首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous mix batch bioreactors were used to study the kinetic parameters of lactic acid fermentation in microaerated-nutrient supplemented, lactose concentrated cheese whey using Lactobacillus helveticus. Four initial lactose concentrations ranging from 50 to 150 g l–1 were first used with no microaeration and no yeast extract added to establish the substrate concentration above which inhibition will occur and then the effects of microaeration and yeast extract on the process kinetic parameters were investigated. The experiments were conducted under controlled pH (5.5) and temperature (42 °C) conditions. The results indicated that higher concentrations of lactose had an inhibitory effect as they increased the lag period and the fermentation time; and decreased the specific growth rate, the maximum cell number, the lactose utilization rate, and the lactic acid production rate. The maximum lactic acid conversion efficiency (75.8%) was achieved with the 75 g l–1 initial lactose concentration. The optimum lactose concentration for lactic acid production was 75 g l–1 although Lactobacillus helveticus appeared to tolerate up to 100 g l–1 lactose concentration. Since the lactic acid productivity is of a minor importance compared to lactic acid concentration when considering the economic feasibility of lactic acid production from cheese whey using Lactobacillus helveticus, a lactose concentration of up to 100 g l–1 is recommended. Using yeast extract and/or microaeration increased the cell number, specific growth rate, cell yield, lactose consumption, lactic acid utilization rate, lactic acid concentration and lactic acid yield; and reduced the lag period, fermentation time and residual lactose. Combined yeast extract and microaeration produced better results than each one alone. From the results it appears that the energy uncoupling of anabolism and catabolism is the major bottleneck of the process. Besides lactic acid production, lactose may also be hydrolysed into glucose and galactose. The -galactosidase activity in the medium is caused by cell lysis during the exponential growth phase. The metabolic activities of Lactobacillus helveticus in the presence of these three sugars need further investigation.  相似文献   

2.
Lactic acid is a versatile organic acid, which finds major application in the food, pharmaceuticals, and chemical industries. Microbial fermentation has the advantage that by choosing a strain of lactic acid bacteria producing only one of the isomers, an optically pure product can be obtained. The production of l(+) lactic acid is of significant importance from nutritional viewpoint and finds greater use in food industry. In view of economic significance of immobilization technology over the free-cell system, immobilized preparation of Lactobacillus casei was employed in the present investigation to produce l(+) lactic acid from whey medium. The process conditions for the immobilization of this bacterium using calcium pectate gel were optimized, and the developed cell system was found stable during whey fermentation to lactic acid. A high lactose conversion (94.37%) to lactic acid (32.95 g/l) was achieved with the developed immobilized system. The long-term viability of the pectate-entrapped bacterial cells was tested by reusing the immobilized bacterial biomass, and the entrapped bacterial cells showed no decrease in lactose conversion to lactic acid up to 16 batches, which proved its high stability and potential for commercial application.  相似文献   

3.
Biomass and lactic acid production by a Lactobacillus plantarum strain isolated from Serrano cheese, a microorganism traditionally used in foods and recognized as a potent probiotic, was optimized. Optimization procedures were carried out in submerged batch bioreactors using cheese whey as the main carbon source. Sequential experimental Plackett–Burman designs followed by central composite design (CCD) were used to assess the influence of temperature, pH, stirring, aeration rate, and concentrations of lactose, peptone, and yeast extract on biomass and lactic acid production. Results showed that temperature, pH, aeration rate, lactose, and peptone were the most influential variables for biomass formation. Under optimized conditions, the CCD for temperature and aeration rate showed that the model predicted maximal biomass production of 14.30 g l−1 (dw) of L. plantarum. At the central point of the CCD, a biomass of 10.2 g l−1 (dw), with conversion rates of 0.10 g of cell g−1 lactose and 1.08 g lactic acid g−1 lactose (w/w), was obtained. These results provide useful information about the optimal cultivation conditions for growing L. plantarum in batch bioreactors in order to boost biomass to be used as industrial probiotic and to obtain high yields of conversion of lactose to lactic acid.  相似文献   

4.
Summary Investigations have been carried out on lactic acid production by Lactobacillus helveticus CNRZ 303 in whey ultrafiltrate. Addition of beet molasses was investigated with good results, although yeast extract proved to be more effective. The size of inoculum and the preculture medium also played a significant role in determining the amount of lactic acid produced during the fermentation process. High lactose consumption (94.09%), together with good lactic acid production (26.09 g/l) and yield (0.90%), were obtained in whey ultrafiltrate supplemented with 1% (w/v) beet molasses (WUM), with a 10% (w/v) inoculum and peptonized milk as preculture medium. Although these results were similar to those obtained when yeast extract was used as supplement, the maximum volumetric productivities proved to be quite different, and were definitely higher with yeast extract. Offprint requests to: L. Chiarini  相似文献   

5.
Summary The process of lactic acid fermentation of lactose to lactic acid by Lactobacillus rhamnosus ATCC 7469 has been studied. The following processes have been explored: growth kinetics, as well as lactose utilization, production of lactic acid and further degradation of lactic acid. The immobilization experiments were conducted with microbial cells entrapped in polyacrylamide gels. Gels with different ratios of the monomer (acrylamide) and the cross-linking agent (N,N′-methylene-bis-acrylamide) have been tested. These were used in a repeat-batch process. The current processes inside and outside the gel particles were subjects of examination. The evolution of the activity of immobilized cells with repeated use showed that the particles served mainly as a donor of cells for the free culture. In all experiments a very high degree of conversion, 85–90% was observed. After several runs however, the particles were exhausted for microbial cells. A kinetic model of the process of lactic acid production was developed. This model allowed the evaluation of the effect of microbial growth and diffusion limitations inside the gel particles on the process rate and the separate contribution of the free and immobilized cells to the overall fermentation process upon multiple use.  相似文献   

6.
Summary Cheese whey ultrafiltrate (WU) was used as the carbon source for the production of lactic acid by batch fermentation with Lactobacillus helveticus strain milano. The fermentation was conducted in a 400 ml fermentor at an agitation rate of 200 rpm and under conditions of controlled temperature (42° C) and pH. In the whey ultrafiltrate-corn steep liquor (WU-CSL) medium, the optimal pH for fermentation was 5.9. Inoculum propagated in skim milk (SM) medium or in lactose synthetic (LS) medium resulted in the best performance in fermentation (in terms of growth, lactic acid production, lactic acid yield and maximum productivity of lactic acid), as compared to that propagated in glucose synthetic (GS) medium. The yeast extract ultrafiltrate (YEU) used as the nitrogen/growth factor source in the WU medium at 1.5% (w/v) gave the highest maximum productivity of lactic acid of 2.70 g/l-h, as compared to the CSL and the tryptone ultrafiltrate (TU). L. helveticus is more advantageous than Streptococcus thermophilus and Lactobacillus delbrueckii for the production of lactic acid from WU. The L. helveticus process will provide an alternative solution to the phage contamination in dairy industries using Lactobacillus bulgaricus.  相似文献   

7.
Cheese whey contains a high organic content and causes serious problems if it is released into the environment when untreated. This study aimed to investigate the optimum condition of lactic acid production using the microaerobic sequencing batch reactor (microaerobic SBR) in a nonsterile system. The high production of lactic acid was achieved by immobilized Lactobacillus plantarum TISTR 2265 to generate an acidic pH condition below 4.5 and then to support single-cell protein (SCP) production in the second aerobic sequencing batch reactor (aerobic SBR). A hydraulic retention time (HRT) of 4 days and a whey concentration of 80% feeding gave a high lactic acid yield of 12.58 g/L, chemical oxygen demand (COD) removal of 62.38%, and lactose utilization of 61.54%. The microbial communities in the nonsterile system were dominated by members of lactic acid bacteria, and it was shown that the inoculum remained in the system up to 330 days.  相似文献   

8.
Summary Unlike sterilization by autoclave (Anderson et al. 1986) high concentrations of cheese whey sterilized by ultra high temperature (UHT) resulted in a medium conducive to microbial growth and propionic acid production. Propionibacterium freudenreichii ss. shermanii, grown with pH control in 12% whey solids and 1% yeast extract sterilized by UHT, produced about 1.9% propionic acid within 70 h; more than 50% of the lactose was not used. Under similar conditions, mixed cultures of P. shermanii and Lactobacillus casei produced more than 3.0% propionic acid. Acclimating the mixed culture to the whey medium resulted in 4.5% propionic acid. The amount of propionic acid produced was further increased to about 6.5% by raising the concentration of whey solids to about 18%. Using the mixed culture, all the lactose was consumed and lactic acid did not accumulate.  相似文献   

9.
Ethanol production by K. marxianus in whey from organic cheese production was examined in batch and continuous mode. The results showed that no pasteurization or freezing of the whey was necessary and that K. marxianus was able to compete with the lactic acid bacteria added during cheese production. The results also showed that, even though some lactic acid fermentation had taken place prior to ethanol fermentation, K. marxianus was able to take over and produce ethanol from the remaining lactose, since a significant amount of lactic acid was not produced (1–2 g/l). Batch fermentations showed high ethanol yield (~0.50 g ethanol/g lactose) at both 30°C and 40°C using low pH (4.5) or no pH control. Continuous fermentation of nonsterilized whey was performed using Ca-alginate-immobilized K. marxianus. High ethanol productivity (2.5–4.5 g/l/h) was achieved at dilution rate of 0.2/h, and it was concluded that K. marxianus is very suitable for industrial ethanol production from whey.  相似文献   

10.
β-Galactosidase and glucose oxidase were immobilized with bovine serum albumin using glutaraldehyde on to a glassy carbon electrode silanized with 3-aminopropyltriethoxysilane. The laboratory-constructed lactose electrode was used for flow injection analysis to determine the lactose content in milk. Electrochemical interference could be detected by a non-enzymatic electrode (W2) and the current was subtracted from that of the enzymatic electrode (W1), providing an accurate measurement of the hydrogen peroxide that was enzymatically generated. The peak current was linearly related to the lactose concentration in the range 10?4~ 1.5 × 10?3 M (original concentration) and 40 samples/hr could be analyzed. The relative standard deviation for 10 assays was less than 2%. The proposed method was compared with the chloramine T method and the values determined by both methods were in good agreement.  相似文献   

11.
Summary Acetic acid was produced from anaerobic fermentation of lactose by the co-culture ofStreptococcus lactis andClostridium formicoaceticum at 35° C and pHs between 7.0 and 7.6. Lactose was converted to lactic acid, and then to acetic acid in this mixed culture fermentation. The overall acetic acid yield from lactose was about 95% at pH 7.6 and 90% at pH 7.0. The fermentation rate was also higher at pH 7.6 than at pH 7.0. In batch fermentation of whey permeate containing about 5% lactose at pH 7.6, the concentration of acetic acid reached 20 g/l within 20 h. The production rate then became very slow due to end-product inhibition and high Na+ concentration. About 30 g/l acetate and 20 g/l lactate were obtained at a fermentation time of 80 h. However, when diluted whey permeate containing 2.5% lactose was used, all the whey lactose was converted to acetic acid within 30 h by this mixed culture.  相似文献   

12.
An aroma-imparting mesophilic lactic starter (Lactococcus lactis ssp. lactis biovar. diacetylactis) was studied in batch culture in medium with 50 g·l–1 lactose and 2 g·l–1 citrate. The effect of pH on the physiology of growth and the production of flavour compounds was investigated with a mathematical model. The specific rates of growth and of lactose fermentation obeyed a law of non-competitive inhibition by lactic acid produced, inhibition increasing as the pH of the medium decreased. The pH thus acted indirectly by increasing the proportion of non-dissociated lactic acid, identified as the inhibiting form of lactic acid. The generalized model, taking into account the effect of pH, was tested using fermentations at pH controlled at different values (4.5–6.5), as well as with a fermentation conducted at non-regulated pH. These simulations supported the working hypotheses. The effect of pH on the fermentation of citric acid resulted in an increase in the maximal specific rate of citrate utilization, in the bioconversion yield, and in the constant of diacetyl and acetoin reduction at acid pH. The production of flavour compounds is a complex phenomenon resulting from the interaction of pH, citric acid concentration, and the physiological state of the cells. These results are discussed with respect to the use of this strain in the preparation of manufactured dairy products.  相似文献   

13.
内蒙古呼伦贝尔地区传统发酵乳中乳酸菌的多样性分析   总被引:2,自引:1,他引:1  
【目的】对内蒙古呼伦贝尔地区传统发酵乳制品中乳酸菌资源的生物多样性进行研究。【方法】采用纯培养和16S rRNA基因序列分析法对内蒙古呼伦贝尔地区传统发酵乳中的乳酸菌进行多样性分析。【结果】从8份传统发酵乳制品(6份酸牛奶和2份酸马奶)样品中分离到24株乳酸菌,通过16S rRNA基因序列分析和系统进化关系分析将24株乳酸菌鉴定为2株Lactobacillus kefiranofaciens、2株Lactobacillus kefiri、5株Lactobacillus paracasei、3株Lactobacillus plantarum、1株Lactobacillus rhamnosus、6株Lactococcus lactis subsp.lactis、2株Leuconostoc mesenteroides subsp.dextranicum、2株Streptococcus thermophilus和1株Enterococcus faecium。【结论】Lactococcus lactis subsp.lactis为内蒙古呼伦贝尔地区传统发酵乳制品的优势菌种,占总分离株的25%,其次为Lactobacillus paracasei,占总分离株的20.83%。  相似文献   

14.
In order to achieve high butanol production by Clostridium saccharoperbutylacetonicum N1-4, the effect of lactic acid on acetone–butanol–ethanol fermentation and several fed-batch cultures in which lactic acid is fed have been investigated. When a medium containing 20 g/l glucose was supplemented with 5 g/l of closely racemic lactic acid, both the concentration and yield of butanol increased; however, supplementation with more than 10 g/l lactic acid did not increase the butanol concentration. It was found that when fed a mixture of lactic acid and glucose, the final concentration of butanol produced by a fed-batch culture was greater than that produced by a batch culture. In addition, a pH-controlled fed-batch culture resulted in not only acceleration of lactic acid consumption but also a further increase in butanol production. Finally, we obtained 15.5 g/l butanol at a production rate of 1.76 g/l/h using a fed-batch culture with a pH-stat continuous lactic acid and glucose feeding method. To confirm whether lactic acid was converted to butanol by the N1-4 strain, we performed gas chromatography–mass spectroscopy (GC-MS) analysis of butanol produced by a batch culture during fermentation in a medium containing [1,2,3-13C3] lactic acid as the initial substrate. The results of the GC-MS analysis confirmed the bioconversion of lactic acid to butanol.  相似文献   

15.
Dehydration is a commonly used method to stabilise protein formulations. Upon dehydration, there is a significant risk the composition of the formulation will change especially if the protein formulation contains volatile compounds. Phenol is often used as excipient in insulin formulations, stabilising the insulin hexamer by changing the secondary structure. We have previously shown that it is possible to maintain this structural change after drying. The aim of this study was to evaluate the residual phenol content in spray-dried and freeze-dried insulin formulations by Fourier transform infrared (FTIR) spectroscopy and near infrared (NIR) spectroscopy using multivariate data analysis. A principal component analysis (PCA) and partial least squares (PLS) projections were used to analyse spectral data. After drying, there was a difference between the two drying methods in the phenol/insulin ratio and the water content of the dried samples. The spray-dried samples contained more water and less phenol compared with the freeze-dried samples. For the FTIR spectra, the best model used one PLS component to describe the phenol/insulin ratio in the powders, and was based on the second derivative pre-treated spectra in the 850–650 cm−1 region. The best PLS model based on the NIR spectra utilised three PLS components to describe the phenol/insulin ratio and was based on the standard normal variate transformed spectra in the 6,200–5,800 cm−1 region. The root mean square error of cross validation was 0.69% and 0.60% (w/w) for the models based on the FTIR and NIR spectra, respectively. In general, both methods were suitable for phenol quantification in dried phenol/insulin samples.  相似文献   

16.
A semi-continuous four-channel colon simulator was used to study the effects of lactose for the first time on the growth and fermentation dynamics of colonic microbiota. In six separate simulations, lactose supplementation increased the total SCFA concentration by 3–5 fold as compared with the baseline in the respective vessels. The total bacterial density was inversely correlated with lactic acid production (P=0.003), while production of butyrate (P=0.007) and propionate (P=0.02) correlated with higher numbers of bacteria. A major shift in the microbial community structure in the lactose supplemented vessels was demonstrated by bacterial genomic %G+C-profiling of the total population, where lactose supplementation induced a clearly dominant peak in the bifidobacteria prominent area, %G+C 60–65. The transient shift to increased numbers of bifidobacteria (23–27%) of all bacteria in the first two vessels was also confirmed by the bifidobacteria-specific QPCR-method. In conclusion, lactose produced dramatic changes in microbiota composition and activity as compared with the baseline fermentation.  相似文献   

17.
A new method based on Fourier‐transform infrared (FTIR) spectroscopy combined with cluster analysis and deconvolution was established to investigate the biological effect of an ultra‐strong static magnetic field (SMF) of 10.0 T on Escherichia coli and Staphylococcus aureus. FTIR spectroscopy was applied to characterize the spectroscopic fingerprints of these bacterial cells with or without the treatment of the SMF. After the calculation, the results of cluster analysis indicated that the SMF had significant effects on E. coli compared with S. aureus, and the effects were reflected by the changes of spectral region of 1500–1200 cm?1. The deconvolution results of this major indication region showed that the composition and conformation of nucleic acid, protein, and fatty acid of E. coli were altered under the magnetic conditions. Bioelectromagnetics 30:500–507, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The effects of spray-drying process and acidic solvent system on physicochemical properties of chitosan salts were investigated. Chitosan used in spray dryings was obtained by deacetylation of chitin from lobster (Panulirus argus) origin. The chitosan acid salts were prepared in a laboratory-scale spray drier, and organic acetic acid, lactic acid, and citric acid were used as solvents in the process. The physicochemical properties of chitosan salts were investigated by means of solid-state CP-MAS 13C nuclear magnetic resonance (NMR), X-ray powder diffraction (XRPD), differential scanning calorimetry, and Fourier transform infrared spectrometry (FTIR) and near-infrared spectroscopy. The morphology of spray-dried chitosan acid salts showed tendency toward higher sphericity when higher temperatures in a spray-drying process were applied. Analysis by XRPD indicated that all chitosan acid salts studied were amorphous solids. Solid-state 13C NMR spectra revealed the evidence of the partial conversion of chitosan acetate to chitin and also conversion to acetyl amide form which appears to be dependent on the spray-drying process. The FTIR spectra suggested that the organic acids applied in spray drying may interact with chitosan at the position of amino groups to form chitosan salts. With all three chitosan acid salts, the FTIR bands at 1,597 and 1,615 cm−1 were diminished suggesting that –NH groups are protonated. The FTIR spectra of all chitosan acid salts exhibited ammonium and carboxylate bands at 1,630 and 1,556 cm−1, respectively. In conclusion, spray drying is a potential method of preparing acid salts from chitosan obtained by deacetylation of chitin from lobster (P. argus) origin.  相似文献   

19.
Creating a plant-cell suspension culture involves first transferring the callus into liquid media, but there are no objective criteria for selecting the location of the callus to be transferred. In this study, inner and outer cells of Catharanthus roseus with various elicitors in solid-state cultures were differentiated by 1H NMR (nuclear magnetic resonance) spectrometry and principal component analysis (PCA). It was found that the samples of various elicitors and relative locations could be separated in PCA-derived score plots. Especially, there was a clear separation between nontreated samples and those cotreated with silver nitrate and methyl jasmonate. Loading-plot analysis was therefore applied to data obtained from nontreated samples and those cotreated with silver nitrate and methyl jasmonate to determine the separation of major metabolites on score plots. The levels of valine, lactic acid, threonine, alanine, arginine, acetic acid, malic acid, succinic acid, citric acid, asparagine, choline, lactose, fumaric acid, phenylalanine, tryptophan, and formic acid were higher in the inner callus than in the outer callus, whereas 2-oxoglutaric acid, oxalacetic acid, sucrose, and glucose dominated in the outer callus. The results obtained in this study suggest that inner and outer calli can be differentiated by 1H-NMR-based metabolomic analysis.  相似文献   

20.
Scotta is the main by-product in the making of ricotta cheese. It is widely produced in southern Europe and particularly in Italy where it represents a serious environmental pollutant due to its high lactose content. With the aim of evaluating whether scotta bioconversion into lactic acid can be considered as an alternative to its disposal, besides providing it with an added value, here the growth, fermentative performances, and lactic acid productions of pure and mixed cultures of Lactobacillus casei, Lactobacillus helveticus, and Streptococcus thermophilus were evaluated on ovine scotta-based media, without and with the addition of nutritional supplements. The outcomes indicate that ovine scotta can be utilized for the biotechnological production of lactic acid with yields up to 92%, comparable to those obtained on cheese-whey. Indeed, the addition of nutritional supplements generally improves the fermentative performances of lactic acid bacteria leading to about 2 g l−1 h−1 of lactic acid. Moreover, the use of mixed cultures for scotta bioconversion reduces the need for nutritional supplements, with no detrimental effects on the productive parameters compared to pure cultures. Finally, by using L. casei and S. thermophilus in pure and mixed cultures, up to 99% optically pure l-lactic acid can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号