首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have examined the effect of hypoxia and nutrient depletion on the growth of human neuroblastoma cells with normal or enhanced expression of the N-myc oncogene. The combination of both conditions reduced the growth of neuroblastoma cells with normal N-myc expression. However, this effect was much more pronounced in neuroblastoma cells with enhanced N-myc expression and eventually resulted in apoptosis, presumably by the up-regulation of CD95. Our data suggest that therapeutic induction of tumor hypoxia and nutrient depletion (for example, by anti-angiogenesis) could help to improve the outcome of patients with neuroblastomas carrying the prognostically unfavourable N-myc amplification.  相似文献   

2.
In different neuroblastoma cell lines and transfected clones, an increasing plasma membrane redox activity correlates with amplification and enhanced expression of the N-myc oncogene. Furthermore, plasma membrane redox activity is partially inhibited by retinoic acid in neuroblastoma cells with multiple copies of the N-myc oncogene but not in neuroblastoma cells with only one copy of this gene.  相似文献   

3.
A set of DNA clones comprising 48 independent HindIII fragments (215 kilobases of sequence) was derived from the N-myc amplification unit of the neuroblastoma cell line NGP. These clones were used to investigate N-myc amplification units in NGP cells and 12 primary neuroblastoma tumors. Three parameters were evaluated: (i) the number of rearrangements from germ line configuration that had occurred during the amplification process; (ii) the homogeneity of amplification units within individual tumors; and (iii) the conservation of amplified sequences among different tumors. The results indicated that remarkably few rearrangements had occurred during amplification, that the amplification units within any one tumor were quite homogeneous, and that although each tumor contained a unique pattern of amplified DNA fragments, there was considerable similarity between the amplification units of different tumors. In particular, the amplification units were strikingly similar over a contiguous domain of at least 140 kilobases surrounding the N-myc structural gene.  相似文献   

4.
5.
6.
Amplification of one of three growth-stimulating myc genes is a common method by which many tumor types gain a proliferative advantage. In metastatic human neuroblastoma, the amplification of the N-myc locus, located on chromosome 2, is a dominant feature of this usually fatal pediatric cancer. Of the many models proposed to explain this amplification, all incorporate as the initial step either disproportionate overreplication of the chromosomal site or recombination across a loop structure. The original locus is retained within the chromosome in the overreplication models but is excised in the recombination models. To test these models, we have used somatic cell hybrids to separate and analyze the chromosomes 2 from a neuroblastoma cell line containing in vivo amplified N-myc. Our results demonstrate that N-myc is excised from one of the chromosomes, suggesting that deletion is a requisite part of gene amplification in a naturally occurring system.  相似文献   

7.
p34cdc2 is a protein kinase that has an important role in controlling cell cycle progression and may regulate tumor suppressor gene activity. In this work, we show that the arrest of cell growth and induction of differentiation in a tumorigenic neuroblastoma cell line by retinoic acid (RA) is associated with a 75-fold decrease in the level of p34cdc2 protein. The RA induced decrease in p34cdc2 levels does not simply reflect the arrest of cell growth, because p34cdc2 levels are not reduced when neuroblastoma cells are growth arrested by nutrient deprivation. Furthermore, dephosphorylation of the tumor suppressor gene product RB, a substrate for the p34cdc2 kinase activity, is observed only when p34cdc2 levels are decreased in RA treated cells. These studies link regulation of cdc2 level, RB phosphorylation state, and induction of differentiation by RA and suggest that alterations in the cdc2 gene or in genes controlling its regulation contribute to tumorigenesis.  相似文献   

8.
9.
10.
The human neuroblastoma cell line SK-N-BE, after incubation with 10 μM retinoic acid (RA) or 20 nM phorbol 12-myristate 13-acetate (PMA), underwent biochemical and morphological signs of differentiation within 10–14 days. In parallel, SK-N-BE cells produced significantly higher amounts of nitric oxide (NO) in comparison with controls, as assessed by the measurement of nitrite and nitrate in the culture supernatant and of NO synthase (NOS) activity in the cell lysates (measured as ability to convert [3H]arginine into [3H]citrulline and as NADPH diaphorase activity). Nitrite/nitrate production was abolished by adding the NO scavenger hemoglobin in the culture medium and was inhibited by aminoguanidine (AG, a selective inhibitor of the inducible NOS isoform) but not by the less selective inhibitor NG-nitro-L -arginine methylester (NAME). Western blotting experiments with monoclonal antibodies against the ncNOS and iNOS isoforms suggest that RA-elicited NOS activation is not attributable to an increased expression of the protein. NAME and AG were not able to revert inhibition of proliferation induced by RA, and the NO donor sodium nitroprusside did not mimic the effect of RA and PMA. These data indicate that increased NO synthesis does not mediate RA- or PMA-induced differentiation but may be an additional marker of differentiation into sympathetic-like neuronal cells. J. Cell. Physiol. 174:99–106, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
To know the function of the Ca2+ channel containing alpha(1)2.3 (alpha1E) subunit (Ca(v)2.3 channel) in spermatozoa, we analyzed Ca2+ transients and sperm motility using a mouse strain lacking Ca(v)2.3 channel. The averaged rising rates of Ca2+ transients induced by alpha-D-mannose-bovine serum albumin in the head region of Ca(v)2.3-/- sperm were significantly lower than those of Ca(v)2.3+/+ sperm. A computer-assisted sperm motility assay revealed that straight-line velocity and linearity were greater in Ca(v)2.3-/- sperm than those in Ca(v)2.3+/+ sperm. These results suggest that the Ca(v)2.3 channel plays some roles in Ca2+ transients and the control of flagellar movement.  相似文献   

12.
Phosphatidylinositol (PI) turnover has recently been implicated in the regulation of cell proliferation and transformation. We have investigated its role in differentiation using LAN-1 cells, a human neuroblastoma cell line which can be induced to differentiate along the neuronal pathway by retinoic acid (RA), and a derivated RA-resistant subline of it (LAN-1-res). We have found that treatment of LAN-1 cells with RA is followed by a rapid decrease of inositol phospholipid metabolism, using myo-[1,2-3H] inositol or [1,(3)-3H] glycerol. Analysis of labelled phosphatidylinositol metabolites from prelabelled LAN-1 cells indicated a rapid decrease of inositol (1,4,5)-trisphosphate and (1,2) diacylglycerol within 1 min. of induction of differentiation by RA, while no changes were observed in RA-treated LAN-1-res cells. These findings indicate that phosphoinositides-derived metabolites may be directly implicated in the induction processes of RA-triggered NB cell differentiation.  相似文献   

13.
Retinoic acid (RA) induces partial differentiation of neuroblastoma (NB) cells in vitro. In the human NB line, SH-SY5Y (a neuroblastic subclone of SK-N-SH), RA was previously shown to enhance the stimulatory (PGE1) and inhibitory (opioid) regulation of adenylyl cyclase. Since these cells are also sensitive to cAMP stimulation by vasoactive intestinal peptide (VIP), we have tested the effects of RA on VIP receptor expression and function. Pretreatment of SH-SY5Y cells with 10 microM RA over 6 days dramatically increased VIP receptor number from approximately 3,000 to approximately 70,000 sites per cell and enhanced threefold the cAMP accumulation after external VIP addition, while VIP immunoreactive content in the cells increased 2-3-fold. In the light of the recently proposed autocrine function of VIP in this cell lineage, the strong enhancement of the VIP system may contribute to the differentiation effects of RA.  相似文献   

14.
Human neuroblastoma cells often carry amplified DNA encompassing the gene N-myc. Amplified N-myc has been found localized in "double minutes" in direct tumor cell preparations. In contrast, later passages carried amplified N-myc almost exclusively within a single homogeneously staining chromosomal region located at a chromosomal site different from the normal location of N-myc. We used pulsed field gel electrophoresis to define the structural arrangement of the amplified DNA. Long-range mapping was facilitated by the presence of several sites for rare cutting restriction endonucleases in the 5' region of N-myc. Amplified DNAs of different neuroblastoma cell lines were heterogeneous in size and had undergone recombination at various distances from N-myc. N-myc occupied a central position within the amplified DNA, and in no case was the coding region affected by recombination. Among neuroblastoma cells, varying proportions of amplified DNA (in some instances close to 100%) consisted of multiple tandem arrays of DNA segments ranging in size from 100 to 700 kilobase pairs. Tumor cells with low degrees of amplification revealed regions of amplified DNA in excess of 1,500 kilobase pairs without apparent rearrangement. Our observations, in concert with the cytogenetic findings, suggest a model of gene amplification which involves unscheduled DNA replication, recombination, and formation of extrachromosomal DNA followed by integration into a chromosome and subsequent in situ multiplication. The central position which N-myc occupies within the amplified sequences and the lack of recombination within the coding region of N-mc indicate that N-myc rather than other genetic information provides the selective advantage for retention of the amplified DNA.  相似文献   

15.
Neuroblastomas often show amplification and high expression of the N-myc oncogene. N-myc expression could be explained as a consequence of gene amplification, but an alternative possibility is that expression primarily results from the inactivation or loss of some factor that normally represses the N-myc gene. To test this idea, we fused N-myc-overexpressing neuroblastoma cell lines with lines that do not express N-myc. In the resulting hybrids, N-myc expression turned out to be switched off, although amplified N-myc copies were still present. This suggests that N-myc overexpression in neuroblastomas results, at least in part, from the inactivation of a suppressor gene that is present in normal cells. In rat neuroblastomas, it has been found that N-myc can switch off class I major histocompatibility complex (MHC) expression. Therefore, we analyzed in our hybrid cells whether suppression of N-myc results in reexpression of human class I MHC genes. Because this was found to be the case, the picture emerges of a hierarchic pathway that connects a putative tumor-suppressor gene with the expression of N-myc and consequently of class I MHC, thus affecting the potential immunogenic properties of neuroblastomas.  相似文献   

16.
《Cell differentiation》1984,14(2):135-144
Cultured human SH-SY5Y neuroblastoma cells differentiated in the presence of retinoic acid (RA) or 12-0-tetradecanoyl-phorbol-13-acetate (TPA). In both cases, the cells acquired long cell processes and the cell growth was partially inhibited. Treatment with RA or TPA resulted in an increased neuron-specific enolase activity, relative to the total cellular enolase activity. At the optimal concentration, TPA induced a 200-fold increase in the concentration of noradrenalin, whereas in RA-treated cells the corresponding increase was only fourfold. Cells treated with a combination of RA and TPA were morphologically differentiated and growth inhibited and had a high relative activity of neuron-specific enolase. The increase in the concentration of noradrenalin induced by TPA was inhibited by RA in a concentration-dependent fashion. However, despite this result there seemed to be no general antagonistic effect of RA on the TPA-induced differentiation. The phenotypes of the cells treated by RA, TPA, or the combination of RA and TPA, did, on the other hand, differ from each other. Our results suggest that RA and TPA induce the SH-SY5Y cells to differentiate along different pathways.  相似文献   

17.
In order to determine how glycosylation changes associated with cellular differentiation may be influenced by the basal cellular sialylation potential, the effect of retinoic acid (RA)-induced differentiation was investigated in neuroblastoma cells expressing differing levels (and activities) of the 2,6(N) sialyltransferase (ST6N) enzyme. The increase in ST activity was proportional to the basal cellular sialylation potentials with the high activity clones showing the greatest increase. This was paralleled by an up-regulation of the level of overall sialoglycoprotein glycosylation level. An increase in the levels of the polysialic acid (PSA) epitope was associated with a parallel increase in the levels of the neural cell adhesion molecule (NCAM) protein backbone although there was no overall change in the PSA:NCAM ratio following RA treatment.  相似文献   

18.
19.
Because of the known property of spontaneous regression in stage IVS of neuroblastoma all attempts are made to elucidate whether differentiation inducers possibly could be applied for neuroblastoma therapy. Here we examined the influence of retinoic acid (RA) in vitro on differentiation, proliferation and adhesion of 10 permanent and 4 primary cell lines as well as of several SCID-mouse tumour transplants. In general, after RA treatment morphologically different cell types which are characteristic for neuroblastoma cells have changed. N (neuronal)-type cells prolonged their neuronal processes, whereas S (epithelial, substrate-adherent, Schwann cell-like)-type cells lost their adherence to substratum and became apoptotic. Additionally, the reactions of all neuroblastoma cell lines with monoclonal antibodies against beta-tubulin (for neuronal cells) and glial fibrillary acidic protein (for epithelial cells) were determined. The anti-proliferative effect of all-trans-RA as well as 13-cis-RA was more profound in S-type cells (up to 40% in primary cell lines). To elucidate the role of adhesion molecules during neuronal cell differentiation, we have analysed the adhesion of neuroblastoma cells on poly-D-lysin-precoated plates under RA influence. While N-type cells displayed an increased adhesion, all S-type cell lines as well as all primary cell lines exhibited a reduced adhesion (IMR-5 and IMR-32: p < 0.001; JW, SR and PM: p < 0.05). RA treatment increased predominantly the tested antigens (HCAM, ICAM-1, NCAM, PECAM-1, VCAM-1, cadherin, FGF-R, IGF-R, NGF-R, TGF-beta/1, NF200, NF160, NF68, NSE, HLA-ABC) in all cell lines independently of their phenotypes (TGF-beta/1: p < 0.001; NF68: p < 0.01; PECAM-1 and NGF-R: p < 0.05). In recultured SCID-mouse-passaged tumour cells antigens were down-regulated (FGF-R: p < 0.01), but increased again after RA influence (TGF-beta/1: p < 0.05). In summary, the RA differentiation model demonstrates the possibility to interfere in cell adhesion and to diminish growth potential both in N-type as well as S-type neuroblastoma cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号