共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermodynamic parameters of the interaction of the two anthracyclines 13-dihydrodaunomycin and marcellomycin with calf thymus DNA were examined by equilibrium binding studies. Enthalpy and entropy changes of the binding of both drugs show salt dependence profiles that cannot be rationalized by the polyelectrolyte theory. This feature is common to other anthracycline compounds. The nucleotide sequence binding preferences of daunomycin, adriamycin, 13-dihydrodaunomycin and marcellomycin have been studied by monitoring the degree of protection from cleavage by restriction endonucleases of linearized pBR322. Differential protection of pBR322 DNA against the cleavage of Bgl I and Ava II suggests that these drugs recognize changes in the sequences near the enzyme recognition site. Alterations of the electrophoretic restriction pattern of pBR322 in the presence of anthracyclines are dependent on time and on concentration. These results are discussed in relation to the existence of nucleotide sequences with different affinity for these drugs. 相似文献
2.
The mechanism of activation of human Glu-plasminogen by fibrin-bound tissue-type plasminogen activator (t-PA) in a plasma environment or in a reconstituted system was characterized. A heterogeneous system was used, allowing the setting of experimental conditions as close as possible to the physiological fibrin/plasma interphase, and permitting the separate analysis of the products present in each of the phases as a function of time. The generation of plasmin was monitored both by spectrophotometric analysis and by radioisotopic analysis with a plasmin-selective chromogenic substrate and radiolabelled Glu-plasminogen respectively. Plasmin(ogen)-derived products were identified by SDS/PAGE followed by autoradiography and/or immunoblotting. When the activation was performed in a plasma environment, the products identified on the fibrin surface were Glu-plasmin (90%) and Glu-plasminogen (10%), whereas in the soluble phase only complexes between Glu-plasmin and its fast-acting inhibitor were detected. Identical results were obtained with a reconstituted system comprising solid-phase fibrin, t-PA, Glu-plasminogen and and alpha 2-antiplasmin. In contrast, when alpha 2-antiplasmin was omitted from the solution, Lys-plasmin was progressively generated on to the fibrin surface (30%) and released to the soluble phase. In the presence of alpha 2-antiplasmin or in plasma, the amount of active plasmin generated on the fibrin surface was lower than in the absence of the inhibitor: in a representative experiment the initial velocity of plasmin generation was 2.8 x 10(-3), 2.0 x 10(-3) and 1.8 x 10(-3) (delta A405/min) for 200 nM-plasminogen, 200 nM-plasminogen plus 100 nM-alpha 2-antiplasmin and native plasma respectively. Our results indicate that in plasma or in a reconstituted purified system containing plasminogen and alpha 2-antiplasmin at a ratio similar to that found in plasma (1) the activation pathway of native Glu-plasminogen proceeds directly to the formation of Glu-plasmin, (2) Lys-plasminogen is not an intermediate of the reaction and therefore (3) Lys-plasmin is not the final active product. However, in the absence of the inhibitor, Lys-plasmin and probably Lys-plasminogen, which is more readily activated to plasmin than is Glu-plasminogen, are generated as well. 相似文献
3.
K R Kranc G J Pyne L Tao T D Claridge D A Harris T A Cadoux-Hudson J J Turnbull C J Schofield J F Clark 《European journal of biochemistry》2000,267(24):7094-7101
Subarachnoid haemorrhage is often followed by haemolysis and concomitant oxidative stress, and is frequently complicated by pathological vasoconstriction or cerebral vasospasm. It is known that upregulation of haem oxygenase (HO-1) is induced by oxidative stress and results in release of biliverdin and bilirubin (BR), which are scavengers of reactive oxygen species (ROS). Here we report biomimetic studies aimed at modelling pathological conditions leading to oxidative degradation of BR. Oxidative degradation products of BR, formed by reaction with hydrogen peroxide (an ROS model system), demonstrated biological activity by stimulating oxygen consumption and force development in vascular smooth muscle from porcine carotid artery. Analogous biological activity was observed with vasoactive cerebrospinal fluid from subarachnoid haemorrhage patients. Three degradation products of BR were isolated: two were assigned as isomeric monopyrrole (C9H11N2O2) derivatives, 4-methyl-5-oxo-3-vinyl-(1, 5-dihydropyrrol-2-ylidene)acetamide and 3-methyl-5-oxo-4-vinyl-(1, 5-dihydropyrrol-2-ylidene)acetamide and the third was 4-methyl-3-vinylmaleimide (MVM), a previously isolated photodegradation product of biliverdin. Possible mechanisms of oxidative degradation of BR are discussed. Tentative assignment of these structures in the cerebrospinal fluid (CSF) of cerebral vasospasm patients has been made. It is proposed that one or more of the degradation products of biliverdin or bilirubin are involved in complications such as vasospasm and or pathological vasoconstriction associated with haemorrhage. 相似文献
4.
Specific incorporation of glycine into bacterial lipopolysaccharide. Novel function of specific transfer ribonucleic acids. 下载免费PDF全文
A Gamian A Krzyzaniak M Z Barciszewska I Gawroska J Barciszewski 《Nucleic acids research》1991,19(21):6021-6025
It has been found that the bacterial endotoxins (lipopolysaccharides, LPSs) contain some amino acids and glycine is the most abundant amino acid in the polysaccharide core preparations of LPSs of gram-negative bacteria. Until now nothing was known about the mechanism of amino acid incorporation into the lipopolysaccharide core. We found that one out of three glycyl-tRNAs(Gly) from Escherichia coli is the donor of amino acid and is the substrate for a putative aminoacyl-tRNA:LPS transferase. We have isolated, purified this tRNA and determined its nucleotide sequence to be major E.coli tRNA(3Gly). This tRNA(Gly) (anticodon GCC) conserved the tRNA structural features. The assay for determination of the specific incorporation of glycine into the lipopolysaccharide was also invented and described. 相似文献
5.
Enhanced resistance to nuclease degradation of nucleic acids complexed to asialoglycoprotein-polylysine carriers. 总被引:2,自引:0,他引:2 下载免费PDF全文
H C Chiou M V Tangco S M Levine D Robertson K Kormis C H Wu G Y Wu 《Nucleic acids research》1994,22(24):5439-5446
We have previously shown targeting of DNA to hepatocytes using an asialoorosomucoid-polylysine (AsOR-PL) carrier system. The AsOR-PL conjugate condenses DNA and facilitates entry via specific receptor-ligand interactions. In these studies, our objective was to determine if AsOR-PL conjugates protect bound DNA from nuclease attack. Double-stranded plasmid or single-stranded oligonucleotide DNA, alone or bound to conjugate, was incubated under conditions mimicking those encountered during in vitro and in vivo transfections. The results showed that complexed DNA was effectively protected from degradation by serum nucleases. Degradation of single-stranded oligonucleotides was inhibited 3- to 6-fold in serum during 5 hours of incubation. For complexed plasmids, greater than 90% remained full-length during 1.5 and 3 hour incubations in serum or culture medium containing 10% serum, respectively. Uncomplexed plasmid was completely degraded after 15 minutes in serum or 60 minutes in medium. In cell lysates, the conjugate was not effective in inhibiting endonuclease activity; plasmids were readily converted from supercoiled to open circular and linear forms. However, the resultant nicked forms were substantially protected from further degradation during one hour of incubation compared to plasmid alone. Under all conditions complexed DNA did not readily dissociate from the conjugate. Overall, for both single and double-stranded DNA, AsOR-PL conjugates conferred substantial protection from nuclease degradation. 相似文献
6.
N Yadav S Kumar T Marlowe A K Chaudhary R Kumar J Wang J O'Malley P M Boland S Jayanthi T K S Kumar N Yadava D Chandra 《Cell death & disease》2015,6(11):e1969
Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.Cancer cells favor glycolysis over oxidative phosphorylation (OXPHOS) to meet their energy demand,1 suggesting that they have adapted to survive and proliferate in the absence of fully functional mitochondria. Research in the last two decades demonstrates that, in addition to generation of energy, mitochondria including cancer cell mitochondria regulate multiple cellular signaling pathways encompassing cell death, proliferation, cellular redox balance, and metabolism.2, 3 As cancer cells possess defects in these pathways that provide an opportunity to target this organelle for therapeutic purposes. Subsequently, several agents have been developed that target cancer cell mitochondria to induce apoptosis, a cell death pathway, and eradicate cancer cells.4, 5 Cancer cell mitochondria harbor several proapoptotic proteins including cytochrome c, which is released from mitochondria in response to anticancer agents and activates caspases to execute apoptosis.5, 6 Thus, anticancer agents that induce cytochrome c release from mitochondria will be beneficial for induction of apoptosis in cancer cells. Indeed, several such agents have been developed, which include inhibitors targeting prosurvival Bcl-2 family members including Bcl-2, Bcl-xL, and Mcl-1.7, 8, 9 Unfortunately, cancer cells have developed multiple mechanisms to resist or overcome cytochrome c release and evade apoptosis.Although underlying mechanisms of cancer cell resistance to apoptosis are still undefined, the OXPHOS defect is known to be one of the key reasons for the attenuation of apoptosis in cancer cells.10, 11 Multiple lines of evidence support the notion that cancer cell survival and proliferation commonly associate with an OXPHOS defect in cancer.1, 12 Active OXPHOS is an efficient form of respiration but also regulates apoptosis through the OXPHOS complexes. The OXPHOS system consists of five multimeric protein complexes (I, II, III, IV, and V). The components of these complexes (except complex-II) are encoded by both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA).12, 13 Thus mutations, deletions, and translocations in either mtDNA or nDNA can potentially result in OXPHOS deficiency. MtDNA mutations associate with inhibition of apoptosis, induction of angiogenesis, invasion and metastasis of various types of cancer.3, 12, 14 Thus, mtDNA could potentially be an important target to restore cell death in cancer and attenuate cancer growth. Therefore, there is an urgent need to investigate the role of OXPHOS in the molecular mechanisms underlying cancer cell death.We investigated the effects of several anticancer agents of different classes including DNA-damaging agents (etoposide and doxorubicin), protein kinase inhibitors (staurosporine and sorafenib), mitotic inhibitor (taxol), ER stressor/inhibitor of Ca2+-ATPases (thapsigargin), and histone deacetylase (HDAC) inhibitor (apicidin) on mtDNA. We also determined the impact of OXPHOS defects on apoptosis induction by these agents. Although most anticancer agents induced caspase activation and apoptosis, the mtDNA level was elevated maximally by etoposide and it was not modulated by a caspase inhibitor but reduced by an autophagy inhibitor. Induction of mtDNA is associated with increased reactive oxygen species (ROS) production and elevated mitochondrial mass. Pharmacologic inhibition of OXPHOS complexes reduced the etoposide-induced elevation in mtDNA, suggesting the involvement of these complexes in etoposide-induced apoptosis. Together, we define the impact of mtDNA and OXPHOS function on mitochondrial apoptosis, which has significance in restoring cancer cell apoptosis for therapeutic purposes. 相似文献
7.
Oxidative stress-mediated apoptosis. The anticancer effect of the sesquiterpene lactone parthenolide
The sesquiterpene lactone parthenolide, the principal active component in medicinal plants, has been used conventionally to treat migraines, inflammation, and tumors. However, the antitumor effects of parthenolide and the mechanism(s) involved are poorly understood. We found that parthenolide effectively inhibits hepatoma cell growth in a tumor cell-specific manner and triggers apoptosis of hepatoma cells. Parthenolide triggered apoptosis in invasive sarcomatoid hepatocellular carcinoma cells (SH-J1) as well as in other ordinary hepatoma cells at 5-10 microm concentrations and arrested the cell growth (at G(2)/M) at sublethal concentrations (1-3 microm). During parthenolide-induced apoptosis, depletion of glutathione, generation of reactive oxygen species, reduction of mitochondrial transmembrane potential, activation of caspases (caspases-7, -8, and -9), overexpression of GADD153 (an oxidative stress or anticancer agent inducible gene), and subsequent apoptotic cell death was observed. This induced apoptosis could be effectively inhibited or abrogated by an antioxidant N-acetyl-l-cysteine, whereas l-buthionine-(S,R)-sulfoximine enhanced it. Furthermore, stable overexpression of GADD153 sensitized the cells to apoptosis induced by parthenolide, and this susceptibility could be reversed by transfection with an antisense to GADD153. Parthenolide did not alter the expression of Bcl-2 or Bcl-X(L) proteins during apoptosis in hepatoma cells. Oxidative stress may contribute to parthenolide-induced apoptosis and to GADD153 overexpression in a glutathione-sensitive manner. The sensitivity of tumor cells to parthenolide appears to result from the low expression level of the multifunctional detoxification enzyme glutathione S-transferase pi. Finally, parthenolide and its derivatives may be useful chemotherapeutic agents to treat these invasive cancers. 相似文献
8.
Oxidative degradation of haemoglobin by nitrosobenzene in the erythrocyte. 总被引:2,自引:0,他引:2 下载免费PDF全文
Substitutions on the benzene ring of nitrosobenzene did not have the same effect on oxidative haemolysis as substitutions on phenylhydrazine. We previously found that the haemolytic effect of arylhydrazines paralleled their oxidative conversion into ligands of ferrihaemoglobin. In contrast, although most substituted nitrosobenzenes that are ligands of ferrohaemoglobin caused haemolysis and most that are not ligands failed to cause nitrosoarenes appeared to be related more closely to the ease of their reduction to arylhydroxylamines than to their properties as ligands. We propose a mechanism of oxidative degradation whereby the cyclic formation of phenylhydroxylamine from nitrosobenzene within an erythrocyte leads to the accumulation of H2O2, which then reacts with ferrohaemoglobin to initiate the oxidative cleavage of haem. The posulated active intermediate in this reaction is the same as that previously proposed in the oxidative degradation of haemoglobin by phenylhydrzine and in the coupled oxidation of ascorbic acid and haemoglobin. 相似文献
9.
Alcaligenes sp. strain CC1 is able to grow on several alpha-chlorinated aliphatic acids (2-chlorobutyrate, 2-chloropropionate, and chloroacetate), as well as on the beta-chlorinated four-carbon aliphatic acids trans-3-chlorocrotonate, cis-3-chlorocrotonate, and 3-chlorobutyrate as sole carbon and energy sources. Dehalogenation of alpha-chlorinated acids could be measured by using resting cells grown on all the different carbon sources, whereas dehalogenation of beta-chlorinated four-carbon acids could be detected only by using resting cells grown on four-carbon compounds. A constitutive 2-haloacid dehalogenase, which did not show any activity with beta-chlorinated four-carbon acids, was detected in cell extracts. Cell extracts of crotonate-grown cells additionally contained a beta-haloacid dechlorination activity, which acted on trans-3-chlorocrotonate, cis-3-chlorocrotonate, and 3-chlorobutyrate and was strictly dependent on coenzyme A, ATP, and Mg2+. Dechlorination of beta-chlorinated four-carbon acids takes place after activation of the acids to their coenzyme A derivatives and seems to be independent of the constitutive 2-haloacid dehalogenase. 相似文献
10.
1. RNA degradation in isolated rat hepatocytes was measured as the release of radioactive cytidine from fed rats previously labeled in vivo for 60 h with [6-14C]orotic acid. Rates were determined from the linear accumulation of [14C]cytidine between 30 and 120 min of incubation in the presence of 0.5 mM unlabeled cytidine to suppress reutilization. 2. In the absence of amino acids, rates of RNA degradation in isolated hepatocytes averaged 3.97%/h. A complete mixture of amino acids added at 10-20 times normal plasma concentration inhibited RNA degradation by 65-70%. However, at physiological concentrations of amino acids, RNA degradation in isolated rat hepatocytes was less responsive as compared to perfused rat livers. 3. Numerous and large autophagic vacuoles at various stages of digestion were identified throughout the cytoplasm of isolated hepatocytes after 2 h of incubation in the absence of amino acids. The addition of amino acids at 20 times normal plasma concentration abolished almost completely the appearance of autophagic vacuoles. Furthermore, prophylamine, which accumulates in lysosomes, suppressed RNA degradation by 65% and the inhibitor of autophagic vacuole formation, 3-methyladenine, inhibited 70-80% of the degradation. Taken together, these results strongly suggest a contribution of the lysosomal system in the increase of RNA degradation rates in isolated rat hepatocytes. 相似文献
11.
Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. 总被引:18,自引:0,他引:18
The ligninolytic fungus Phanerochaete chrysosporium oxidized phenanthrene and phenanthrene-9,10-quinone (PQ) at their C-9 and C-10 positions to give a ring-fission product, 2,2'-diphenic acid (DPA), which was identified in chromatographic and isotope dilution experiments. DPA formation from phenanthrene was somewhat greater in low-nitrogen (ligninolytic) cultures than in high-nitrogen (nonligninolytic) cultures and did not occur in uninoculated cultures. The oxidation of PQ to DPA involved both fungal and abiotic mechanisms, was unaffected by the level of nitrogen added, and was significantly faster than the cleavage of phenanthrene to DPA. Phenanthrene-trans-9,10-dihydrodiol, which was previously shown to be the principal phenanthrene metabolite in nonligninolytic P. chrysosporium cultures, was not formed in the ligninolytic cultures employed here. These results suggest that phenanthrene degradation by ligninolytic P. chrysosporium proceeds in order from phenanthrene----PQ----DPA, involves both ligninolytic and nonligninolytic enzymes, and is not initiated by a classical microsomal cytochrome P-450. The extracellular lignin peroxidases of P. chrysosporium were not able to oxidize phenanthrene in vitro and therefore are also unlikely to catalyze the first step of phenanthrene degradation in vivo. Both phenanthrene and PQ were mineralized to similar extents by the fungus, which supports the intermediacy of PQ in phenanthrene degradation, but both compounds were mineralized significantly less than the structurally related lignin peroxidase substrate pyrene was. 相似文献
12.
Tanihata Y Watanabe M Mitsukura K Maruyama K 《Bioscience, biotechnology, and biochemistry》2012,76(4):838-840
The 4-hydroxyacetophenone assimilating bacterium Arthrobacter sp. TGJ4 was isolated from a soil sample. The resting cell reaction suggested that the strain cleaved 4-hydroxyacetophenone and its 3-methoxy derivative to the corresponding carboxylic acids and formaldehyde. Some properties of the enzyme catalyzing the cleavage reaction were examined. 相似文献
13.
Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids 总被引:1,自引:0,他引:1
Sousa DZ Pereira MA Stams AJ Alves MM Smidt H 《Applied and environmental microbiology》2007,73(4):1054-1064
Anaerobic long-chain fatty acid (LCFA)-degrading bacteria were identified by combining selective enrichment studies with molecular approaches. Two distinct enrichment cultures growing on unsaturated and saturated LCFAs were obtained by successive transfers in medium containing oleate and palmitate, respectively, as the sole carbon and energy sources. Changes in the microbial composition during enrichment were analyzed by denaturing gradient gel electrophoresis (DGGE) profiling of PCR-amplified 16S rRNA gene fragments. Prominent DGGE bands of the enrichment cultures were identified by 16S rRNA gene sequencing. A significant part of the retrieved 16S rRNA gene sequences was most similar to those of uncultured bacteria. Bacteria corresponding to predominant DGGE bands in oleate and palmitate enrichment cultures clustered with fatty acid-oxidizing bacteria within Syntrophomonadaceae and Syntrophobacteraceae families. A low methane yield, corresponding to 9 to 18% of the theoretical value, was observed in the oleate enrichment, and acetate, produced according to the expected stoichiometry, was not further converted to methane. In the palmitate enrichment culture, the acetate produced was completely mineralized and a methane yield of 48 to 70% was achieved from palmitate degradation. Furthermore, the oleate enrichment culture was able to use palmitate without detectable changes in the DGGE profile. However, the palmitate-specialized consortia degraded oleate only after a lag phase of 3 months, after which the DGGE profile had changed. Two predominant bands appeared, and sequence analysis showed affiliation with the Syntrophomonas genus. These bands were also present in the oleate enrichment culture, suggesting that these bacteria are directly involved in oleate degradation, emphasizing possible differences between the degradation of unsaturated and saturated LCFAs. 相似文献
14.
15.
Vijayakumar Halaburgi 《Biocatalysis and Biotransformation》2016,34(6):265-271
A dye-decolorizing bacterium was isolated from a coconut coir sample and identified as a new genus Kerstersia sp. by various biochemical tests and 16S rRNA gene sequencing. This bacterium was capable of degrading sulfonated azo dye Amaranth aerobically at 40?°C and pH 7.0. Tests conducted on intracellular crude enzyme extract identified an oxygen insensitive azoreductase. The optimum dye-decolorizing activity at pH 7.0 and 40?°C for the decolorization of dye was 0.091?U mL?1 (μmax 0.522?mg h?1). The Ks 104.51?μM?1 has been evaluated by plotting Lineweaver–Burk plot for the Amaranth dye. The dye degraded products were extracted and characterized by TLC, diazotization and Carbylamines test, which indicated that Amaranth was biotransformed into non-toxic aromatic metabolite without amine group. 相似文献
16.
17.
Bacterial degradation of 3,4,5-trimethoxyphenylacetic and 3-ketoglutaric acids. 总被引:1,自引:1,他引:1 下载免费PDF全文
When grown at the expense of 3,4,5-trimethoxyphenylacetic acid, a species of Arthrobacter readily oxidized 3,4-dihydroxy-5-methoxyphenylacetic acid, but other structurally related aromatic acids were oxidized only slowly. Cell extracts contained a dioxygenase for 3,4-dihydroxy-5-methoxyphenylacetate, and the corresponding trihydroxy acid, which was not attacked by the enzyme, inhibited oxidation of this ring-fission substrate. Cell suspensions did not release carbon dioxide from 3,4-[methoxyl-14C]dihydroxy-5-methoxyphenylacetate but accumulated 1 mol of methanol per mol of 3,4,5-trimethoxyphenylacetate oxidized. A cell extract converted the ring-fission substrate into stoichiometric amounts of pyruvate and acetoacetate, formed from 3-ketoglutarate by the action of an induced decarboxylase. 3-Ketoglutaric acid served as sole source of carbon for many soil isolates. 相似文献
18.
Andersen G Merico A Björnberg O Andersen B Schnackerz KD Dobritzsch D Piskur J Compagno C 《Nucleosides, nucleotides & nucleic acids》2006,25(9-11):991-996
The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides/antibiotics. During the last decade we have developed a yeast species, Saccharomyces kluyveri, as a model and tool to study the genes and enzymes of the pyrimidine catabolic pathway. In this report, we studied degradation of uracil and its putative degradation products in 38 yeasts and showed that this pathway was present in the ancient yeasts but was lost approximately 100 million years ago in the S. cerevisiae lineage. 相似文献
19.
Microbiological degradation of bile acids. The preparation of some hypothetical metabolites involved in cholic acid degradation. 下载免费PDF全文
1. To identify the intermediates involved in the degradation of cholic acid, the further degradation of (4R)-4-[4alpha-(2-carboxyethyl)-3aalpha-hexahydro-7abeta-methyl-5-oxoindan-1beta-yl]valeric acid (IVa) by Arthrobacter simplex was attempted. The organism could not utilize this acid but some hypothetical intermediate metabolities of compound (IVa) were prepared for later use as reference compounds. 2. The nor homologue (IIIa) and the dinor homologue (IIIb) of compound (IVa) were prepared by exposure of 3-oxo-24-nor-5beta-cholan-23-oic acid (I) and (20S)-3beta-hydroxy-5-pregnene-20-carboxylic acid (II) to A. simplex respectively. These compounds correspond to the respective metabolites produced by the shortening of the valeric acid side chain of compound (IVa) in a manner analogous to the conventional fatty acid alpha- and beta-oxidation mechanisms. Their structures were confirmed by partial synthesis. 3. The following authentic samples of reduction products of the oxodicarboxylic acids (IIIa), (IIIb) and (IVa) were also synthesized as hypothetical metabolities: (4R)-4-[3aalpha-hexahydro-5alpha-hydroxy-4alpha-(3-hydroxypropyl)-7abeta-methylindan-1beta-yl]valeric acid (Vb) and its nor homologue (VIIa) and dinor homologue (IXa);(4R)-4-[3Aaalpha-hexahydro-5alpha-hydroxy-4alpha-(3-hydroxypropyl)-7abeta-methylindan-1beta-yl]-pentan-1-ol (Vc); and their respective 5beta epimers (Ve), (VIIc), (IXc) and (Vf). 4. In connexion with the non-utilization of compound (IVa) by A. simplex, the possibility that not all the metabolites formed from cholic acid by a certain micro-organism can be utilized by the same organism is considered. 相似文献
20.
Ligation of oligonucleotides to nucleic acids or proteins via disulfide bonds. 总被引:2,自引:9,他引:2 下载免费PDF全文
We have developed general methods for joining together, via cleavable disulfide bonds, either two unprotected polynucleotides or a polynucleotide and a peptide or protein. To join two oligonucleotides, each is first converted to an adduct in which cystamine is joined to the 5'-terminal phosphate of the oligonucleotide by a phosphoramidate bond. The adducts are mixed and reduced with dithiothreitol. The dithiothreitol is then removed by dialysis. Oxidation by atmospheric oxygen occurs to yield the required dimer. To join an oligonucleotide to a cysteine-containing peptide or protein, the 5'-cystamine oligomer is first converted to a 2'-pyridyldisulfide adduct and then reacted with an excess of the peptide or protein. If the peptide does not contain a free cysteine residue, it is first treated with iminothiolane to introduce one or more sulfhydryl groups. We have used these procedures to join a 16 mer deoxynucleotide probe and MDV-1 RNA, a substrate of Q beta RNA polymerase. This adduct hybridizes with a complementary target DNA. We have also joined a 16mer probe to peroxidase and MDV-1 RNA to human IgG. The probe-peroxidase adduct maintains enzymatic activity and the MDV-1 RNA-IgG adduct binds to a complementary anti-IgG. 相似文献