首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. When isolated kidneys from fed rats were perfused with glutamine the rate of ammonia release at pH7.4 (110–360μmol/h per g dry wt.) was one to two times that of glutamine removal. Glucose formation from 5mm-glutamine was 16μmol/h per g. If kidneys were perfused with glutamine at pH7.1 (10–13mm-sodium bicarbonate) there was no increase in glutamine removal or in the formation of ammonia or glucose. 2. When isolated kidneys from fed rats were perfused with glutamate at pH7.4, glucose formation was 59μmol/h per g, glutamine formation was 182μmol/h per g and ammonia release was negligible. At pH7.1 glutamine synthesis was inhibited and formation of ammonia and glucose were increased. 3. In perfused kidneys from acidotic rats, which had received 1.5% (w/v) NH4Cl to drink for 7–10 days, gluconeogenesis from glutamine was enhanced (101μmol/h per g). Glutamine removal and ammonia formation were also increased, compared with the rates in perfused kidney from normal rats. The extra glutamine consumed was equivalent to the extra glucose formed. 4. When the kidney from the 7–10-day-acidotic rat was perfused with glutamate gluconeogenesis was increased (113μmol/h per g). Synthesis of glutamine was decreased, and ammonia release was approximately equal to the rate of glutamate removal. 5. The time-course of these metabolic alterations was investigated after the rapid induction of acidosis by infusion of 0.25m-HCl into the right side of the heart. The increase in gluconeogenesis from glutamine developed gradually over several hours. When kidneys from 6h-acidotic rats were perfused with glutamate, formation of glucose and glutamine were both rapid. 6. In acidotic rat kidneys perfused with glutamine, tissue concentrations of glutamate and glucose 6-phosphate were increased compared with those in control perfused kidneys from non-acidotic rats. 7. The results are discussed in terms of control of the renal metabolism of glutamine. In particular, it is suggested that in acidotic rats glucose formation is the major fate of the carbon of the extra glutamine utilized by the kidney, and that inhibition of glutamine synthetase could contribute to the increase in intracellular ammonia concentration in the kidney.  相似文献   

2.
1. The effects of 3-aminopicolinate, a known hyperglycaemic agent in the rat, on glutamine metabolism were studied in isolated dog kidney tubules. 2. 3-Aminopicolinate greatly stimulated glutamine (but not glutamate) removal and glutamate accumulation from glutamine as well as formation of ammonia, aspartate, lactate, alanine and glucose. 3. The increased accumulation of aspartate from glutamine and glutamate, and the inhibition of glucose synthesis from various non-nitrogenous gluconeogenic substrates, as well as the increased accumulation of malate from succinate, support the proposal that 3-aminopicolinate is an inhibitor rather than a stimulator of phosphoenolpyruvate carboxykinase (EC 4.1.1.32) in dog kidney tubules. 4. With glutamine as substrate, the increase in flux through glutamate dehydrogenase (EC 1.4.1.3) could not explain the large increase in glutamine removal caused by 3-aminopicolinate. 5. Inhibition by amino-oxyacetate of accumulation of aspartate and alanine from glutamine caused by 3-aminopicolinate did not prevent the acceleration of glutamine utilization. 6. These data are consistent with a direct stimulation of glutaminase (EC 3.5.1.2) by 3-aminopicolinate in dog kidney tubules.  相似文献   

3.
Liver mitochondria isolated from rats 24 h after a single subcutaneous injection of 8 mg thyroxine per kilogram body weight were compared with those isolated from control rats that received injections of isotonic saline at the same time. The mitochondria isolated from the thyroxine-treated rats show higher rates of energy-dependent K+ and phosphate accumulation than those from control animals. It was also found that mitochondria from the hormone-treated animals required a larger addition of Ca2+/mg mitochondrial protein in order to uncouple oxidative phosphorylation, and showed smaller tendency to swellin vitro under energizing conditions. The data obtained on ion movements support previous observations that the stimulation of the basal rate of mitochondrial respiration by thyroxine is associated with an increase in the transmembrane protonic electrochemical potential difference, and indicate thatin vivo the hormone raises the intramitochondrial concentration of K+ and phosphate.  相似文献   

4.
5.
The following points summarize these findings: (i) there are 2 glutamine utilizing enzyme systems in the rat kidney; (ii) the cytoplasmic glutamyltransferase system hydrolyzes either glutamine isomer while the mitochondrial localized glutaminase 1 is specific for the L-isomer; (iii) the cytoplasmic pathway contributes 70% of the total renal ammonia production in the normal kidney; (iv) chronic metabolic acidosis results in a 20-fold activation of the mitochondrial glutaminase 1 pathway.  相似文献   

6.
The deamination of AMP by AMP aminohydrolase (EC 3.5.4.6.) serves as the major source of ammonia production in skeletal muscle. It has been suggested that the ammonia may serve either in a buffering capacity to combat acidosis due to the accumulation of lactic acid produced during prolonged muscular activity, or as a substrate for glutamine formation which can ultimately be utilized by the kidney in adapting to metabolic acidosis. In view of this proposal, the properties of the enzyme obtained from skeletal muscle of acidotic rats have been compared with the enzyme from normal muscle. The specific activity of AMP deaminase in crude homogenates of acidotic muscle was not significantly different from normal levels. The enzyme from acidotic muscle was purified to homogeneity and was found to be identical to the enzyme obtained from normal muscle by the criteria of electrophoretic mobility, pH optimum, molecular weight, sedimentation coefficient, subunit composition, amino acid composition, monovalent cation requirement, substrate saturation, and inhibition by ATP, Pi and creatine-P. Thus, if the enzyme functions to prevent acidosis, the ability to respond to changes in the intracellular environment which accompany acidosis must be built into the structure of the enzyme normally found in skeletal muscle. Three lines of evidence strongly support this viewpoint: (a) the rate of deamination is approximately 2-fold higher at pH 6.5 than at pH 7.0, (b) the activity increases linearly with a decrease in the adenylate energy charge, and (c) within the normal physiological range of the adenylate energy charge, the enzyme is operating at only 10--20% of its maximum capacity.  相似文献   

7.
1. [26-(14)C]- and [4-(14)C]-Cholesterol were incubated with liver mitochondria from normal and thyroxine-treated rats, and the radioactivity was measured in the carbon dioxide evolved during the incubation, in a butanol extract of the incubation mixture and in a volatile fraction containing substances of low molecular weight derived from the side chain of cholesterol. The butanol extract was separated by paper chromatography into three radioactive fractions, one of which contained the steroids more polar than cholesterol. 2. The butanol extract from incubations with [4-(14)C]cholesterol contained a radioactive substance moving with the same R(F) as cholic acid on thin-layer chromatography. 3. After incubation with [26-(14)C]-cholesterol, 60-80% of the radioactivity extracted by steam-distillation of the incubation mixture at acid pH was recovered as [(14)C]propionic acid. 4. In the presence of [26-(14)C]cholesterol, mitochondria from thyroxine-treated rats produced more radioactivity in carbon dioxide and in the volatile fraction, and less radioactivity in the fraction containing the polar steroids, than did mitochondria from normal rats. In the presence of [4-(14)C]cholesterol, mitochondria from thyroxine-treated rats produced the same amount of radioactivity in the polar steroids as did normal mitochondria. 5. Thyroxine treatment had no effect on the capacity of the mitochondria to oxidize propionate to carbon dioxide. 6. These results are best explained by supposing that thyroxine stimulates a rate-limiting reaction leading to the cleavage of the side chain of cholesterol, but has little or no influence on the hydroxylations of the ring system or on the oxidation of the C(3) fragment removed from the side chain.  相似文献   

8.
The deamination of AMP by AMP aminohydrolase (EC 3.5.4.6) serves as the major source of ammonia production in skeletal muscle. It has been suggested that the ammonia may serve either in a buffering capacity to combat acidosis due to the accumulation of lactic acid produced during prolonged muscular activity, or as a substrate for glutamine formation which can ultimately be utilized by the kidney in adapting to metabolic acidosis. In view of this proposal, the properties of the enzyme obtained from skeletal muscle of acidotic rats have been compared with the enzyme from normal muscle. The specific activity of AMP deaminase in crude homogenates of acidotic muscle was not significantly different from normal levels. The enzyme from acidotic muscle was purified to homogeneity and was found to be identical to the enzyme obtained from normal muscle by the criteria of electrophoretic mobility, pH optimum, molecular weight, sedimentation coefficient, subunit composition, amino acid composition, monovalent cation requirement, substrate saturation, and inhibition by ATP, Pi and creatine-P. Thus, if the enzyme functions to prevent acidosis, the ability to respond to changes in the intracellular environment which accompany acidosis must be built into the structure of the enzyme normally found in skeletal muscle. Three lines of evidence strongly support this viewpoint: (a) the rate of deamination is approximately 2-fold higher at pH 6.5 than at pH 7.0, (b) the activity increases linearly with a decrease in the adenylate energy charge, and (c) within the normal physiological range of the adenylate energy charge, the enzyme is operating at only 10–20% of its maximum capacity.  相似文献   

9.
α-ketoglutarate was found to be a potent inhibitor of glutamine transport and deamidation in mitochondria isolated from rat kidney; physiological concentrations of the ketoacid (~0.3mM) reduced transport and deamidation 45–60 percent. The observed concentration-inhibition relationship between α-ketoglutarate and mitochondrial glutamine transport and deamidation indicated that changes in renal concentration of the ketoacid occurring during conditions associated with an increase in glutamine deamidation (e.g. metabolic acidosis) would have significant effects on glutamine transport and deamidation by renal mitochondria in vivo. The inhibitory effect of α-ketoglutarate was specific; several of the other major organic acids found in renal cells stimulated rather than inhibited mitochondrial glutamine transport.  相似文献   

10.
The oxidation of L-glutamate and L-glutamine by enterocyte mitochondria was supported by malate. The stimulation of the rate of oxidation of the two amino acids by small amounts of added malate was 93% and 76% respectively. This could not be accounted for by the oxidation of the small amounts of malate added. Amino-oxyacetate added initially inhibited malate-supported oxidation of L-glutamate by 81% and that of L-glutamine by 38%. The inhibition of L-glutamate oxidation was partially reversed by L-glutamine. The dicarboxylate-carrier inhibitor 2-phenylsuccinate inhibited the malate-supported oxidation of both amino acids, but appeared to be slightly stimulatory to L-glutamine oxidation when added initially. The inhibition of L-glutamate oxidation was reversed by L-glutamine. The mitochondrial uncoupler FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone) inhibited malate-supported oxidation of L-glutamate by 78% when added initially. The oxidation of L-glutamine was completely inhibited. However, the uncoupler stimulated the oxidation of both amino acids when added finally. Pyruvate inhibited aspartate synthesis when either of these amino acids was the main substrate, alanine being synthesized. There was no effect on O2 uptake. Mitochondria did not swell in KCl solution, but swelled rapidly in water. Mitochondrial swelling in potassium phosphate and potassium acetate solutions was activated by valinomycin and to a lesser extent by the further addition of FCCP. With potassium malate, swelling was mainly activated by phosphate. The swelling of enterocyte mitochondria in potassium glutamate was slow. In glutamine solution, mitochondrial swelling was greater and appeared to be enhanced by the initial presence of small amounts of phosphate.  相似文献   

11.
A comparative study of the transport of pyruvate in liver mitochondria from normal and diabetic rats has been carried out. TheK m for net pyruvate uptake in diabetic, ketotic mitochondria is practically equal to that measured in normal mitochondria, while theV max is significantly lower. The lower activity of the pyruvate translocator in diabetic mitochondria compared to normal mitochondria is also shown by swelling experiments as well as by following the rate of pyruvate-supported respiration. Pre-exposure of mitochondria from normal rats to the ketone body acetoacetate and to 2-oxobutyrate results in a decrease of theK m for pyruvate uptake. This effect is impaired in mitochondria from diabetic animals. The results indicate that the activity and the properties of the mitochondrial pyruvate translocator are modified in the diabetic, ketotic condition.Supported by a joint grant from Consiglio Nazionale delle Ricerche, Rome, Italy, and the Polish Academy of Sciences, Warsaw, Poland.  相似文献   

12.
Isolated pea leaf mitochondria oxidatively decarboxylate added glycine. This decarboxylation could be linked to the respiratory chain (in which case it was coupled to three phosphorylations) or to mitochondrial malate dehydrogenase when oxalacetate was supplied. Decarboxylation rates measured as O2 uptake, or CO2 and NH3 release were adequate to account for whole leaf photorespiration. Oxalacetate-supported glycine decarboxylation, measured by linking malate efflux to added malic enzyme, yielded rates considerably less than the electron transport rates. Butylmalonate inhibited malate efflux but not oxalacetate entry; phthalonate inhibited oxalacetate entry but had little effect on malate or α-ketoglutarate oxidation. It is suggested that oxalacetate and malate transport are catalyzed by separate carrier systems of the mitochondrial membrane.  相似文献   

13.
Glutamate metabolism and transport in rat brain mitochondria.   总被引:8,自引:5,他引:8       下载免费PDF全文
1. The metabolism and transport of glutamate and glutamine in rat brain mitochondria of non-synaptic origin has been studied in various states. 2. These mitochondria exhibited glutamate uptake and swelling in iso-osmotic ammonium glutamate, both of which were inhibited by N-ethylmaleimide. 3. The oxidation of glutamate was inhibited by 20% by avenaciolide, but glutamine oxidation was not affected. 4. These mitochondria, when metabolizing glutamine, allowed glutamate, but very little aspartate, to efflux at considerable rates. 5. These results suggests that brain mitochondria of non-synaptic origin possess in addition to a relatively rapid glutamate-aspartate translocase, a relatively slow aspartate-independent glutamate-OH-translocase (cf. liver mitochondria).  相似文献   

14.
15.
16.
17.
1. Arteriovenous differences fro amino acids across kidneys of normal and chronically acidotic rats were measured. Glutamine was the only amino acid extracted in increased amounts in acidosis. There was a considerable production of serine by kidneys from both normal and acidotic rats. 2. The arterial blood concentration of glutamine was significantly decreased in acidotic animals. 3. The glutamine extracted by kidneys of acidotic rats was largely and probably exclusively derived from the plasma. 4. The blood lactate concentration was unchanged in acidosis, as was the uptake of lactate by the kidney.  相似文献   

18.
Transport of glutamine by the high-affinity transport system is regulated by the nitrogen status of the medium. With high concentrations of ammonia, transport is repressed; whereas with Casamino acids, transport is elevated, showing behaviour similar to glutamine synthetase. A glutamine auxotroph, lacking glutamine synthetase activity, had elevated transport activity even in the presence of high concentrations of ammonia (and glutamine). This suggests that glutamine synthetase is involved in the regulation of the transport system. A mutant with low glutamate synthase activity had low glutamine transport and glutamine synthetase activities, which could not be derepressed. A mutant in the high-affinity glutamine transport system showed normal regulation of glutamate synthase and glutamine synthetase. Possible mechanisms for this regulation are discussed.  相似文献   

19.
Mitochondria from dog renal cortex were incubated with L-[14Cglutamine. Glutamate metabolism was prevented by inhibitors so that glutamate accumulated either in the mitochondrial matrix space or in the medium. The formation and accumuation of glutamate formed from glutamine and the distribution of glutamine in the mitochondrial fluid spaces were studied. In the matrix space glutamate rapidly reaches levels over 5 times that of glutamine in the medium. A more gradual accumulation occurs in the medium as glutamate is transported out of the mitochondria. Addition of an energy source such as succinate to the medium accelerates glutamate formation. A Km of 0.6 mM appears to govern the reaction at low concentrations of glutamine; at about 4 mM an abrupt change kinetics occurs with a Km of 5 mM above that level. Both NH4+ and glutamate inhibit glutamine metabolism and phosphate stimulates it, but little effect glutamate or phosphate occurs at low levels of these substances. The pH optimum of the reaction is between 7.4 and 7.8. Mersalyl and p-chloromercuribenzoate strongly inhibit glutamate formation; N-ethylmaleimide and bromcresol green have weaker inhibitory actions, and borate increases the reaction rate. In the presence of mersalyl, glutamine is striclly confined to the outer space of mitochondria and none is detectable in the matrix space. Similarly at ) degrees glutamine is confined to the simultaneously determined sucrose or mannitol spaces...  相似文献   

20.
The transport of calcium by mitochondria. Problems and perspectives   总被引:3,自引:0,他引:3  
E Carafoli 《Biochimie》1973,55(6):755-762
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号