首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The molecular basis of the skipping of constitutive exons in many messenger RNAs is not fully understood. A well-studied example is exon 9 of the human cystic fibrosis transmembrane conductance regulator gene (CFTR), in which an abbreviated polypyrimidine tract between the branch point A and the 3' splice site is associated with increased exon skipping and disease. However, many exons, both in CFTR and in other genes and have short polypyrimidine tracts in their 3' splice sites, yet they are not skipped. Inspection of the 5' splice sites immediately up- and downstream of exon 9 revealed deviations from consensus sequence, so we hypothesized that this exon may be inherently vulnerable to skipping. To test this idea, we constructed a CFTR minigene and replicated exon 9 skipping associated with the length of the polypyrimidine tract upstream of exon 9. We then mutated the flanking 5' splice sites and determined the effect on exon skipping. Conversion of the upstream 5' splice site to consensus by replacing a pyrimidine at position +3 with a purine resulted in increased exon skipping. In contrast, conversion of the downstream 5' splice site to consensus by insertion of an adenine at position +4 resulted in a substantial reduction in exon 9 skipping, regardless of whether the upstream 5' splice site was consensus or not. These results suggested that the native downstream 5' splice site plays an important role in CFTR exon 9 skipping, a hypothesis that was supported by data from sheep and mouse genomes. Although CFTR exon 9 in sheep is preceded by a long polypyrimidine tract (Y(14)), it skips exon 9 in vivo and has a nonconsensus downstream 5' splice site identical to that in humans. On the other hand, CFTR exon 9 in mice is preceded by a short polypyrimidine tract (Y(5)) but is not skipped in vivo. Its downstream 5' splice site differs from that in humans by a 2-nt insertion, which, when introduced into the human CFTR minigene, abolished exon 9 skipping. Taken together, these observations place renewed emphasis on deviations at 5' splice sites in nucleotides other than the invariant GT, particularly when such changes are found in conjunction with other altered splicing sequences, such as a shortened polypyrimidine tract. Thus, careful inspection of entire 5' splice sites may identify constitutive exons that are vulnerable to skipping.  相似文献   

3.
4.
Interactions at the 3' end of the intron initiate spliceosome assembly and splice site selection in vertebrate pre-mRNAs. Multiple factors, including U1 small nuclear ribonucleoproteins (snRNPs), are involved in initial recognition at the 3' end of the intron. Experiments were designed to test the possibility that U1 snRNP interaction at the 3' end of the intron during early assembly functions to recognize and define the downstream exon and its resident 5' splice site. Splicing precursor RNAs constructed to have elongated second exons lacking 5' splice sites were deficient in spliceosome assembly and splicing activity in vitro. Similar substrates including a 5' splice site at the end of exon 2 assembled and spliced normally as long as the second exon was less than 300 nucleotides long. U2 snRNPs were required for protection of the 5' splice site terminating exon 2, suggesting direct communication during early assembly between factors binding the 3' and 5' splice sites bordering an exon. We suggest that exons are recognized and defined as units during early assembly by binding of factors to the 3' end of the intron, followed by a search for a downstream 5' splice site. In this view, only the presence of both a 3' and a 5' splice site in the correct orientation and within 300 nucleotides of one another will stable exon complexes be formed. Concerted recognition of exons may help explain the 300-nucleotide-length maximum of vertebrate internal exons, the mechanism whereby the splicing machinery ignores cryptic sites within introns, the mechanism whereby exon skipping is normally avoided, and the phenotypes of 5' splice site mutations that inhibit splicing of neighboring introns.  相似文献   

5.
Branch point selection in alternative splicing of tropomyosin pre-mRNAs.   总被引:21,自引:7,他引:14  
The rat tropomyosin 1 gene gives rise to two mRNAs encoding rat fibroblast TM-1 and skeletal muscle beta-tropomyosin via an alternative splicing mechanism. The gene is comprised of 11 exons. Exons 1 through 5 and exons 8 and 9 are common to all mRNAs expressed from this gene. Exons 6 and 11 are used in fibroblasts as well as smooth muscle whereas exons 7 and 10 are used exclusively in skeletal muscle. In the present studies we have focused on the mutually exclusive internal alternative splice choice involving exon 6 (fibroblast-type splice) and exon 7 (skeletal muscle-type splice). To study the mechanism and regulation of alternative splice site selection we have characterized the branch points used in processing of the tropomyosin pre-mRNAs in vitro using nuclear extracts obtained from HeLa cells. Splicing of exon 5 to exon 6 (fibroblast-type splice) involves the use of three branch points located 25, 29, and 36 nucleotides upstream of the 3' splice site of exon 6. Splicing of exon 6 (fibroblast-type splice) or exon 7 (skeletal muscle type-splice) to exon 8 involves the use of the same branch point located 24 nucleotides upstream of this shared 3' splice site. In contrast, the splicing of exon 5 to exon 7 (skeletal muscle-type splice) involves the use of three branch sites located 144, 147 and 153 nucleotides, upstream of the 3' splice site of exon 7. In addition, the pyrimidine content of the region between these unusual branch points and the 3' splice site of exon 7 was found to be greater than 80%. These studies raise the possibility that the use of branch points located a long distance from a 3' splice site may be an essential feature of some alternatively spliced exons. The possible significance of these unusual branch points as well as a role for the polypyrimidine stretch in intron 6 in splice site selection are discussed.  相似文献   

6.
TIA-1 has recently been shown to activate splicing of specific pre-mRNAs transcribed from transiently transfected minigenes, and of some 5' splice sites in vitro, but has not been shown to activate splicing of any endogenous pre-mRNA. We show here that overexpression of TIA-1 or the related protein TIAR has little effect on splicing of several endogenous pre-mRNAs containing alternative exons, but markedly activates splicing of some normally rarely used alternative exons on the TIA-1 and TIAR pre-mRNAs. These exons have weak 5' splice sites followed by U-rich stretches. When the U-rich stretch following the 5' splice site of a TIA-1 alternative exon was deleted, TIAR overexpression induced use of a cryptic 5' splice site also followed by a U-rich stretch in place of the original splice site. Using in vitro splicing assays, we have shown that TIA-1 is directly involved in activating the 5' splice sites of the TIAR alternative exons. Activation requires a downstream U-rich stretch of at least 10 residues. Our results confirm that TIA-1 activates 5' splice sites followed by U-rich sequences and show that TIAR exerts a similar activity. They suggest that both proteins may autoregulate their expression at the level of splicing.  相似文献   

7.
8.
The rat beta-tropomyosin (beta-TM) gene encodes both skeletal muscle beta-TM mRNA and nonmuscle TM-1 mRNA via alternative RNA splicing. This gene contains eleven exons: exons 1-5, 8, and 9 are common to both mRNAs; exons 6 and 11 are used in fibroblasts as well as in smooth muscle, whereas exons 7 and 10 are used in skeletal muscle. Previously we demonstrated that utilization of the 3' splice site of exon 7 is blocked in nonmuscle cells. In this study, we use both in vitro and in vivo methods to investigate the regulation of the 5' splice site of exon 7 in nonmuscle cells. The 5' splice site of exon 7 is used efficiently in the absence of flanking sequences, but its utilization is suppressed almost completely when the upstream exon 6 and intron 6 are present. The suppression of the 5' splice site of exon 7 does not result from the sequences at the 3' end of intron 6 that block the use of the 3' splice site of exon 7. However, mutating two conserved nucleotides GU at the 5' splice site of exon 6 results in the efficient use of the 5' splice site of exon 7. In addition, a mutation that changes the 5' splice site of exon 7 to the consensus U1 snRNA binding site strongly stimulates the splicing of exon 7 to the downstream common exon 8. Collectively, these studies demonstrate that 5' splice site competition is responsible, in part, for the suppression of exon 7 usage in nonmuscle cells.  相似文献   

9.
An alternative-exon database and its statistical analysis   总被引:19,自引:0,他引:19  
We compiled a comprehensive database of alternative exons from the literature and analyzed them statistically. Most alternative exons are cassette exons and are expressed in more than two tissues. Of all exons whose expression was reported to be specific for a certain tissue, the majority were expressed in the brain. Whereas the length of constitutive exons follows a normal distribution, the distribution of alternative exons is skewed toward smaller ones. Furthermore, alternative-exon splice sites deviate more from the consensus: their 3' splice sites are characterized by a higher purine content in the polypyrimidine stretch, and their 5' splice sites deviate from the consensus sequence mostly at the +4 and +5 positions. Furthermore, for exons expressed in a single tissue, adenosine is more frequently used at the -3 position of the 3' splice site. In addition to the known AC-rich and purine-rich exonic sequence elements, sequence comparison using a Gibbs algorithm identified several motifs in exons surrounded by weak splice sites and in tissue-specific exons. Together, these data indicate a combinatorial effect of weak splice sites, atypical nucleotide usage at certain positions, and functional enhancers as an important contribution to alternative-exon regulation.  相似文献   

10.
Artificial neural networks have been combined with a rule based system to predict intron splice sites in the dicot plant Arabidopsis thaliana. A two step prediction scheme, where a global prediction of the coding potential regulates a cutoff level for a local prediction of splice sites, is refined by rules based on splice site confidence values, prediction scores, coding context and distances between potential splice sites. In this approach, the prediction of splice sites mutually affect each other in a non-local manner. The combined approach drastically reduces the large amount of false positive splice sites normally haunting splice site prediction. An analysis of the errors made by the networks in the first step of the method revealed a previously unknown feature, a frequent T-tract prolongation containing cryptic acceptor sites in the 5' end of exons. The method presented here has been compared with three other approaches, GeneFinder, Gene-Mark and Grail. Overall the method presented here is an order of magnitude better. We show that the new method is able to find a donor site in the coding sequence for the jelly fish Green Fluorescent Protein, exactly at the position that was experimentally observed in A.thaliana transformants. Predictions for alternatively spliced genes are also presented, together with examples of genes from other dicots, monocots and algae. The method has been made available through electronic mail (NetPlantGene@cbs.dtu.dk), or the WWW at http://www.cbs.dtu.dk/NetPlantGene.html  相似文献   

11.
12.
A two-site model for the binding of U1 small nuclear ribonucleoprotein particle (U1 snRNP) was tested in order to understand how exon partners are selected in complex pre-mRNAs containing alternative exons. In this model, it is proposed that two U1 snRNPs define a functional unit of splicing by base pairing to the 3' boundary of the downstream exon as well as the 5' boundary of the intron to be spliced. Three-exon substrates contained the alternatively spliced exon 4 (E4) region of the preprotachykinin gene. Combined 5' splice site mutations at neighboring exons demonstrate that weakened binding of U1 snRNP at the downstream site and improved U1 snRNP binding at the upstream site result in the failure to rescue splicing of the intron between the mutations. These results indicate the stringency of the requirement for binding a second U1 snRNP to the downstream 5' splice site for these substrates as opposed to an alternative model in which a certain threshold level of U1 snRNP can be provided at either site. Further support for the two-site model is provided by single-site mutations in the 5' splice site of the third exon, E5, that weaken base complementarity to U1 RNA. These mutations block E5 branchpoint formation and, surprisingly, generate novel branchpoints that are specified chiefly by their proximity to a cryptic 5' splice site located at the 3' terminus of the pre-mRNA. The experiments shown here demonstrate a true stimulation of 3' splice site activity by the downstream binding of U1 snRNP and suggest a possible mechanism by which combinatorial patterns of exon selection are achieved for alternatively spliced pre-mRNAs.  相似文献   

13.
We have developed a computer program which predicts internal exons from naive genomic sequence data and which will run on any IBM-compatible 80286 (or higher) computer. The algorithm searches a sequence for 'spliceable open reading frames' (SORFs), which are open reading frames bracketed by suitable splice-recognition sequences, and then analyzes the region for codon usage. Potential exons are stratified according to the reliability of their prediction, from confidence levels 1 to 5. The program is designed to predict internal exons of length greater than 60 nucleotides. In an analysis of 116 genes of a training set, 384 out of 441 such exons (87.1%) are identified, with 280 (63.5%) of predictions matching the true exon exactly (at both 5' and 3' splice junctions and in the correct reading frame), and with 104 (23.6%) exons matching partially. In a similar analysis of 14 genes in a test set unrelated to the genes used to generate the parameters of the program, 70 out of 80 internal exons greater than 60 bp in length are identified (87.5%), with 47 completely and 23 partially matched. SORFs that partially match true internal exons share at least one splice junction with the exon, or share both splice junctions but are interpreted in an incorrect reading frame. Specificity (the percentage of SORFs that correspond to true exons) varies from 91% at confidence level 1 to 16% at confidence level 5, with an overall specificity of 35-40%. The output displays nucleotide position, confidence level, reading frame phase at the 5' and 3' ends, acceptor and donor sequences and scoring statistics and also gives an amino acid translation of the potential exon. SORFIND compares favourably with other programs currently used to predict protein-coding regions.  相似文献   

14.
We have carried out a systematic analysis of the proteins that interact with specific intron and exon sequences during each stage of mammalian spliceosome assembly. This was achieved by site-specifically labeling individual nucleotides within the 5' and 3' splice sites, the branchpoint sequence (BPS), or the exons with 32P and identifying UV-cross-linked proteins in the E, A, B, or C spliceosomal complex. Significantly, two members of the SR family of splicing factors, which are known to promote E-complex assembly, cross-link within exon sequences to a region approximately 25 nucleotides upstream from the 5' splice site. At the 5' splice site, cross-linking of the U5 small nuclear ribonucleoprotein particle protein, U5(200), was detected in both the B and C complexes. As observed in yeast cells, U5(200), also cross-links to intron/exon sequences at the 3' splice site in the C complex and may play a role in aligning the 5' and 3' exons for ligation. With label at the branch site, we detected three distinct proteins, designated BPS72,BpS70, and BPS56, which replace one another in the E, A, and C complexes. Another dynamic exchange was detected with pre-mRNA labeled at the AG dinucleotide of the 3' splice site. In this case, a protein, AG100,cross-links in the A complex and is replaced by another protein, AG75, in the C complex. The observation that these proteins are specifically associated with critical pre-mRNA sequence elements in functional complexes at different stages of spliceosome assembly implicates roles for these factors in key recognition events during the splicing pathway.  相似文献   

15.
Use of RNase H and primer extension to analyze RNA splicing.   总被引:5,自引:2,他引:3       下载免费PDF全文
A new method for the characterization of pre-mRNA splicing products is presented. In this method RNA molecules are hybridized to an oligodeoxynucleotide complementary to exon sequences upstream of a given 5' splice site, and the RNA strands of the resulting RNA:DNA hybrids are cleaved by RNase H. The cleaved RNAs are then subjected to primer extension using a 32P-labelled primer complementary to exon sequences downstream of an appropriate 3' splice site. Since the primer extension products all terminate at the site of RNase H cleavage, their lengths are indicative of the splice sites utilized. The method simplifies the study of the processing of complex pre-mRNAs by allowing the splicing events between any two exons to be analyzed. We have used this approach to characterize the RNAs generated by expression of the rat tropomyosin 1 (Tm 1) gene in various rat tissues and in cultured cells after transient transfection. The results demonstrate that this method is suitable for the analysis of alternative RNA processing in vivo.  相似文献   

16.
Alternative splicing is an important regulatory mechanism to create protein diversity. In order to elucidate possible regulatory elements common to neuron specific exons, we created and statistically analysed a database of exons that are alternatively spliced in neurons. The splice site comparison of alternatively and constitutively spliced exons reveals that some, but not all alternatively spliced exons have splice sites deviating from the consensus sequence, implying diverse patterns of regulation. The deviation from the consensus is most evident at the -3 position of the 3' splice site and the +4 and -3 position of the 5' splice site. The nucleotide composition of alternatively and constitutively spliced exons is different, with alternatively spliced exons being more AU rich. We performed overlapping k-tuple analysis to identify common motifs. We found that alternatively and constitutively spliced exons differ in the frequency of several trinucleotides that cannot be explained by the amino acid composition and may be important for splicing regulation.  相似文献   

17.
18.
The murine histocompatibility class I genes, H-2 Kb and Kk, display considerable homology at their 3' ends. In fact, from exon 5 to the termination codon, only two nucleotides differ between the two genes, one at the 5' end and the other at the 3' end of intron 7. Despite this similarity, the gene products have distinctly different mol. wts as determined by SDS-PAGE. By constructing two hybrid genes, pC2 and pC4, we demonstrated that it is the cytoplasmic parts of the antigens (encoded by exons 6-8) which are responsible for the major difference in mol. wt. We have used site-directed mutagenesis to change the two nucleotides in intron 7 of the H-2 Kk gene to those present in the H-2 Kb gene. S1 nuclease mapping has been used to identify the actual splice site of the authentic Kb and Kk genes, the hybrid genes and the mutagenized genes. We have shown that it is the 3' nucleotide difference, nine nucleotides upstream of the 3' splice site, which causes the different excision of intron 7 of the Kb gene. The 5' nucleotide difference does not alter the splicing. The choice of branch points and 3' splice signals for intron 7 of five H-2 class I genes, is discussed.  相似文献   

19.
20.
The rat beta-tropomyosin gene encodes two tissue-specific isoforms that contain the internal, mutually exclusive exons 6 (nonmuscle/smooth muscle) and 7 (skeletal muscle). We previously demonstrated that the 3' splice site of exon 6 can be activated by introducing a 9-nt polyuridine tract at its 3' splice site, or by strengthening the 5' splice site to a U1 consensus binding site, or by joining exon 6 to the downstream common exon 8. Examination of sequences within exons 6 and 8 revealed the presence of two purine-rich motifs in exon 6 and three purine-rich motifs in exon 8 that could potentially represent exonic splicing enhancers (ESEs). In this report we carried out substitution mutagenesis of these elements and show that some of them play a critical role in the splice site usage of exon 6 in vitro and in vivo. Using UV crosslinking, we have identified SF2/ASF as one of the cellular factors that binds to these motifs. Furthermore, we show that substrates that have mutated ESEs are blocked prior to A-complex formation, supporting a role for SF2/ASF binding to the ESEs during the commitment step in splicing. Using pre-mRNA substrates containing exons 5 through 8, we show that the ESEs within exon 6 also play a role in cooperation between the 3' and 5' splice sites flanking this exon. The splicing of exon 6 to 8 (i.e., 5' splice site usage of exon 6) was enhanced with pre-mRNAs containing either the polyuridine tract in the 3' splice site or consensus sequence in the 5' splice site around exon 6. We show that the ESEs in exon 6 are required for this effect. However, the ESEs are not required when both the polyuridine and consensus splice site sequences around exon 6 were present in the same pre-mRNA. These results support and extend the exon-definition hypothesis and demonstrate that sequences at the 3' splice site can facilitate use of a downstream 5' splice site. In addition, the data support the hypothesis that ESEs can compensate for weak splice sites, such as those found in alternatively spliced exons, thereby providing a target for regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号