首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near-full-length cDNA clones to the small and large subunit of the heterotetrameric potato tuber ADP-glucose pyrophosphorylase have been isolated and characterized. The missing amino terminal sequence of the small subunit has also been elucidated from its corresponding genomic clone. Primary sequence comparisons revealed that each potato subunit had less identity to each other than to their homologous subunit from other plants. It also appeared that the smaller subunit is more conserved among the different plants and the larger subunit more divergent. Amino acid comparisons of both potato tuber sequences to theEscherichia coli ADP-glucose pyrophosphorylase sequence revealed conserved regions important for both catalytic and allosteric function of the bacterial enzyme.  相似文献   

2.
Asp142 in the homotetrameric ADP-glucose pyrophosphorylase (ADP-Glc PPase) enzyme from Escherichia coli was demonstrated to be involved in catalysis of this enzyme [Frueauf, J.B., Ballicora, M.A. and Preiss J. (2001) J. Biol. Chem., 276, 46319-46325]. The residue is highly conserved throughout the family of ADP-Glc PPases, as well as throughout the super-family of sugar-nucleotide pyrophosphorylases. In the heterotetrameric ADP-Glc PPase from potato (Solanum tuberosum L.) tuber, the homologous residue is present in both the small (Asp145) and the large (Asp160) subunits. It has been proposed that the small subunit of plant ADP-Glc PPases is catalytic, while the large subunit is modulatory; however, no catalytic residues have been identified. To investigate the function of these conserved Asp residues in the ADP-Glc PPase from potato tuber, we used site-directed mutagenesis to introduce either an Asn or a Glu. Kinetic analysis in the direction of synthesis or pyrophosphorolysis of ADP-Glc showed a significant decrease (more than four orders of magnitude) in the specific activity of the SD145NLwt, SD145NLD160N, and SD145NLD160E mutants, while the effect was smaller (approximately two orders of magnitude) with the SD145ELwt, SD145ELD160N, and SD145ELD160E mutants. By contrast, mutation of the large subunit alone did not affect the specific activity but did alter the apparent affinity for the activator 3-phosphoglycerate, showing two types of apparent roles for this residue in the different subunits. These results show that mutation of Asp160 of the large subunit does not affect catalysis, thus the large subunit is not catalytic, and that the negative charge of Asp145 in the small subunit is necessary for enzyme catalysis.  相似文献   

3.
The heterotetrameric, allosterically regulated enzyme, adenosine-5'-diphosphoglucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step in starch synthesis. Despite vast differences in allosteric properties and a long evolutionary separation, heterotetramers of potato small subunit and maize large subunit have activity comparable to either parent in an Escherichia coli expression system. In contrast, co-expression of maize small subunit with the potato large subunit produces little activity as judged by in vivo activity stain. To pinpoint the region responsible for differential activity, we expressed chimeric maize/potato small subunits in E. coli. This identified a 55-amino acid motif of the potato small subunit that is critical for glycogen production when expressed with the potato large subunit. Potato and maize small subunit sequences differ at five amino acids in this motif. Replacement experiments revealed that at least four amino acids of maize origin were required to reduce staining. An AGPase composed of a chimeric potato small subunit containing the 55-amino acid maize motif with the potato large subunit exhibited substantially less affinity for the substrates, glucose-1-phosphate and ATP and an increased Ka for the activator, 3-phosphoglyceric acid. Placement of the potato motif into the maize small subunit restored glycogen synthesis with the potato large subunit. Hence, a small polymorphic motif within the small subunit influences both catalytic and allosteric properties by modulating subunit interactions.  相似文献   

4.
The higher plant ADP-glucose pyrophosphorylase is a heterotetramer consisting of two subunit types, which have evolved at different rates from a common ancestral gene. The potato tuber small subunit (SS) displays both catalytic and regulatory properties, whereas the exact role of the large subunit (LS), which contains substrate and effector binding sites, remains unresolved. We identified a mutation, S302N, which increased the solubility of the recombinant potato tuber LS and, in turn, enabling it to form a homotetrameric structure. The LS302N homotetramer possesses very little enzyme activity at a level 100-fold less than that seen for the unactivated SS homotetramer. Unlike the SS enzyme, however, the LS302N homotetramer enzyme is neither activated by the effector 3-phosphoglycerate nor inhibited by P(i). When combined with the catalytically silenced SS, S D143N, however, the LS302N-containing enzyme shows significantly enhanced catalytic activity and restored 3-PGA activation. This unmasking of catalytic and regulatory potential of the LS is conspicuously evident when the activities of the resurrected L(K41R.T51K.S302N) homotetramer are compared with its heterotetrameric form assembled with S D143N. Overall, these results indicate that the LS possesses catalytic and regulatory properties only when assembled with SS and that the net properties of the heterotetrameric enzyme is a product of subunit synergy.  相似文献   

5.
ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the regulatory step in the pathway for synthesis of bacterial glycogen and starch in plants. ADP-Glc PPases from cyanobacteria (homotetramer) and from potato (Solanum tuberosum) tuber (heterotetramer) are activated by 3-phosphoglycerate and inhibited by inorganic orthophosphate. To study the function of two putative domains, chimeric enzymes were constructed. PSSANA contained the N-terminus (292 amino acids) of the potato tuber ADP-Glc PPase small subunit (PSS) and the C-terminus (159 residues) of the Anabaena PCC 7120 enzyme. ANAPSS was the inverse chimera. These constructs were expressed separately or together with the large subunit of the potato tuber ADP-Glc PPase (PLS), to obtain homo- and heterotetrameric chimeric proteins. Characterization of these forms showed that the N-terminus determines stability and regulatory redox-dependent properties. The chimeric forms exhibited intermediate 3-phosphoglycerate activation properties with respect to the wild-type homotetrameric enzymes, indicating that the interaction between the putative N- and C-domains determines the affinity for the activator. Characterization of the chimeric heterotetramers showed the functionality of the large subunit, mainly in modulating regulation of the enzyme by the coordinate action of 3-phosphoglycerate and inorganic orthophosphate.  相似文献   

6.
Adenosine diphosphate glucose pyrophosphorylase (AGPase; EC 2.7.7.27) synthesizes the starch precursor, ADP-glucose. It is a rate-limiting enzyme in starch biosynthesis and its activation by 3-phosphoglyceric acid (3PGA) and/or inhibition by inorganic phosphate (Pi) are believed to be physiologically important. Leaf, tuber and cereal embryo AGPases are highly sensitive to these effectors, whereas endosperm AGPases are much less responsive. Two hypotheses can explain the 3PGA activation differences. Compared to leaf AGPases, endosperm AGPases (i) lack the marked ability to be activated by 3PGA or (ii) they are less dependent on 3PGA for activity. The absence of purified preparations has heretofore negated answering this question. To resolve this issue, heterotetrameric maize ( Zea mays L.) endosperm and potato ( Solanum tuberosum L.) tuber AGPases expressed in Escherichia coli were isolated and the relative amounts of enzyme protein were measured by reaction to antibodies against a motif resident in both small subunits. Resulting reaction rates of both AGPases are comparable in the presence but not in the absence of 3PGA when expressed on an active-protein basis. We also placed the potato tuber UpReg1 mutation into the maize AGPase. This mutation greatly enhances 3PGA sensitivity of the potato AGPase but it has little effect on the maize AGPase. Thirdly, lysines known to bind 3PGA in potato tuber AGPase, but missing from the maize endosperm AGPase, were introduced into the maize enzyme. These had minimal effect on maize endosperm activity. In conclusion, the maize endosperm AGPase is not nearly as dependent on 3PGA for activity as is the potato tuber AGPase.  相似文献   

7.
In higher plants, ADP-glucose pyrophosphorylase (ADPGlc-PPase) is a heterotetrameric enzyme comprised of two small and two large subunits. Potato-Arabidopsis hybrid ADPGlc-PPases were generated and their regulatory properties analyzed. We show that ADPGlc-PPase subunits from two different species can interact, producing active enzymes with new regulatory properties. Depending on the subunit combinations, hybrid heterotetramers showed responses to allosteric effectors [3-phosphoglycerate (3-PGA) and Pi] in the micromolar or millimolar range. While hybrid potato small subunit (PSS) and the Arabidopsis large subunit APL1 showed an extremely sensitive response to 3-PGA and Pi, hybrid PSS/Arabidopsis APL2 was very insensitive to them. Intermediate responses were determined for other subunit combinations.  相似文献   

8.
Polyphenol oxidase (PPO) activity in potato (Solanum tuberosum) plants was high in stolons, tubers, roots, and flowers but low in leaves and stems. PPO activity per tuber continued to increase throughout tuber development but was highest on a fresh weight basis in developing tubers. PPO activity was greatest at the tuber exterior, including the skin and cortex tissue 1 to 2 mm beneath the skin. Flowers had high PPO activity throughout development, particularly in the anthers and ovary. Five distinct cDNA clones encoding PPO were isolated from developing tuber RNA. POT32 was the major form expressed in tubers and was found in all parts of the tuber and at all stages of tuber development. It was also expressed in roots but not in photosynthetic tissues. POT33 was expressed in tubers but mainly in the tissue near the skin. POT72 was detected in roots and at low levels in developing tubers. NOR333 was identical with the P2 PPO clone previously isolated from potato leaves (M.D. Hunt, N.T. Eannetta, Y. Haifeng, S.M. Newman, J.C. Steffens [1993] Plant Mol Biol 21: 59-68) and was detected in young leaves and in tissue near the tuber skin but was highly expressed in flowers. The results indicate that PPO is present as a small multigene family in potato and that each gene has a specific temporal and spatial pattern of expression.  相似文献   

9.
ADP-glucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step in starch biosynthesis in plants and changes in its catalytic and/or allosteric properties can lead to increased starch production. Recently, a maize (Zea mays)/potato (Solanum tuberosum) small subunit mosaic, MP [Mos(1–198)], containing the first 198 amino acids of the small subunit of the maize endosperm enzyme and the last 277 amino acids from the potato tuber enzyme, was expressed with the maize endosperm large subunit and was reported to have favorable kinetic and allosteric properties. Here, we show that this mosaic, in the absence of activator, performs like a wild-type AGPase that is partially activated with 3-phosphoglyceric acid (3-PGA). In the presence of 3-PGA, enzyme properties of Mos(1–198)/SH2 are quite similar to those of the wild-type maize enzyme. In the absence of 3-PGA, however, the mosaic enzyme exhibits greater activity, higher affinity for the substrates, and partial inactivation by inorganic phosphate. The Mos(1–198)/SH2 enzyme is also more stable to heat inactivation. The different properties of this protein were mapped using various mosaics containing smaller portions of the potato small subunit. Enhanced heat stability of Mos(1–198) was shown to originate from five potato-derived amino acids between 322 and 377. These amino acids were shown previously to be important in small subunit/large subunit interactions. These five potato-derived amino acids plus other potato-derived amino acids distributed throughout the carboxyl-terminal portion of the protein are required for the enhanced catalytic and allosteric properties exhibited by Mos(1–198)/SH2.  相似文献   

10.
Higher plant tissues contain two alpha-glucan phosphorylase isozymes (EC 2.4.1.1), types L and H, localized in the plastid and the cytoplasm, respectively. We already isolated and sequenced a cDNA clone encoding the type L isozyme. Presently, a cDNA clone encoding the type H counterpart was isolated from a cDNA library of immature potato tuber by plaque hybridization, using two oligonucleotide probes synthesized based on the partial amino acid sequences of the type H isozyme. The message encodes a polypeptide of 838 amino acid residues. Sequence comparison of the two potato tuber phosphorylase isozymes revealed two major distinctions; the type L isozyme contains a 78-residue insertion in the middle of the polypeptide chain as well as a 50-residue amino-terminal extension. Except for these extra portions, the two isozyme sequences show an identity of 63%. The entire structural gene for the type H isozyme was inserted 3'-downstream of the strong T7 RNA polymerase promoter in the expression plasmid pET-3b. Escherichia coli BL21 (DE3) cells carrying this plasmid produced active phosphorylase upon induction with isopropyl-beta-D-thiogalactoside at 22 degrees C. The expression is entirely dependent on the temperature; the bacteria did not produce a detectable amount of the active enzyme at 37 degrees C. Addition of pyridoxine to the culture medium was effective for the enzyme production.  相似文献   

11.
Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit.   总被引:3,自引:0,他引:3       下载免费PDF全文
B Y Chen  H W Janes 《Plant physiology》1997,113(1):235-241
ADP-glucose pyrophosphorylase (AGP) was purified from tomato (Lycopersicon esculentum Mill.) fruit to apparent homogeneity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme migrated as two close bands with molecular weights of 50,000 and 51,000. Two-dimensional polyacrylamide gel electrophoresis analysis of the purified enzyme, however, revealed at least five major protein spots that could be distinguished by their slight differences in net charge and molecular weight. Whereas all of the spots were recognized by the antiserum raised against tomato fruit AGP holoenzyme, only three of them reacted strongly with antiserum raised against the potato tuber AGP large subunit, and the other two spots (with lower molecular weights) reacted specifically with antisera raised against spinach leaf AGP holoenzyme and the potato tuber AGP small subunit. The results suggest the existence of at least three isoforms of the AGP large subunit and two isoforms of the small subunit in tomato fruit in vivo. The native molecular mass of the enzyme determined by gel filtration was 220 +/- 10 kD, indicating a tetrameric structure for AGP from tomato fruit. The purified enzyme is very sensitive to 3-phosphoglycerate/inorganic phosphate regulation.  相似文献   

12.
ADP-glucose pyrophosphorylase (AGPase), a key regulatory enzyme in higher plant starch biosynthesis, is composed of a pair of large and small subunits (alpha(2)beta(2)). Current evidence suggests that the large subunit has primarily a regulatory function, while the small subunit has both regulatory and catalytic roles. To define the structure-function relationship of the large subunit (LS), the LS of potato AGPase was subjected to chemical mutagenesis and coexpressed with the wild-type (WT) small subunit (SS) cDNA in an AGPase defective Escherichia coli strain. An LS mutant (M143) was isolated, which accumulated very low levels of glycogen compared to the WT recombinant AGPase, but maintained normal catalytic activity when assayed under saturating conditions. Sequence analysis revealed that M143 has a single amino acid change, V463I, which lies adjacent to the C-terminus. This single mutation had no effect on the Km for ATP and Mg(2+), which were similar to the WT enzyme. The K(m) for glucose 1-P, however, was sixfold higher than the WT enzyme. These results suggest that the LS plays a role in binding glucose 1-P through its interaction with the SS.  相似文献   

13.
A cDNA encoding the simian-human immunodeficiency virus (SHIV 89.6p) Tat regulatory element protein was fused to the c-terminus of the cholera toxin B subunit gene (ctxB-tat) and introduced into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation methods. The fusion gene was detected in the genomic DNA of transformed potato leaf cells by PCR DNA amplification. Synthesis and assembly of the CTB-Tat fusion protein into oligomeric structures of pentamer size was detected in transformed tuber extracts by immunoblot analysis. The binding of CTB-Tat fusion protein pentamers to intestinal epithelial cell membrane glycolipid receptors was quantified by G(M1)-ganglioside enzyme-linked immunosorbent assay (G(M1)-ELISA). Based on the ELISA results, CTB-Tat fusion protein made up about 0.005-0.007% of total soluble tuber protein or approximately 4.6mg per 100g potato tuber tissue. The synthesis and assembly of CTB-Tat monomers into biologically active oligomers in transformed potato tuber tissues demonstrates the feasibility of using viral pathogen antigens synthesized in edible plants for mucosal immunization against HIV-1 infection.  相似文献   

14.
The allosteric enzyme ADP-Glc pyrophosphorylase (AGPase) catalyzes the synthesis of ADP-Glc, a rate-limiting step in starch synthesis. Plant AGPases are heterotetramers, most of which are activated by 3-phosphoglyceric acid (3-PGA) and inhibited by phosphate. The objectives of these studies were to test a hypothesis concerning the relative roles of the two subunits and to identify regions in the subunits important in allosteric regulation. We exploited an Escherichia coli expression system and mosaic AGPases composed of potato (Solanum tuberosum) tuber and maize (Zea mays) endosperm subunit fragments to pursue this objective. Whereas potato and maize subunits have long been separated by speciation and evolution, they are sufficiently similar to form active mosaic enzymes. Potato tuber and maize endosperm AGPases exhibit radically different allosteric properties. Hence, comparing the kinetic properties of the mosaics to those of the maize endosperm and potato tuber AGPases has enabled us to identify regions important in regulation. The data herein conclusively show that both subunits are involved in the allosteric regulation of AGPase. Alterations in the small subunit condition drastically different allosteric properties. In addition, extent of 3-PGA activation and extent of 3-PGA affinity were found to be separate entities, mapping to different regions in both subunits.  相似文献   

15.
马铃薯AGPase大小亚基功能研究   总被引:2,自引:1,他引:1  
马铃薯 1,6 二磷酸腺苷葡萄糖焦磷酸化酶 (AGPase)是淀粉合成的限速酶 ,该酶有大、小两个亚基形成异源四聚体。总结了迄今为止已克隆的马铃薯AGPase大、小亚基编码基因、小亚基和底物结合位点的识别、以及大亚基异构调控因子结合位点识别的研究结果 ,提出了大小亚基非自然重组是深入研究AGPase的途径 ,建立体内条件下高效可靠代谢调控研究手段是AGPase研究所必需的。  相似文献   

16.
We have previously described the hMYH cDNA and genomic clones (M. M. Slupska et al., J. Bacteriol. 178:3885-3892, 1996). Here, we report that the enzyme expressed from an hMYH cDNA clone in Escherichia coli complements the mutator phenotype in a mutY mutant and can remove A from an A. 8-hydroxydeoxyguanine mismatch and to a lesser extent can remove A from an A. G mismatch in vitro.  相似文献   

17.
18.
19.
Most of the ADP-glucose pyrophosphorylases from different sources are stable to a heat treatment. We found that in the potato (Solanum tuberosum L.) tuber enzyme, the intermolecular disulfide bridge located between Cys12 of the small subunits is responsible for the stability at 60 degrees C. When this unique disulfide bond is cleaved the enzyme is stable up to 40 degrees C. Mutation of Cys12 in the small subunit into either Ala or Ser yielded enzymes with stability similar to the reduced form of the wild type. Concurrently, the enzyme with a truncated small subunit on the N-terminal was stable only up to 40 degrees C. Thus, the N-terminal is important for the stability of the enzyme because of the presence of a disulfide bond.  相似文献   

20.
Taylor MA  Ross HA  McRae D  Wright F  Viola R  Davies HV 《Planta》2001,213(2):258-264
Polymerase chain reaction-based methodology was used to obtain a cDNA clone (MAL2) from potato (Solanum tuberosum L.) with the sequence characteristics of an alpha-glucosidase. Phylogenetic analysis of the deduced polypeptide encoded by this cDNA demonstrated that the most similar sequences were alpha-glucosidases and alpha-xylosidases of plant origin. The MAL2 cDNA was expressed in Escherichia coli and the recombinant MAL2 protein was affinity-purified. MAL2 catalysed the hydrolysis of a range of maltooligomers and p-nitrophenyl-alpha-D-glucopyranoside with a pH optimum of 5.5-5.7. The substrate with the lowest Km value was maltotetraose (3.7 mM). The MAL2 expression product did not catalyse the hydrolysis of xyloglucan oligosaccharides, p-nitrophenyl-alpha-D-xylopyranoside or gelatinised potato starch. MAL2 was down-regulated in transgenic potato plants using an antisense approach. In several independent transgenic antisense lines, MAL2 expression was severely down-regulated. Despite this, no decrease in total extractable alpha-glucosidase and alpha-xylosidase activity could be detected in tissues from the transgenic plants. In glasshouse trials, no visible phenotype, change in tuber yield or carbohydrate content was associated with MAL2 down-regulation. The implications of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号