dependent protein kinase II (CaM kinase II) were isolated from a rat cerebrum cDNA library, ligated into an expression vector under the control of SV40 early promoter and introduced into Chinese hamster ovary (CHO) cells. To investigate the role of the alpha and beta subunits and their functional domains in CaM kinase II activity, the properties of the kinases expressed in the transfected cells were studied. CaM kinase II activity was detected in the transfected cells when the alpha and beta cDNAs were introduced into CHO cells simultaneously. RNA transfer blot and protein immunoblot analyses demonstrated the expression of the mRNAs and proteins of both alpha and beta subunits in the cloned cells. When alpha or beta cDNA was introduced into CHO cells separately, a significant level of the enzyme activity was also expressed, indicating that the alpha and beta subunits exhibited enzyme activity individually. The apparent Km values for ATP and MAP 2 were almost the same for the alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II. However, there was a slight difference in the affinity for calmodulin between the expressed proteins. The alpha and beta subunits expressed in the same cells polymerized to form alpha beta complex of a size similar to that of brain CaM kinase II. The alpha subunit also polymerized to form an oligomer, which showed almost the same S value as that of alpha beta complex and brain CaM kinase II. In contrast, the beta subunit did not polymerize. The alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II were autophosphorylated with [gamma-32P]ATP in the presence of Ca2+ and calmodulin, which resulted in the appearance of Ca2+-independent activity. The Ca2+-independent activity was 60-75% of the total activity as measured in the presence of Ca2+ plus calmodulin. To examine the functional relationship of peptide domains of the subunits of CaM kinase II, deleted cDNAs were introduced into CHO cells and the properties of the expressed proteins were studied. In cells transfected with alpha or beta cDNA from which the association domain was deleted, a significant level of kinase activity was expressed. However, the expressed proteins showed hardly any autophosphorylation and the appearance of Ca2+-independent enzyme activity was very low, indicating that the association domain was essential for the autophosphorylation and for the appearance of the Ca2+-independent activity.  相似文献   

12.
13.
《The Journal of cell biology》1993,120(6):1405-1416
A polymerase chain reaction strategy was devised to identify new members of the mammalian myosin I family of actin-based motors. Using cellular RNA from mouse granular neurons and PC12 cells, we have cloned and sequenced three 1.2-kb polymerase chain reaction products that correspond to novel mammalian myosin I genes designated MMI alpha, MMI beta, MMI gamma. The pattern of expression for each of the myosin I's is unique: messages are detected in diverse tissues including the brain, lung, kidney, liver, intestine, and adrenal gland. Overlapping clones representing full-length cDNAs for MMI alpha were obtained from mouse brain. These encode a 1,079 amino acid protein containing a myosin head, a domain with five calmodulin binding sites, and a positively charged COOH-terminal tail. In situ hybridization reveals that MMI alpha is highly expressed in virtually all neurons (but not glia) in the postnatal and adult mouse brain and in neuroblasts of the cerebellar external granular layer. Expression varies in different brain regions and undergoes developmental regulation. Myosin I's are present in diverse organisms from protozoa to vertebrates. This and the expression of three novel members of this family in brain and other mammalian tissues suggests that they may participate in critical and fundamental cellular processes.  相似文献   

14.
Most cells contain two forms of the alpha subunit of the G protein (Gs) that stimulates adenylate cyclase; their apparent molecular weights are 45,000 and 52,000. Two cDNAs that correspond to distinct mRNAs for the alpha subunit of Gs have been cloned from a bovine adrenal library and sequenced. The sequences of the two cDNAs, designated pGs-l and pGs-S, are identical except for a single stretch of 46 nucleotides in the coding region, where four are altered and 42 are deleted in pGs-S. Expression of pGs-S and pGs-l in COS-m6 cells yields protein products with apparent molecular weights of 45,000 and 52,000, respectively, based on their mobility in sodium dodecyl sulfate-polyacrylamide gels. We conclude that pGs-S and pGs-l encode the 45- and 52-kDa forms of Gs alpha, respectively, and propose that the mRNAs encoding these proteins arise from a single gene by internal alternative RNA splicing.  相似文献   

15.
16.
S C Wu  J Gyrgyey    D Dudits 《Nucleic acids research》1989,17(8):3057-3063
Histone H3 mRNAs were found in polyA(+) fractions of total RNA prepared from alfalfa plants, calli and somatic embryos. The sequence analysis of cDNAs revealed the presence of a polyA tail on independent alfalfa H3 mRNAs. A highly conserved sequence motif AAUGAAA identified about 20bp upstream from the 3' ends of the alfalfa H3 cDNAs was suggested to be one of the possible regulatory elements in the 3' end formation and polyadenylation. Three out of the four analysed H3 cDNAs have more than 97% homology with a genomic clone and encode the same protein. While the fourth represents a minor species with only 78.8% homology to the coding region of the genomic clone and encodes a H3 histone with four amino acid replacements. On the basis of compilation analysis we suggest a consensus sequence for plant H3 histones which differs from that of animal's by four amino acid changes.  相似文献   

17.
Two full-length cDNAs encoding hydroxypyruvate reductase were isolated from a cDNA library constructed with poly(A)+ RNA from pumpkin green cotyledons. One of the cDNAs, designated HPR1, encodes a polypeptide of 386 amino acids, while the other cDNA, HPR2 encodes a polypeptide of 381 amino acids. Although the nucleotide and deduced amino acid sequences of these cDNAs are almost identical, the deduced HPR1 protein contains Ser-Lys-Leu at its carboxy-terminal end, which is known as a microbody-targeting signal, while the deduced HPR2 protein does not. Analysis of genomic DNA strongly suggests that HPR1 and HPR2 are produced by alternative splicing.  相似文献   

18.
cDNA clones for a fifth polypeptide of rat brain calmodulin-dependent protein kinase II were isolated and sequenced. The cDNA sequence encoded a polypeptide, designated delta, consisting of 533 amino acid residues with a molecular weight of 60,080. Comparison of amino acid sequences of this and alpha, beta, beta', and gamma polypeptides of calmodulin-dependent protein kinase II reveals marked homology among them. The mRNAs for delta were expressed in rat brain tissues with different regional specificities. The distribution of alpha, beta/beta', gamma, and delta mRNAs in cerebrum, skeletal muscle, diaphragm, heart, small intestine, uterus, aorta, liver, kidney, lung, and testis were examined by RNA blot hybridization analysis with probes specific for the respective mRNAs. A 3.9-kilobase (kb) RNA species hybridizable with a probe for gamma was found in all the tissues examined, and 4.0-4.2-kb RNA species hybridizable with a probe for delta were found in all the tissues examined except for liver, while a 4.8-kb RNA species hybridizable with a probe for alpha and a 4.2-kb RNA species hybridizable with a probe for beta were present in brain but not in the other tissues. With the alpha probe, however, a 4.1- and 2.6-kb RNA species were both detected in skeletal muscle and diaphragm. With the beta probe, a 4.3-kb RNA in skeletal muscle and diaphragm, 2.9-kb RNA in small intestine, and 4.0-kb RNA in testis were detected. With the delta probe, a 3.5-kb RNA in heart and 1.8-kb RNA in testis were detected. Thus, gamma and delta mRNAs were expressed in various tissues, while alpha and beta/beta' mRNAs were primarily, if not exclusively, expressed in brain.  相似文献   

19.
cDNA clones for three distinct types of rat brain calmodulin-dependent protein kinase II have been isolated. Two of them were identified as cDNA clones for the alpha and beta subunits of this kinase. The other showed a nucleotide sequence similar but, not identical, to that encoding either the alpha or beta subunit. The cDNA sequence encoded a polypeptide, designated gamma, consisting of 527 amino acid residues with a molecular weight of 59,038. The deduced amino acid sequence of gamma was 84 and 87% homologous to those of alpha and beta, respectively. Higher homologies of the sequences were found in the amino-terminal halves of the three species, alpha, beta, and gamma. RNA blot analysis revealed that the mRNAs for alpha, beta, and gamma were expressed in rat brain with different regional specificities.  相似文献   

20.
A region of 25 nucleotides is highly conserved in genes coding for the alpha, beta, gamma, and delta subunits of the nicotinic acetylcholine receptor (AChR) of human, mouse, calf, chicken, and Torpedo. Based on this observation, a 2-fold degenerate oligonucleotide was synthesized and used as a probe to screen a cDNA library made from a mouse myogenic cell line. Clones coding for the beta, gamma, and delta subunits were identified by the probe. The protein sequence deduced from the beta subunit clones codes for a precursor polypeptide of 501 amino acids with a calculated molecular weight of 56,930 daltons, which includes a signal peptide of 23 amino acids. The protein sequence and structural features of the beta subunits of mouse, calf, and Torpedo are conserved. A clone coding for the mouse gamma subunit was isolated, and its identity was confirmed by alignment of its sequence to previously published cDNA sequences for the mouse and calf gamma subunits. The clone contained approximately 200 nucleotides more at its 3' end untranslated region than a mouse gamma clone recently described. Northern blot analysis, utilizing as probes these beta and gamma subunit cDNAs and previously characterized alpha and delta subunit cDNAs, shows that the steady-state levels of the four AChR mRNAs increase coordinately during terminal differentiation of cultured C2 and C2i mouse myoblasts. The increase in mRNA levels can account for the rise of cell surface receptors during myogenesis and suggests that the muscle AChR genes may be regulated during development by a common mechanism. Utilization of this oligonucleotide probe should prove useful for screening a variety of libraries made from different species and tissues which are known to express AChRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号