首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
The human leukemic cell line (HL-60) can be induced to differentiate in vitro to granulocytic form with retinoic acid (RA), or to monocytic/macrophage form with phorbol ester (TPA). The granulocytic form acquires nuclear lobulation, nuclear envelope-limited chromatin sheets (ELCS), and cytoskeletal polarization, none of which are acquired following treatment with TPA. Immunoblotting analyses and capillary zone electrophoresis demonstrated that following RA treatment: lamins A/C and B1, and vimentin decreased to negligible amounts; LAP2 beta, lamin B2 and emerin remained essentially unchanged; lamin B receptor (LBR) increased markedly; histone subtypes H1.4 and 1.5 exhibited dephosphorylation. Following TPA treatment: lamins A/C and B1, B2 and vimentin increased in amount; LAP2 beta and emerin remained essentially unchanged; LBR increased markedly; histone subtypes H1.4 and 1.5 exhibited dephosphorylation. Emerin, which was cytoplasmic in undifferentiated or granulocytic cells, localized into the nuclear envelope following TPA. Normal human granulocytes revealed compositional differences compared to granulocytic forms of HL-60, namely increased vimentin and appearance of histone subtype H1.3. A working hypothesis for nuclear lobulation postulates a combination of: increased nuclear envelope deformability due to lamins A/C and B1 deficiency; an increase in nuclear surface area/volume; an increase in chromatin-nuclear envelope interactions.  相似文献   

3.
Human emerin is a nuclear membrane protein that is lost or altered in patients with Emery-Dreifuss muscular dystrophy (EMD). While the protein is expressed in the majority of human tissues analyzed, the pathology predominates in cardiac and skeletal muscles of patients with EMD. Our results show that emerin can be detected by immunocytochemistry and immunoblotting in the nuclear envelope of all vertebrates studied from man to Xenopus. Immunolocalizations and nuclear envelope extraction experiments confirm that emerin possesses properties characteristic for integral membrane proteins of the inner nuclear membrane. Some nuclear envelope proteins are localized also in annulate lamellae (AL), i.e. cytoplasmic flattened membrane cisternae penetrated by pore complexes. To verify whether emerin is contained in these membrane stacks, we have induced the formation of AL by exposure of rat cells (line RV-SMC) to sublethal doses of the antimitotic drug vinblastine sulfate and found that emerin is present in the nuclear envelope, but is absent from AL. In contrast to the homogeneous distribution of emerin in the nuclear envelope of interphase cells, this protein shows a focal accumulation in the nuclear membranes of late telophase cells. During early reassembly of the nuclear envelope at this mitotic stage emerin colocalizes with lamin A/C but not with lamin B and LAP2 proteins. Confocal laser scanning microscopy after double-labeling experiments with emerin and tubulin shows that emerin is concentrated in areas of the mitotic spindle and in the midbody of mitotic cells suggesting a close interaction of these proteins. Our data suggest that emerin participates in the reorganisation of the nuclear envelope at the end of mitosis.  相似文献   

4.
The human blood granulocyte (neutrophil) is adapted to find and destroy infectious agents. The nucleus of the human neutrophil has a segmented appearance, consisting of a linear or branched array of three or four lobes. Adequate levels of lamin B receptor (LBR) are necessary for differentiation of the lobulated nucleus. The levels of other components of the nuclear envelope may also be important for nuclear shape determination. In the present study, immunostaining and immunoblotting procedures explored the levels of various components of the nuclear envelope and heterochromatin, comparing freshly isolated human neutrophils with granulocytic forms of HL-60 cells, a tissue culture model system. In comparison to granulocytic HL-60 cells, blood neutrophil nuclear envelopes contain low-to-negligible amounts of LBR, lamins A/C, B1 and B2, LAP2β and emerin. Surprisingly, a “mitotic” chromosome marker, H3(S10)phos, is elevated in neutrophil nuclei, compared to granulocytic HL-60 cells. Furthermore, neutrophil nuclei appear to be more fragile to methanol fixation, than observed with granulocytic HL-60 cells. Thus, the human neutrophil nucleus appears to be highly specialized, possessing a paucity of nuclear envelope-stabilizing proteins. In consequence, the neutrophil nucleus appears to be very malleable, supporting rapid migration through tight tissue spaces.  相似文献   

5.
Lamin A is a nuclear envelope constituent involved in a group of human disorders, collectively referred to as laminopathies, which include Emery-Dreifuss muscular dystrophy. Because increasing evidence suggests a role of lamin A precursor in nuclear functions, we investigated the processing of prelamin A along muscle differentiation. Both protein levels and cellular localization of prelamin A appears to be modulated during C2C12 mouse myoblasts activation. Similar changes also occur in the expression of two lamin A-binding proteins: emerin and LAP2α. Furthermore prelamin A forms a complex with LAP2α in differentiating myoblasts. Prelamin A accumulation in cycling myoblasts by expressing unprocessable mutants affects LAP2α and PCNA amount and increases caveolin 3 mRNA and protein levels, whilst accumulation of prelamin A in differentiated muscle cells following treatment with a farnesyl transferase inhibitor inhibits caveolin 3 expression. These data provide evidence for a critical role of lamin A precursor in the early steps of muscle cell differentiation. In fact the post-translational processing of prelamin A affects caveolin 3 expression and influences the myoblast differentiation process. Thus, altered lamin A processing could affect myoblast differentiation and/or muscle regeneration and might contribute to the myopathic phenotype.  相似文献   

6.
Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in the gene encoding the nuclear membrane protein emerin (X-linked EDMD) or in the gene encoding lamins A/C (autosomal dominant EDMD). One hypothesis explaining the disease suggests that the mutations lead to weakness of the nuclear lamina. To test this hypothesis we investigated lamin solubility and distribution in skin fibroblasts from X-EDMD patients. Using in situ extraction of cells and immunofluorescence microscopy or biochemical fractionation and immunoblotting, we found that all lamin subtypes displayed increased solubility properties in fibroblasts from X-EDMD patients compared to normal individuals. Lamin and emerin solubility was mildly increased in fibroblasts from an X-EDMD carrier. Biochemical fractionation and immunoblotting also indicated that lamin C but no other lamin became redistributed from the nuclear lamina to the nucleoplasm in X-EDMD fibroblasts. Indirect immunofluorescence and confocal microscopy studies using lamin A- and lamin C-specific antibodies confirmed that lamin C but not lamin A became redistributed to the nucleoplasm. Interestingly, the lamin A/C binding protein LAP2alpha was also mislocalized in X-EDMD fibroblasts.  相似文献   

7.
Emery–Dreifuss muscular dystrophy (EDMD) is caused by mutations in the gene encoding the nuclear membrane protein emerin (X-linked EDMD) or in the gene encoding lamins A/C (autosomal dominant EDMD). One hypothesis explaining the disease suggests that the mutations lead to weakness of the nuclear lamina. To test this hypothesis we investigated lamin solubility and distribution in skin fibroblasts from X-EDMD patients. Using in situ extraction of cells and immunofluorescence microscopy or biochemical fractionation and immunoblotting, we found that all lamin subtypes displayed increased solubility properties in fibroblasts from X-EDMD patients compared to normal individuals. Lamin and emerin solubility was mildly increased in fibroblasts from an X-EDMD carrier. Biochemical fractionation and immunoblotting also indicated that lamin C but no other lamin became redistributed from the nuclear lamina to the nucleoplasm in X-EDMD fibroblasts. Indirect immunofluorescence and confocal microscopy studies using lamin A- and lamin C-specific antibodies confirmed that lamin C but not lamin A became redistributed to the nucleoplasm. Interestingly, the lamin A/C binding protein LAP2α was also mislocalized in X-EDMD fibroblasts.  相似文献   

8.
Lamin A is a nuclear lamina constituent implicated in a number of human disorders including Emery-Dreifuss muscular dystrophy. Since increasing evidence suggests a role of the lamin A precursor in nuclear functions, we investigated the processing of prelamin A during differentiation of C2C12 mouse myoblasts. We show that both protein levels and cellular localization of prelamin A are modulated during myoblast activation. Similar changes of lamin A-binding proteins emerin and LAP2α were observed. Furthermore, prelamin A was found in a complex with LAP2α in differentiating myoblasts. Prelamin A accumulation in cycling myoblasts by expressing unprocessable mutants affected LAP2α and PCNA amount and increased caveolin 3 mRNA and protein levels, while accumulation of prelamin A in differentiated muscle cells following treatment with a farnesyl transferase inhibitor appeared to inhibit caveolin 3 expression. Our data provide evidence for a critical role of the lamin A precursor in the early steps of muscle cell differentiation.  相似文献   

9.
SINC, a new type III secreted protein of the avian and human pathogen Chlamydia psittaci, uniquely targets the nuclear envelope of C. psittaci–infected cells and uninfected neighboring cells. Digitonin-permeabilization studies of SINC-GFP–transfected HeLa cells indicate that SINC targets the inner nuclear membrane. SINC localization at the nuclear envelope was blocked by importazole, confirming SINC import into the nucleus. Candidate partners were identified by proximity to biotin ligase-fused SINC in HEK293 cells and mass spectrometry (BioID). This strategy identified 22 candidates with high confidence, including the nucleoporin ELYS, lamin B1, and four proteins (emerin, MAN1, LAP1, and LBR) of the inner nuclear membrane, suggesting that SINC interacts with host proteins that control nuclear structure, signaling, chromatin organization, and gene silencing. GFP-SINC association with the native LEM-domain protein emerin, a conserved component of nuclear “lamina” structure, or with a complex containing emerin was confirmed by GFP pull down. Our findings identify SINC as a novel bacterial protein that targets the nuclear envelope with the capability of globally altering nuclear envelope functions in the infected host cell and neighboring uninfected cells. These properties may contribute to the aggressive virulence of C. psittaci.  相似文献   

10.
Integral proteins of the nuclear envelope inner membrane have been proposed to reach their sites by diffusion after their co-translational insertion in the rough endoplasmic reticulum. They are then retained in the inner nuclear membrane by binding to nuclear structures. One such structure is the nuclear lamina, an intermediate filament meshwork composed of A-type and B-type lamin proteins. Emerin, MAN1, and LBR are three integral inner nuclear membrane proteins. We expressed these proteins fused to green fluorescent protein in embryonic fibroblasts from wild-type mice and Lmna -/- mice, which lack A-type lamins. We then studied the diffusional mobilities of emerin, MAN1, and LBR using fluorescence recovery after photobleaching. We show that emerin and MAN1, but not LBR, are more mobile in the inner nuclear membrane of cells from Lmna -/- mice than in cells from wild-type mice. In cells from Lmna -/- mice expressing exogenous lamin A, the protein mobilities were similar to those in cells from wild-type mice. This supports a model where emerin and MAN1 are at least partly retained in the inner nuclear membrane by binding to A-type lamins, while LBR depends on other binding partners for its retention.  相似文献   

11.
12.
Like Duchenne and Becker muscular dystrophies, Emery-Dreifuss muscular dystrophy (EDMD) is characterized by myopathic and cardiomyopathic abnormalities. EDMD has the particularity of being linked to mutations in nuclear proteins. The X-linked form of EDMD is caused by mutations in the emerin gene, whereas autosomal dominant EDMD is caused by mutations in the lamin A/C gene. Emerin colocalizes with lamin A/C in interphase cells, and binds in vitro to lamin A/C. Recent work suggests that lamin A/C might serve as a receptor for emerin. We have undertaken a structural analysis of emerin, and in particular of its N-terminal domain, which is comprised in the emerin segment critical for binding to lamin A/C. We show that region 2-54 of emerin adopts the LEM fold. This fold was originally described in the two N-terminal domains of another inner nuclear membrane protein called lamina-associated protein 2 (LAP2). The existence of a conserved solvent-exposed surface on the LEM domains of LAP2 and emerin is discussed, as well as the nature of a possible common target.  相似文献   

13.
Mutations in the LMNA gene encoding nuclear lamins A and C are responsible for seven inherited disorders affecting specific tissues. We have analyzed skin fibroblasts from a patient with type 1B limb-girdle muscular dystrophy and from her deceased newborn grandchild carrying, respectively, a heterozygous (+/mut) and a homozygous (mut/mut) nonsense Y259X mutation. In fibroblasts(+/mut), the presence of only 50% lamins A and C promotes no detectable abnormality, whereas in fibroblasts(mut/mut) the complete absence of lamins A and C leads to abnormally shaped nuclei with lobules in which none of the analyzed nuclear proteins were detected, i.e., B-type lamins, emerin, nesprin-1alpha, LAP2beta, and Nup153. These lobules perturb cell division as fibroblast(mut/mut) cultures with large proportions of cells with dysmorphic nuclei grow more slowly than controls and the cell proliferation normalizes when the number of these abnormally shaped nuclei declines. In all fibroblasts(mut/mut), nesprin-1alpha-like emerin exhibited aberrant localization in the endoplasmic reticulum. Transfection of wild-type lamin A or C cDNAs restored the correct localization of both emerin and nesprin-1alpha. These data demonstrate that lamin C, like lamin A, interacts in vivo directly with nesprin-1alpha and with emerin and that lamin A or C is sufficient for the correct anchorage of emerin and nesprin-1alpha at the nuclear envelope in human cells.  相似文献   

14.
The vertebrate proteins Nesprin-1 and Nesprin-2 (also referred to as Enaptin and NUANCE) together with ANC-1 of Caenorhabditis elegans and MSP-300 of Drosophila melanogaster belong to a novel family of alpha-actinin type actin-binding proteins residing at the nuclear membrane. Using biochemical techniques, we demonstrate that Nesprin-2 binds directly to emerin and the C-terminal common region of lamin A/C. Selective disruption of the lamin A/C network in COS7 cells, using a dominant negative lamin B mutant, resulted in the redistribution of Nesprin-2. Furthermore, using lamin A/C knockout fibroblasts we show that lamin A/C is necessary for the nuclear envelope localization of Nesprin-2. In normal skin where lamin A/C is differentially expressed, strong Nesprin-2 expression was found in all epidermal layers, including the basal layer where only lamin C is present. This indicates that lamin C is sufficient for proper Nesprin-2 localization at the nuclear envelope. Expression of dominant negative Nesprin-2 constructs and knockdown studies in COS7 cells revealed that the presence of Nesprin-2 at the nuclear envelope is necessary for the proper localization of emerin. Our data imply a scaffolding function of Nesprin-2 at the nuclear membrane and suggest a potential involvement of this multi-isomeric protein in human disease.  相似文献   

15.
Direct interaction between emerin and lamin A   总被引:11,自引:0,他引:11  
Emerin is the protein of the inner nuclear membrane that is affected by mutation in X-linked Emery-Dreifuss muscular dystrophy. The autosomal dominant form of the disease is caused by mutations in the lamin A/C gene. Several lines of circumstantial evidence have suggested an interaction of emerin with lamins in the nuclear lamina but direct interaction between the two proteins has not yet been demonstrated. We now demonstrate direct interaction between recombinant emerin and lamin A molecules using biomolecular interaction analysis (BIA) and monoclonal antibodies. An emerin-lamin A interaction system may be related in function to the LAP2-lamin B system at the inner nuclear rim.  相似文献   

16.
Lamins A and C but not lamin B1 regulate nuclear mechanics   总被引:7,自引:0,他引:7  
Mutations in the nuclear envelope proteins lamins A and C cause a broad variety of human diseases, including Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy, and Hutchinson-Gilford progeria syndrome. Cells lacking lamins A and C have reduced nuclear stiffness and increased nuclear fragility, leading to increased cell death under mechanical strain and suggesting a potential mechanism for disease. Here, we investigated the contribution of major lamin subtypes (lamins A, C, and B1) to nuclear mechanics by analyzing nuclear shape, nuclear dynamics over time, nuclear deformations under strain, and cell viability under prolonged mechanical stimulation in cells lacking both lamins A and C, cells lacking only lamin A (i.e. "lamin C-only" cells), cells lacking wild-type lamin B1, and wild-type cells. Lamin A/C-deficient cells exhibited increased numbers of misshapen nuclei and had severely reduced nuclear stiffness and decreased cell viability under strain. Lamin C-only cells had slightly abnormal nuclear shape and mildly reduced nuclear stiffness but no decrease in cell viability under strain. Interestingly, lamin B1-deficient cells exhibited normal nuclear mechanics despite having a significantly increased frequency of nuclear blebs. Our study indicates that lamins A and C are important contributors to the mechanical stiffness of nuclei, whereas lamin B1 contributes to nuclear integrity but not stiffness.  相似文献   

17.
18.
The nuclear envelope separates the nucleoplasm from the rest of the cell. Throughout the cell cycle, its structural integrity is controlled by reversible protein phosphorylation. Whereas its phosphorylation-dependent disassembly during mitosis is well characterized, little is known about phosphorylation events at this structure during interphase. The few characterized examples cover protein phosphorylation at serine and threonine residues, but not tyrosine phosphorylation at the nuclear envelope. Here, we demonstrate that tyrosine phosphorylation and dephosphorylation occur at the nuclear envelope of intact Neuro2a mouse neuroblastoma cells. Tyrosine kinase and phosphatase activities remain associated with purified nuclear envelopes. A similar pattern of tyrosine-phosphorylated nuclear envelope proteins suggests that the same tyrosine kinases act at the nuclear envelope of intact cells and at the purified nuclear envelope. We have also identified eight tyrosine-phosphorylated nuclear envelope proteins by 2D BAC/SDS/PAGE, immunoblotting with phosphotyrosine-specific antibodies, tryptic in-gel digestion, and MS analysis of tryptic peptides. These proteins are the lamina proteins lamin A, lamin B1, and lamin B2, the inner nuclear membrane protein LAP2beta, the heat shock protein hsc70, and the DNA/RNA-binding proteins PSF, hypothetical 16-kDa protein, and NonO, which copurify with the nuclear envelope.  相似文献   

19.
Patients with the autosomal dominant form of Emery-Dreifuss muscular dystrophy (EDMD) or familial partial lipodystrophy (FPLD) have specific mutations in the lamin A gene. Three such point mutations, G465D (FPLD), R482L, (FPLD), or R527P (EDMD), were introduced by site-specific mutagenesis in the C-terminal tail domain of a FLAG-tagged full-length lamin A construct. HeLa cells were transfected with mutant and wild-type constructs. Lamin A accumulated in nuclear aggregates and the number of cells with aggregates increased with time after transfection. At 72 h post transfection 60-80% of cells transfected with the mutant lamin A constructs had aggregates, while only 35% of the cells transfected with wild-type lamin A revealed aggregates. Mutant transfected cells expressed 10-24x, and wild-type transfected cells 20x, the normal levels of lamin A. Lamins C, B1 and B2, Nup153, LAP2, and emerin were recruited into aggregates, resulting in a decrease of these proteins at the nuclear rim. Aggregates were also characterized by electron microscopy and found to be preferentially associated with the inner nuclear membrane. Aggregates from mutant constructs were larger than those formed by the wild-type constructs, both in immunofluorescence and electron microscopy. The combined results suggest that aggregate formation is in part due to overexpression, but that there are also mutant-specific effects.  相似文献   

20.
We have investigated the topogenic properties of the nucleus by ectopic expression of chimeric proteins consisting of a NLS-modified cytoplasmic filament-forming protein, Xenopus laevis vimentin, and domains of inner nuclear membrane proteins. Whereas the "carrier" without cargo, the NLS-vimentin alone, is deposited in a few nuclear body-type structures (J.M. Bridger, H. Herrmann, C. Münkel, P. Lichter, J. Cell Sci., 111, 1241-1253), the distribution is entirely changed upon coupling with the evolutionarily conserved domain of the lamin B tail, the entire lamin B tail, the amino-terminal nucleoplasmic segment of the lamin B receptor (LBR), and the LEM domain of emerin, respectively. Remarkably, every individual chimeric protein exhibits a completely different distribution. Therefore, we assume that the chimeric parts are specifically recognized by factors engaged in nucleus-specific topogenesis. Thus, the conserved domain of the lamin B tail results in the formation of many small accumulations spread all over the nucleus. The chimera with the complete lamin B tail is deposited in short fibrillar aggregates within the nucleus. It does not mediate the integration of the chimeric protein into the nuclear membrane in cultured cells, indicating that the lamin tail alone is not sufficient to direct the integration of a protein into the lamina in vivo. In contrast, in the nuclear assembly system of Xenopus laevis the recombinant NLS-vimentin-lamin tail protein is concentrated at the nuclear membrane. The LBR chimera is arranged in a "beaded-chain"-type fashion, quite different from the more random deposition of NLS-vimentin alone. To our surprise, the LEM domain of emerin induces the retention of most of the chimeric proteins within the cytoplasm. Hence, it appears to be engaged in a strong cytoplasmic interaction that overrides the nuclear localization signal. Finally, the lamin chimera with the conserved part of the lamin B tail is shown to recruit LBR to the nuclear vimentin bodies and, vice versa, the LBR chimera attracts lamin B in transfected cells, thereby demonstrating their bona fide interaction in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号