首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The licC gene product of Streptococcus pneumoniae was expressed and characterized. LicC is a nucleoside triphosphate transferase family member and possesses CTP:phosphocholine cytidylyltransferase activity. Phosphoethanolamine is a poor substrate. The LicC protein plays a role in the biosynthesis of the phosphocholine-derivatized cell wall constituents that are critical for cell separation and pathogenesis.  相似文献   

2.
Pneumococcal LicC is a member of the nucleoside triphosphate transferase superfamily and catalyzes the transfer of a cytidine monophosphate from CTP to phosphocholine to form CDP-choline. The structures of apo-LicC and the LicC-CDP-choline-Mg(2+) ternary complex were determined, and the comparison of these structures reveals a significant conformational change driven by the multivalent coordination of Mg(2+). The key event is breaking the Glu(216)-Arg(129) salt bridge, which triggers the coalescence of four individual beta-strands into two extended beta-sheets. These movements reorient the side chains of Trp(136) and Tyr(190) for the optimal binding and alignment of the phosphocholine moiety. Consistent with these conformational changes, LicC operates via a compulsory ordered kinetic mechanism. The structures explain the substrate specificity of LicC for CTP and phosphocholine and implicate a direct role for Mg(2+) in aligning phosphocholine for in-line nucleophilic attack and stabilizing the negative charge that develops in the pentacoordinate transition state. These results provide a structural basis for assigning a specific role for magnesium in the catalytic mechanism of pneumococcal LicC.  相似文献   

3.
4.
5.
The specificity of CTP:phosphocholine cytidylyltransferase from rat liver for phosphorylated bases has been investigated. The apparent Km for phosphocholine was 0.17 mM. As the number of methyl substituents on the phospho-base decreased, the apparent Km increased: 4.0 mM for phosphodimethylethanolamine, 6.9 for phosphomonomethylethanolamine and 68.4 for phosphoethanolamine. The Vmax for the reaction was similar for phosphocholine (12.6 mumol/min per mg protein), phosphomonomethylethanolamine (13.5 mumol/min per mg protein) and phosphoethanolamine (9.2 mumol/min per mg protein). When phosphodimethylethanolamine was the substrate, the Vmax was 3-fold higher (40.3 mumol/min per mg protein). Phosphoethanolamine, phosphomonomethylethanolamine and phosphodimethylethanolamine were competitive inhibitors of the cytidylyltransferase when phosphocholine was used as substrate with Ki values of 18.5 mM, 9.3 mM and 1.5 mM, respectively. The results show that the cytidylyltransferase is highly specific for phosphocholine.  相似文献   

6.
We investigated the effects of tumor necrosis factor alpha (TNFalpha), a key cytokine involved in inflammatory lung disease, on phosphatidylcholine (PtdCho) biosynthesis in a murine alveolar type II epithelial cell line (MLE-12). TNFalpha significantly inhibited [(3)H]choline incorporation into PtdCho after 24 h of exposure. TNFalpha reduced the activity of CTP:phosphocholine cytidylyltransferase (CCT), the rate-regulatory enzyme within the CDP-choline pathway, by 40% compared with control, but it did not alter activities of choline kinase or cholinephosphotransferase. Immunoblotting revealed that TNFalpha inhibition of CCT activity was associated with a uniform decrease in the mass of CCTalpha in total cell lysates, cytosolic, microsomal, and nuclear subfractions of MLE cells. Northern blotting revealed no effects of the cytokine on steady-state levels of CCTalpha mRNA, and CCTbeta mRNA was not detected. Incorporation of [(35)S]methionine into immunoprecipitable CCTalpha protein in pulse and pulse-chase studies revealed that TNFalpha did not alter de novo synthesis of enzyme, but it substantially accelerated turnover of CCTalpha. Addition of N-acetyl-Leu-Leu-Nle-CHO (ALLN), the calpain I inhibitor, or lactacystin, the 20 S proteasome inhibitor, blocked the inhibition of PtdCho biosynthesis mediated by TNFalpha. TNFalpha-induced degradation of CCTalpha protein was partially blocked by ALLN or lactacystin. CCT was ubiquitinated, and ubiquitination increased after TNFalpha exposure. m-Calpain degraded both purified CCT and CCT in cellular extracts. Thus, TNFalpha inhibits PtdCho synthesis by modulating CCT protein stability via the ubiquitin-proteasome and calpain-mediated proteolytic pathways.  相似文献   

7.
8.
9.
CTP:phosphocholine cytidylyltransferase (CCT) regulates the biosynthesis of phosphatidylcholine in mammalian cells. In order to understand the mechanism by which this enzyme controls phosphatidylcholine synthesis, we have initiated studies of CCT from the model genetic system, the yeast Saccharomyces cerevisiae. The yeast CCT gene was isolated from genomic DNA using the polymerase chain reaction and was found to encode tyrosine at position 192 instead of histidine, as originally reported. Levels of expression of yeast CCT activity in Escherichia coli or in the yeast, Pichia pastoris, were somewhat low. Expression of yeast CCT in a baculovirus system as a 6x-His-tag fusion protein was higher and was used to purify yeast CCT by a procedure that included delipidation. Kinetic characterization revealed that yeast CCT was activated approximately 20-fold by 20 microM phosphatidylcholine:oleate vesicles, a level 5-fold lower than that necessary for maximal activation of rat CCT. The k(cat) value was 31.3 s(-1) in the presence of lipid and 1.5 s(-1) in the absence of lipid. The K(m) values for the substrates CTP and phosphocholine did not change significantly upon activation by lipids; K(m) values in the presence of lipid were 0.80 mM for phosphocholine and 1.4 mM for CTP while K(m) values in the absence of lipid were 1.2 mM for phosphocholine and 0.8 mM for CTP. Activation of yeast CCT, therefore, appears to be due to an increase in the k(cat) value upon lipid binding.  相似文献   

10.
Phosphatidylcholine (PC) synthesis in animal cells is generally controlled by cytidine 5'-triphosphate (CTP):phosphocholine cytidylyltransferase (CCT). This enzyme is amphitropic, that is, it can interconvert between a soluble inactive form and a membrane-bound active form. The membrane-binding domain of CCT is a long amphipathic alpha helix that responds to changes in the physical properties of PC-deficient membranes. Binding of this domain to membranes activates CCT by relieving an inhibitory constraint in the catalytic domain. This leads to stimulation of PC synthesis and maintenance of membrane PC content. Surprisingly, the major isoform, CCT alpha, is localized in the nucleus of many cells. Recently, a new level of its regulation has emerged with the discovery that signals that stimulate PC synthesis recruit CCT alpha from an inactive nuclear reservoir to a functional site on the endoplasmic reticulum.  相似文献   

11.
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the conversion of phosphocholine and cytidine 5'-triphosphate (CTP) to CDP-choline for the eventual synthesis of phosphatidylcholine (PC). The enzyme is regulated by reversible association with cellular membranes, with the rate of catalysis increasing following membrane association. Two isoforms of CCT appear to be present in higher eukaryotes, including Drosophila melanogaster, which contains the tandem genes Cct1 and Cct2. Before this study, the CCT1 isoform had not been characterized and the cellular location of each enzyme was unknown. In this investigation, the cDNA encoding the CCT1 isoform from D. melanogaster has been cloned and the recombinant enzyme purified and characterized to determine catalytic properties and the effect of lipid vesicles on activity. CCT1 exhibited a V max of 23904 nmol of CDP-choline min (-1) mg (-1) and apparent K m values for phosphocholine and CTP of 2.29 and 1.21 mM, respectively, in the presence of 20 muM PC/oleate vesicles. Cytidylyltransferases require a divalent cation for catalysis, and the cation preference of CCT1 was found to be as follows: Mg (2+) > Mn (2+) = Co (2+) > Ca (2+) = Ni (2+) > Zn (2+). The activity of the enzyme is stimulated by a variety of lipids, including phosphatidylcholine, phosphatidylinositol, phosphatidylglycerol, phosphatidylserine, diphosphatidylglycerol, and the fatty acid oleate. Phosphatidylethanolamine and phosphatidic acid, however, did not have a significant effect on CCT1 activity. The cellular location of both CCT1 and CCT2 isoforms was elucidated by expressing green fluorescent fusion proteins in cultured D. melanogaster Schneider 2 cells. CCT1 was identified as the nuclear isoform, while CCT2 is cytoplasmic.  相似文献   

12.
Histone acetylation plays an important role in chromatin remodeling and gene expression. The molecular mechanisms involved in cell-specific expression of CTP:phosphocholine cytidylyltransferase alpha (CTalpha) are not fully understood. In this study, we investigated whether or not histone deacetylation is involved in repression of CTalpha expression in quiescent C3H10T1/2 mouse embryo fibroblasts. We have examined the contributions of the Sp1 and E2F binding sites in the repression of CTalpha gene expression. Immunoprecipitation experiments showed that histone deacetylase 1 (HDAC1) and HDAC activity are associated with Sp1 in serum-starved cells or during serum stimulation. However, HDAC1 association with E2F was only detected in serum-starved cells. By chromatin immunoprecipitation assays, we detected both direct and indirect association of HDAC1 with the CTalpha promoter. Treatment with the HDAC inhibitor trichostatin A induced CTalpha expression. Our data suggest that HDAC1 plays a critical role in CTalpha repression and that Sp1 and E2F may serve as key targets for HDAC1-mediated CTalpha repression in fibroblasts.  相似文献   

13.
We have purified CTP:phosphorylcholine cytidylyltransferase from rat liver cytosol 2180-fold to a specific activity of 12,250 nmol/min/mg of protein. The purified enzyme was stable at -70 degrees C in the presence of Triton X-100 and 0.2 M phosphate. The purified enzyme gave a single protein and activity band on nondenaturing polyacrylamide electrophoresis. Separation by sodium dodecyl sulfate-polyacrylamide electrophoresis indicated that the purified enzyme contained subunits with Mr of 39,000 and 48,000. Gel filtration analysis indicated that the native enzyme was a tetramer containing two 39,000 and two 48,000 subunits. The purified enzyme appeared to bind to Triton X-100 micelles, one molecule of tetramer/micelle. Maximal activity was obtained with 100 microM phosphatidylcholine-oleic acid vesicles (8-10-fold stimulation). Phosphatidylglycerol produced a 4-5-fold increase in activity at 10 microM. The pH optimum and true Km values for CTP and phosphorylcholine were similar to those reported previously for crude preparations of cytidylyltransferase. The overall behavior of cytidylyltransferase during purification and subsequent analysis suggested that it has hydrophobic properties similar to those exhibited by membrane proteins.  相似文献   

14.
CTP:phosphocholine cytidylyltransferase (CCTalpha) is a proteolytically sensitive enzyme essential for production of phosphatidylcholine, the major phospholipid of animal cell membranes. The molecular signals that govern CCTalpha protein stability are unknown. An NH(2)-terminal PEST sequence within CCTalpha did not serve as a degradation signal for the proteinase, calpain. Calmodulin (CaM) stabilized CCTalpha from calpain proteolysis. Adenoviral gene transfer of CaM in cells protected CCTalpha, whereas CaM small interfering RNA accentuated CCTalpha degradation by calpains. CaM bound CCTalpha as revealed by fluorescence resonance energy transfer and two-hybrid analysis. Mapping and site-directed mutagenesis of CCTalpha uncovered a motif (LQERVDKVK) harboring a vital recognition site, Gln(243), whereby CaM directly binds to the enzyme. Mutagenesis of CCTalpha Gln(243) not only resulted in loss of CaM binding but also led to complete calpain resistance in vitro and in vivo. Thus, calpains and CaM both access CCTalpha using a structurally similar molecular signature that profoundly affects CCTalpha levels. These data suggest that CaM, by antagonizing calpain, serves as a novel binding partner for CCTalpha that stabilizes the enzyme under proinflammatory stress.  相似文献   

15.
Growth factor regulation of phosphatidylcholine (PtdCho) metabolism during the G1 stage of the cell cycle was investigated in the colony-stimulating factor 1 (CSF-1)-dependent murine macrophage cell-line BAC1.2F5. The transient removal of CSF-1 arrested the cells in G1. Incorporation of [3H]choline into PtdCho was stimulated significantly 1 h after growth factor addition to quiescent cells. Metabolic labeling experiments pointed to CTP:phosphocholine cytidylyltransferase (CT) as the rate-controlling enzyme for PtdCho biosynthesis in BAC1.2F5 cells. The amount of CT mRNA increased 4-fold within 15 min of CSF-1 addition and remained elevated for 2 h. The rise in CT mRNA levels was accompanied by a 50% increase in total CT specific activity in cell extracts within 4 h after the addition of CSF-1. CSF-1-dependent elevation of CT mRNA content was neither attenuated nor superinduced by the inhibition of protein synthesis with cycloheximide. The rate of CT mRNA turnover decreased in the presence of CSF-1 indicating that message stabilization was a key factor in determining the levels of CT mRNA. These data point to increased CT mRNA abundance as a component in growth factor-stimulated PtdCho synthesis.  相似文献   

16.
Experimental evidence is reported that the addition in vitro of a polyunsaturated soybean phospholipid material (EPL) to a CTP:PC cytidylyltransferase preparation from rat liver (E.C. 2.7.7.15) produces noticeable stimulation of this enzymatic activity. Preincubation for different time intervals of EPL under air or oxygen further stimulates the activating effects. Little influence is exerted on the same enzyme by saturated lipids, such as dipalmitoyl-sn-glycero-3-phosphorylcholine and distearoyl-sn-glycero-3-phosphorylcholine. It is proposed that the lipid components of the EPL which exert the stimulatory action may be lyso-phospholipid moieties derived from EPL upon preincubation or directly present in the product. The biological significance of these activations in liver tissue is discussed.  相似文献   

17.
To probe the mechanism of lipid activation of CTP:phosphocholine cytidylyltransferase (CCTalpha), we have characterized a catalytic fragment of the enzyme that lacks the membrane-binding segment. The kinetic properties of the purified fragment, CCTalpha236, were characterized, as well as the effects of expressing the fragment in cultured cells. CCTalpha236 was truncated after residue 236, which corresponds to the end of the highly conserved catalytic domain. The activity of purified CCTalpha236 was independent of lipids and about 50-fold higher than the activity of wild-type CCTalpha assayed in the absence of lipids, supporting a model in which the membrane-binding segment functions as an inhibitor of the catalytic domain. The kcat/Km values for CCTalpha236 were only slightly lower than those for lipid-activated CCTalpha. The importance of the membrane-binding segment in vivo was tested by expression of CCTalpha236 in CHO58 cells, a cell line that is temperature-sensitive for growth and CCTalpha activity. Expression of wild-type CCTalpha in these cells complemented the defective growth phenotype when the cells were cultured in complete or delipidated fetal bovine serum. Expression of CCTalpha236, however, did not complement the growth phenotype in the absence of serum lipids. These cells were capable of making phosphatidylcholine in the delipidated medium, so the inability of the cells to grow was not due to defective phosphatidylcholine synthesis. Supplementation of the delipidated medium with an unsaturated fatty acid allowed growth of CHO58 cells expressing CCTalpha236. These results indicate that the membrane-binding segment of CCTalpha has an important role in cellular lipid metabolism.  相似文献   

18.
CTP : phosphocholine cytidylyltransferase activity exists in both the microsome and cytosol fractions of adult lung, 36 and 59%, respectively. Although these enzyme activities are stimulated in vitro by added lipid activators (i.e. phosphatidylglycerol), there are significant levels of activity in the absence of added lipid. We have removed endogenous lipid material from microsome and cytosol preparations of rat lung by rapid extraction with isopropyl ether. The extraction procedure did not cause any loss of cytidylyltransferase activity in the cytosol. After the extraction the enzyme was almost completely dependent upon added lipid activator. Isopropyl ether extraction of microsome preparations produced a loss of 40% of the cytidylyltransferase activity, when measured in the presence of added phosphatidylglycerol. Lipid material extracted into isopropyl ether restored the cytidylyltransferase activity in cytosol. The predominant species of enzyme activator in the isopropyl ether extracts was fatty acid. A variety of naturally occurring unsaturated fatty acids stimulated the cytidylyltransferase to the same extent as phosphatidylglycerol. Saturated fatty acids were inactive.  相似文献   

19.
During differentiation neurons increase phospholipid biosynthesis to provide new membrane for neurite growth. We studied the regulation of phosphatidylcholine (PC) biosynthesis during differentiation of two neuronal cell lines: PC12 cells and Neuro2a cells. We hypothesized that in PC12 cells nerve growth factor (NGF) would up-regulate the activity and expression of the rate-limiting enzyme in PC biosynthesis, CTP:phosphocholine cytidylyltransferase (CT). During neurite outgrowth, NGF doubled the amount of cellular PC and CT activity. CTbeta2 mRNA increased within 1 day of NGF application, prior to the formation of visible neurites, and continued to increase during neurite growth. When neurites retracted in response to NGF withdrawal, CTbeta2 mRNA, protein, and CT activity decreased. NGF specifically activated CTbeta2 by promoting its translocation from cytosol to membranes. In contrast, NGF did not alter CTalpha expression or translocation. The increase in both CTbeta2 mRNA and CT activity was inhibited by U0126, an inhibitor of mitogen-activated kinase/extracellular signal-regulated kinase kinase 1/2 (MEK1/2). In Neuro2a cells, retinoic acid significantly increased CT activity (by 54%) and increased CTbeta2 protein, coincident with neurite outgrowth but did not change CTalpha expression. Together, these data suggest that the CTbeta2 isoform of CT is specifically up-regulated and activated during neuronal differentiation to increase PC biosynthesis for growing neurites.  相似文献   

20.
Phosphatidylcholine synthesis by rat type II pneumonocytes was altered either by depleting the cells of choline or by exposing the cells to extracellular lung surfactant. Effects of these experimental treatments on the activity of a regulatory enzyme, CTP:phosphocholine cytidylyltransferase, were investigated. Although choline depletion of type II pneumonocytes resulted in inhibition of phosphatidylcholine synthesis, cytidylyltransferase activity (measured in cell homogenates in either the absence or presence of added lipids) was greatly increased. Activation of cytidylyltransferase in choline-depleted cells was rapid and specific, and was quickly and completely reversed when choline-depleted cells were exposed to choline (but not ethanolamine). Choline-dependent changes in enzymic activity were apparently not a result of direct actions of choline on cytidylyltransferase and they were largely unaffected by cyclic AMP analogues, oleic acid, linoleic acid or cycloheximide. The Km value of cytidylyltransferase for CTP (but not phosphocholine) was lower in choline-depleted cells than in choline-repleted cells. Subcellular redistribution of cytidylyltransferase also was associated with activation of the enzyme in choline-depleted cells. When measured in the presence of added lipids, 66.5 +/- 5.0% of recovered cytidylyltransferase activity was particulate in choline-depleted cells but only 34.1 +/- 4.5% was particulate in choline-repleted cells. An increase in particulate cytidylyltransferase also occurred in type II pneumonocytes that were exposed to extracellular surfactant. This latter subcellular redistribution, however, was not accompanied by a change in cytidylyltransferase activity even though incorporation of [3H]choline into phosphatidylcholine was inhibited by approx. 50%. Subcellular redistribution of cytidylyltransferase, therefore, is associated with changes in enzymic activity under some conditions, but can also occur without a resultant alteration in enzymic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号