首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract A method was developed for direct extraction, purification and amplification of DNA from forest soil. Eighty-two % of the DNA in Pseudomonas aeruginosa UG2Lr introduced into soil was recovered. The detection limit for the strain was approximately 800 cfu g−1 of dry soil based on the polymerase chain reaction (PCR). Survival of κ-carrageenan-encapsulated and unencapsulated UG2Lr was monitored by antibiotic selective and bioluminescence-based nonselective plating and PCR-amplification of a tnsA fragment. After freeze-thaw treatment of soil samples, the unencapsulated UG2Lr declined from an initial population density of 1 × 109 cfu g−1 of dry soil to below the detection threshold of both selective (14 cfu g−1 of dry soil) and nonselective (1 × 103 cfu g−1 of dry soil) plating. However, presence of nonculturable UG2Lr cells in the soil was revealed by PCR and resuscitation of the bacteria. Population density of the encapsulated UG2Lr increased from 2.7 × 106 to 2.9 × 108 cfu g−1 of dry soil after a 3-week incubation at 22°C and declined to 6.3 × 106 cfu g−1 of dry soil after the freeze-thaw treatment.  相似文献   

2.
A fed-batch culture system was used to study xylitol production by Candida guilliermondii FTI 20037 in a synthetic and a sugar cane bagasse hydrolysate medium. The values achieved for xylitol yield and volumetric productivity were, respectively, 0 · 84 g g−1 and 0 · 64 g l−1 h−1 using the synthetic medium and 0 · 78 g g−1 and 0 · 62 g l−1 h−1 using the hydrolysate medium.  相似文献   

3.
Aims:  To assess the applicability of the 16S–23S rDNA internal spacer regions (ISR) as targets for PCR detection of Azospirillum ssp. and the phytostimulatory plant growth-promoting rhizobacteria seed inoculant Azospirillum lipoferum CRT1 in soil.
Methods and Results:  Primer sets were designed after sequence analysis of the ISR of A. lipoferum CRT1 and Azospirillum brasilense Sp245. The primers fAZO/rAZO targeting the Azospirillum genus successfully yielded PCR amplicons (400–550 bp) from Azospirillum strains but also from certain non- Azospirillum strains in vitro , therefore they were not appropriate to monitor indigenous Azospirillum soil populations. The primers fCRT1/rCRT1 targeting A. lipoferum CRT1 generated a single 249-bp PCR product but could also amplify other strains from the same species. However, with DNA extracts from the rhizosphere of field-grown maize, both fAZO/rAZO and fCRT1/rCRT1 primer sets could be used to evidence strain CRT1 in inoculated plants by nested PCR, after a first ISR amplification with universal ribosomal primers. In soil, a 7-log dynamic range of detection (102–108 CFU g−1 soil) was obtained.
Conclusions:  The PCR primers targeting 16S–23S rDNA ISR sequences enabled detection of the inoculant A. lipoferum CRT1 in field soil.
Significance and Impact of the Study:  Convenient methods to monitor Azospirillum phytostimulators in the soil are lacking. The PCR protocols designed based on ISR sequences will be useful for detection of the crop inoculant A. lipoferum CRT1 under field conditions.  相似文献   

4.
When grown at a low P supply, Hakea prostrata R.Br. (Proteaceae) develops dense clusters of determinate branch roots, termed 'proteoid' or 'cluster' roots and accumulates Mn in its leaves. The aim of this study was to vary the production of cluster roots and assess the relationship between Mn uptake and cluster-root mass. We collected native soil from a location inhabited by H . prostrata and amended this with 'high' and 'low' amounts of insoluble or soluble P. After 14 months, we measured the impact of the treatments on cluster-root development and the [P], [Mn], [Fe], [Zn] and [Cu] in young (expanding) and mature leaves. Dry mass and leaf area increased with increasing P availability in the soil, but growth decreased at the highest soluble [P], which caused symptoms of P toxicity. The [P] in young leaves (1.3–2.7 mg g−1 DM) exceeded that in older leaves (0.28–0.85 mg g−1 DM), except when plants were grown with soluble P (3.2–21 mg g−1 DM). Cluster-root formation was inhibited when leaf [P] increased; [P] in young leaves, rather than that in old leaves, appeared to be the factor that determined the proportion of the root mass invested in cluster roots. Old leaves of all treatments had [Mn] from 90 to 120 µg g−1 DM, except for plants grown at high levels of soluble P, when [Mn] decreased below 30 µg g−1 DM. The [Mn] and [Zn] in old leaves and the [Cu] in young leaves were positively correlated with the fraction of roots invested in cluster roots. These findings support our hypothesis that cluster roots play a significant role in micronutrient acquisition, and also provide an explanation for Mn accumulation in leaves of H . prostrata , and presumably Proteaceae in general.  相似文献   

5.
In a high Arctic polar semidesert ecosystem (ambient N deposition c. 0.1 g N m−2 a−1), the effects of N enrichment on the diversity of soil microfungi and on N content and availability in organic and mineral soils were determined. Three N (total: 0, 0.5, 5 g N m−2 a−1) and two P (total 0, 1 g m−2 a−1) treatments were applied, since P may limit response to N in this ecosystem. Organic and mineral soils were sampled in June and August in the second year of treatment for microfungi, pH, moisture content, and total N and P. In the third year, soils were resampled for extractable and total N and P. The fungi isolated were typical of high pH soils in the High Arctic and Antarctic. The species richness and diversity of soil microfungi were very low, with ranges as follows: Shannon diversity, 0.56–1.5; richness, 2–6; evenness, 0.79–0.9. There was no significant effect of treatment on the frequency of occurrence of different taxa of soil microfungi. Time of sampling also had no significant impact on fungal assemblages, although different, more diverse communities were isolated from organic, rather than mineral, soils. Nitrate-N in organic soil decreased significantly when P was added alone, but not when P and N were added together. Addition of 0.5 g N m−2 a−1, a rate deposition already occurring in Greenland and Iceland, appeared to exceed N demand even when P limitation was relieved. There was no apparent soil acidification as a result of the N treatments.  相似文献   

6.
Inflorescences of arum lilies have a three-part spadix with a scent-producing, sterile appendix above two bands of fertile male and female florets. The appendix and male florets are thermogenic, but with different temporal patterns. Heat-production was measured in Arum concinnatum , A. creticum and A. idaeum . The male florets of A. concinnatum showed a 3 d continuous episode of thermogenesis with three waves, and the appendix warmed in a single, 6 h episode. Maximum fresh-mass-specific CO2 production rate was 0.17  µ mol s−1 g−1 to achieve a 10.9 °C temperature elevation by the appendix, and 0.92  µ mol s−1 g−1 to achieve a 4.8 °C elevation by male florets. Reversible, physiological temperature regulation was not evident in either tissue. Respiration increased with tissue temperatures with Q10 values of 1.8–3.9, rather than less than 1.0 as occurs in thermoregulatory flowers. Experimental step changes in temperature of appendix and male floret tissues also failed to show thermoregulatory responses. The patterns of thermogenesis therefore appear to be fixed by the temporal sequence of blooming. Thermogenesis in the alpine species, A. creticum and A. idaeum , was significantly lower than in the lowland A. concinnatum , possibly related to difficulty in raising floral temperature in their cold and windy habitat.  相似文献   

7.
Methods for DNA extraction from various soils: a comparison   总被引:6,自引:0,他引:6  
Seven methods for bacterial DNA extraction and purification from soil samples were compared. Holben's direct lysis method recovered significantly greater amounts of DNA than the other methods tested, while CsCl-ethidium bromide density gradient ultracentrifugation was better than gel filtration at removing humic acid from crude DNA isolated from soil. When both these methods were combined, 5·94 μg of DNA (A260/280 ratio around 1·754) was yielded g−1 oven-dried sandstone shale alluvial soil; similarly satisfactory yields were obtained from Taiwan clay, and sandstone shale and slate alluvial soil managed under different farming practices. DNA obtained by these methods was readily digested by Eco R I and Hind III. When soil samples were stored for 3 weeks at 4 °C, the fraction of high-molecular-weight DNA was reduced significantly. Thus, DNA extraction should be carried out as soon as possible after a soil sample has been collected from the field. When hyphae of Pythium aphanidermatum and Fusarium solani were subjected to the above lysis method, DNA could not be detected in the extract.  相似文献   

8.
Abstract The fate of a Bacillus amyloliquefaciens with the recombinant plasmid pSB20 sprayed on the phyllosphere of grass, and of a Tn 5 marked Pseudomonas syringae sprayed on the phyllosphere of bush beans was studied in planted soil microcosms. B. amyloliquefaciens showed a decline from 1.5×108 to 3.1×102 cfu g−1 on the phylloplane of grass in the course of the experiment. B. amyloliquefaciens was easy to follow by selective cultivation due to the complete absence of bacterial background growth. Southern blot hybridization of Hin dIII digested genomic DNA showed plasmid restriction patterns identical with pSB20 indicating high plasmid stability. In total DNA extracts from phyllosphere bacteria the recombinant plasmid was detectable by Southern blot hybridization up to 6×104 cfu g−1 (wet weight). Counts of hybridizing colonies showed that P. syringae established on the phyllosphere of bush beans at between 5×103 and 4×106 cfu g−1 fresh weight. During senescence of the bean plants the strain was no longer detectable by selective cultivation and subsequent colony hybridization. In contrast, Tn5 marked DNA was detected after PCR amplification over the whole period of the experiment.  相似文献   

9.
The polymerase chain reaction (PCR) has the potential to detect low levels of the human pathogen Escherichia coli O157 : H7 in bovine faeces. To improve the utility of PCR for this application, several methods for preparing template DNA from bovine faeces, both directly and after non-selective enrichment, were tested. These were boiling, enzyme treatment, enzyme treatment plus phenol-chloroform extraction, and enzyme treatment plus phenol-chloroform extraction plus Geneclean® purification. Of these, the boiling method was the most consistent and had a sensitivity of approximately 3 cfu g−1 faeces, with an assay time of less than 32 h. The boiling method was also combined with immunomagnetic separation (IMS) to detect E. coli O157 : H7 in less than 8 h, but with a sensitivity of approximately 103 cfu g−1 faeces. These methods can be used to prepare template for PCR screening of bovine faeces using any appropriate PCR primers.  相似文献   

10.
Abstract: Substrate utilization of microbial cells extracted from soil with a 0.85% aqueous sodium chloride solution, was determined to estimate effects on soil microorganisms at the community level with microtiter plates (Biolog GN®) containing 95 different sources of organic carbon. A consistent pattern of utilized substrates was obtained after 24 h of microtiter plate incubation at 28°C. The absorbance values (OD590) obtained from a microtiter plate reader after background correction were transformed by using the average absorbance values of oxidized substrates as a threshold to distinguish between well utilized and poorly or non-utilized substrates and thereby reduce variances between replicates. Doubling times of the extracted soil microorganisms in the microtiter plates were tested with 12 substrates and ranged from 1.96 h to 3.23 h, depending on the carbon source. The carbon source utilization assay was used to assess the effects of soil inoculation with Corynebacterium glutamicum with and without a genetically engineered plasmid (pUN1; 6.3 kb), which encoded for the synthesis of the mammalian protease inhibiting peptide, aprotinin. Additionally, aprotinin itself was added at two concentrations to soil samples. An identical decrease in the number of carbon sources utilized, especially carbohydrates, occurred upon soil inoculation with both C. glutamicum strains after inoculation with 106 cells g−1 soil. This effect was only detectable during the first three weeks of incubation, as long as cell numbers of C. glutamicum (pUN1) were above 105 cfu g−1. Soil amendment with aprotinin resulted in utilization of additional substrates, most of them carbohydrates. With 0.1 mg aprotinin g−1 soil this stimulation lasted 2 days and with 10 mg g−1 it lasted for 7 days.  相似文献   

11.
Aims:  To evaluate the behaviour of Shiga toxin-producing Escherichia coli (STEC) O26 strains inoculated in manure-amended soils under in vitro conditions.
Methods and Results:  Four green fluorescent protein (GFP)-labelled STEC O26 strains were inoculated in duplicate (at 106 CFU g−1) in three different manure-amended soil types, including two loam soils (A and B) and one clay loam soil (C), and two incubation temperatures (4 and 20°C) were tested. STEC counts and soil physical parameters were periodically monitored. STEC O26 cells were able to persist during extended periods in soil even in the presence of low moisture levels, i.e. less than 0·08 g H2O g−1 dry soil. At 4 and 20°C, STEC could be detected in soil A for 288 and 196 days, respectively, and in soils B and C for at least 365 days postinoculation at both temperatures. The ambient temperature (i.e. 20°C) was significantly associated with the highest STEC count decline in all soils tested.
Conclusions:  The temperature and soil properties appear to be contributory factors affecting the long-term survival of STEC O26 in manure-amended soils.
Significance and Impact of the Study:  This study provides useful information regarding the ecology of STEC O26 in manure-amended soils and may have implications for land and waste management.  相似文献   

12.
A simple and rapid method of DNA extraction from soil was developed and DNA was made suitable for subsequent efficient amplification by the polymerase chain reaction (PCR). Key features of the extraction and purification were cold lysozyme- and SDS-assisted lysis with either freezing-thawing or bead beating, cold phenol extraction of the resulting soil suspension, CsCl and KAc precipitation and, finally, spermine-HCl or glass milk purification of DNA. Crude DNA preparations contained 4–20 μg DNA per g of soil extracted, and at least 50% of this was recovered in the final purified DNA preparations. The resulting DNA was pure enough to be restricted by various enzymes, and was amplifiable at concentrations of up to 20 ng of soil-derived DNA per 50 μl reaction mix.
Amplification of a 683 bp target sequence, pat, was performed with different Taq DNA polymerases. Application of the protocol enabled us to detect target DNA derived from roughly 103 introduced Pseudomonas fluorescens (RP4 :: pat ) cfu per g of soil. The fate of an introduced population in the soil could be followed to this limit with PCR-assisted detection of target DNA. In addition, target DNA was detected in soil 5 months after release, when the introduced organism was no longer detectable on selective agar plates.
The extraction and purification protocol applied to various different soil types resulted in DNA of sufficient purity to permit amplification by PCR.  相似文献   

13.
Brucellosis is one of the most common zoonotic diseases, and current methods of detecting this pathogen are quite difficult. This work combines the benefits of a proximity ligation assay with those of a loop-mediated isothermal amplification method to develop a novel proximity ligation-based loop-mediated isothermal amplification method useful for Brucella detection. The genomic DNA extraction procedure is not needed. Sensitivity of this assay for detecting Brucella abortus is 1  ×  104 cells/mL in buffer and 1  ×  105 cells/mL in milk. The time to detection is within 2 h of initiating the procedure, and no special equipment is needed. This new method is also suitable for the detection of other pathogens, and as such will be useful in the food safety industry.

PRACTICAL APPLICATIONS


Polymerase chain reaction (PCR) is a sensitivity method for microbe detection, but the complicated genomic DNA extraction procedure and costly equipment needed for this method makes the PCR method unpopular in developing countries. In this study, we present the novel proximity ligation-based loop-mediated isothermal amplification (P-LAMP) method for Brucella detection; this is the first time to combine the monoclonal antibody for identify microbe and LAMP method for high performance amplification DNA. The genomic DNA extraction procedure is not needed and a water-bath boiler is the only equipment required to complete the detection process. The P-LAMP method is useful for food safety pathogen detection in developing countries.  相似文献   

14.
This study reports for the first time the presence of Anabaenopsis arnoldi blooms in Saudi freshwaters. This species has been investigated with high cell densities (3.8 × 103–264 × 103 cells mL−1) during June–November 2007 in Tendaha Lake, one of the major freshwater sources in Saudi Arabia. High temperature and conductivity, and a high concentration of phosphate, and low nitrate concentrations may have contributed to the formation of these blooms. The blooms were found to produce microcystins (MCYSTs) at concentrations up to 364 μg g−1 dry weight as detected by an enzyme-linked immunosorbent assay. MCYSTs were also detected in the raw and treated water of the lake at concentrations (1.6–8.3 and 0.33–1.6 μg L−1, respectively) exceeding the World Health Organization guideline level of 1 μg L−1 for these toxins. HPLC analysis revealed that the extracts of A. arnoldi blooms contained MCYST-RR, -YR and two unidentified MCYSTs, but a pure culture of A. arnoldi isolated from Tendaha Lake during the present study produced MCYST-RR and –YR only. This is the first study to report MCYST production by A. arnoldi . Therefore, this cyanobacterium should be taken into consideration during monitoring of toxic cyanobacterial blooms in drinking and recreational water sources in the world, particularly arid and semi-arid countries including Saudi Arabia.  相似文献   

15.
Transpiration efficiency (TE) is an important trait for drought tolerance in peanut ( Arachis hypogaea L.). The variation in TE was assessed gravimetrically using a long time interval in nine peanut genotypes (Chico, ICGS 44, ICGV 00350, ICGV 86015, ICGV 86031, ICGV 91114, JL 24, TAG 24 and TMV 2) grown in lysimeters under well-watered or drought conditions. Transpiration was measured by regularly weighing the lysimeters, in which the soil surface was mulched with a 2-cm layer of polythene beads. TE in the nine genotypes used varied from 1.4 to 2.9 g kg−1 under well-watered and 1.7 to 2.9 g kg−1 under drought conditions, showing consistent variation in TE among genotypes. A higher TE was found in ICGV 86031 in both well-watered and drought conditions and lower TE was found in TAG-24 under both water regimes. Although total water extraction differed little across genotypes, the pattern of water extraction from the soil profile varied among genotypes. High water extraction within 24 days following stress imposition was negatively related to pod yield ( r 2   =   0.36), and negatively related to water extraction during a subsequent period of 32 days ( r 2   =   0.73). By contrast, the latter, i.e. water extraction during a period corresponding to grain filling (24 to 56 days after flowering) was positively related to pod yield ( r 2   =   0.36). TE was positively correlated with pod weight ( r 2   =   0.30) under drought condition. Our data show that under an intermittent drought regime, TE and water extraction from the soil profile during a period corresponding to pod filling were the most important components.  相似文献   

16.
Aims:  To develop solid-state fermentation system (SSF) for hyper production of tylosin from a mutant γ-1 of Streptomyces fradiae NRRL-2702 and its parent strain.
Methods and Results:  Various agro-industrial wastes were screened to study their effect on tylosin production in SSF. Wheat bran as solid substrate gave the highest production of 2500 μg of tylosin g−1 substrate by mutant γ-1 against parent strain (300 μg tylosin g−1 substrate). The tylosin yield was further improved to 4500 μg g−1 substrate [70% moisture, 10% inoculum (v/w), pH 9·2, 30°C, supplemental lactose and sodium glutamate on day 9]. Wild-type strain displayed less production of tylosin (655 μg of tylosin g−1 substrate) in SSF even after optimization of process parameters.
Conclusion:  The study has shown that solid-state fermentation system significantly enhanced the tylosin yield by mutant γ-1.
Significance and Impact of the Study:  This study proved to be very useful and resulted in 6·87 ± 0·30-fold increase in tylosin yield by this mutant when compared to that of wild-type strain.  相似文献   

17.
Aims:  The aim of this study was to develop a sensitive and an effective method suitable for large-scale detection and quantification of Ralstonia solanacearum in soil.
Methods and Results:  Based on the specific sequence of R. solanacearum strain G1000, the primer pair R.sol1-R.sol2 and the TaqMan probe Rs-pro were designed, and specific and sensitive PCR detection methods were successfully established. The detection limit was 100 fg μl−1 DNA in conventional PCR and 1·2 fg μl−1 in real-time PCR. By combining real-time PCR with the modified protocols to extract DNA from soil, it was possible to achieve real-time detection of R. solanacearum in soil, and the degree of sensitivity was 100 fg μl−1. To detect inhibition in soil samples, an exogenous internal positive control (IPC) was included preventing false negative results, and IPC was successfully amplified from all samples tested. The methodology developed was used to detect the presence of R. solanacearum in tobacco fields in China.
Conclusions:  The real-time PCR combined with the protocol to extract DNA from soil led to the development of a specific, sensitive and rapid detection method for R. solanacearum in soil.
Significance and Impact of the Study:  The real-time PCR improves the detection sensitivity and specificity and provides an important tool for routine detection of R. solanacearum in soil samples and for epidemiological and ecological studies.  相似文献   

18.
A species-specific 16S rRNA oligonucleotide probe (ASRB1) was developed for the detection of Desulforhabdus amnigenus in anaerobic granular sludge. The presence of nucleic acids from cells of D. amnigenus in granular sludge was determined using ASRB1 as a specific primer for polymerase chain reaction (PCR) amplification or as a probe for dot blot hybridizations. The detection threshold and the reproducibility of these two methods were determined with sludge amended with 104–1010 D. amnigenus cells per gram of volatile suspended solids (VSS). For D. amnigenus cells with a ribosomal RNA content of 15 fg cell−1, the lowest number of target cells detected by hybridization was 1 × 108 cells g−1 VSS. With the PCR amplification method the lowest number of target cells which could be detected was 1 × 107 g−1 VSS. This corresponds to a threshold level for hybridization of 0·1–0·001‰ of the total bacterial sludge population, while the threshold level obtained with the PCR approach amounted to 0·01–0·0001‰. The rRNA content of D. amnigenus was found to be affected by the growth rate and the growth phase, and it ranged from 19 fg cell−1 in slow-growing cultures to 90 fg cell−1 in fast-growing cultures. Therefore, the detection threshold of the dot blot hybridization method for fast-growing cells is lower than for slow-growing cells.  相似文献   

19.
Aims:  To search for antimicrobial compounds against pathogenic bacteria from grape vines ( Vitis spp.). To investigate the antimicrobial efficacy of active compounds towards methicillin-resistant Staphylococcus aureus (MRSA).
Methods and Results:  The root extracts of taiwanese wild grape ( Vitis thunbergii var. taiwaniana ) showed marked activities against Gram-positive bacteria using the disc diffusion method. After purification, the active compound 1 was confirmed as heyneanol A by mass spectroscopy and nuclear magnetic resonance. Heyneanol A showed an minimum inhibitory concentration (MIC) value of 2  μ g ml−1 towards MRSA and a value of 2 to 4  μ g ml−1 for Enterococcus faecium , S. aureus , Streptococcus agalactiae and Streptococcus pyogenes . In addition, the contents of heyneanol A were determined as 36 mg g−1 in roots of taiwanese wild grape.
Conclusions:  The root extracts of grapevines have good antimicrobial activities towards some strains of Gram-positive pathogens. Heyneanol A, the major antimicrobial compound, is especially active towards MRSA. In addition, the abundances of heyneanol A and other stilbenes in the roots of grapevines make it possible to produce natural antimicrobial compounds from this plant species.
Significance and Impact of the Study:  This study reports for the first time the antimicrobial compounds in the root extracts of grapevines. The results will have clinical significance owing to their activities against MRSA.  相似文献   

20.
Aims:  The major objective of this study was to determine the effects of low levels of Escherichia coli O157:H7 contamination on plant by monitoring the survival of the pathogen on the rhizosphere and leaf surfaces of lettuce during the growth process.
Methods and Results:  Real-time PCR and plate counts were used to quantify the survival of E. coli O157:H7 in the rhizosphere and leaf surfaces after planting. Real-time PCR assays were designed to amplify the stx 1, stx 2 and the eae genes of E. coli O157:H7. The detection limit for E. coli O157:H7 quantification by real-time PCR was 2·4 × 103 CFU g−1 of starting DNA in rhizosphere and phyllosphere samples and about 102 CFU g−1 by plate count. The time for pathogens to reach detection limits on the leaf surface by plate counts was 7 days after planting in comparison with 21 days in the rhizosphere. However, real-time PCR continued to detect stx 1, stx 2 and the eae genes throughout the experimental period.
Conclusion:  Escherichia coli O157:H7 survived throughout the growth period as was determined by real-time PCR and by subsequent enrichment and immunomagnetic separation of edible part of plants.
Significance and impact of the Study:  The potential presence of human pathogens in vegetables grown in soils contaminated with E. coli O157:H7 is a serious problem to our national food supply as the pathogen may survive on the leaf surface as they come in contact with contaminated soil during germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号