首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
J M Jez  M E Bowman  J P Noel 《Biochemistry》2001,40(49):14829-14838
Chalcone synthase (CHS) belongs to the family of type III polyketide synthases (PKS) that catalyze formation of structurally diverse polyketides. CHS synthesizes a tetraketide by sequential condensation of three acetyl anions derived from malonyl-CoA decarboxylation to a p-coumaroyl moiety attached to an active site cysteine. Gly256 resides on the surface of the CHS active site that is in direct contact with the polyketide chain derived from malonyl-CoA. Thus, position 256 serves as an ideal target to probe the link between cavity volume and polyketide chain-length determination in type III PKS. Functional examination of CHS G256A, G256V, G256L, and G256F mutants reveals altered product profiles from that of wild-type CHS. With p-coumaroyl-CoA as a starter molecule, the G256A and G256V mutants produce notably more tetraketide lactone. Further restrictions in cavity volume such as that seen in the G256L and G256F mutants yield increasing levels of the styrylpyrone bis-noryangonin from a triketide intermediate. X-ray crystallographic structures of the CHS G256A, G256V, G256L, and G256F mutants establish that these substitutions reduce the size of the active site cavity without significant alterations in the conformations of the polypeptide backbones. The side chain volume of position 256 influences both the number of condensation reactions during polyketide chain extension and the conformation of the triketide and tetraketide intermediates during the cyclization reaction. These results viewed in conjunction with the natural sequence variation of residue 256 suggest that rapid diversification of product specificity without concomitant loss of substantial catalytic activity in related CHS-like enzymes can occur by site-specific evolution of side chain volume at position 256.  相似文献   

2.
The structure of amylosucrase from Neisseria polysaccharea in complex with beta-D-glucose has been determined by X-ray crystallography at a resolution of 1.66 A. Additionally, the structure of the inactive active site mutant Glu328Gln in complex with sucrose has been determined to a resolution of 2.0 A. The D-glucose complex shows two well-defined D-glucose molecules, one that binds very strongly in the bottom of a pocket that contains the proposed catalytic residues (at the subsite -1), in a nonstrained (4)C(1) conformation, and one that binds in the packing interface to a symmetry-related molecule. A third weaker D-glucose-binding site is located at the surface near the active site pocket entrance. The orientation of the D-glucose in the active site emphasizes the Glu328 role as the general acid/base. The binary sucrose complex shows one molecule bound in the active site, where the glucosyl moiety is located at the alpha-amylase -1 position and the fructosyl ring occupies subsite +1. Sucrose effectively blocks the only visible access channel to the active site. From analysis of the complex it appears that sucrose binding is primarily obtained through enzyme interactions with the glucosyl ring and that an important part of the enzyme function is a precise alignment of a lone pair of the linking O1 oxygen for hydrogen bond interaction with Glu328. The sucrose specificity appears to be determined primarily by residues Asp144, Asp394, Arg446, and Arg509. Both Asp394 and Arg446 are located in an insert connecting beta-strand 7 and alpha-helix 7 that is much longer in amylosucrase compared to other enzymes from the alpha-amylase family (family 13 of the glycoside hydrolases).  相似文献   

3.
Using site-directed mutagenesis we have investigated the catalytic residues in a xylanase from Bacillus circulans. Analysis of the mutants E78D and E172D indicated that mutations in these conserved residues do not grossly alter the structure of the enzyme and that these residues participate in the catalytic mechanism. We have now determined the crystal structure of an enzyme-substrate complex to 108 A resolution using a catalytically incompetent mutant (E172C). In addition to the catalytic residues, Glu 78 and Glu 172, we have identified 2 tyrosine residues, Tyr 69 and Tyr 80, which likely function in substrate binding, and an arginine residue, Arg 112, which plays an important role in the active site of this enzyme. On the basis of our work we would propose that Glu 78 is the nucleophile and that Glu 172 is the acid-base catalyst in the reaction.  相似文献   

4.
Chalcone synthase (CHS) is pivotal for the biosynthesis of flavonoid antimicrobial phytoalexins and anthocyanin pigments in plants. It produces chalcone by condensing one p-coumaroyl- and three malonyl-coenzyme A thioesters into a polyketide reaction intermediate that cyclizes. The crystal structures of CHS alone and complexed with substrate and product analogs reveal the active site architecture that defines the sequence and chemistry of multiple decarboxylation and condensation reactions and provides a molecular understanding of the cyclization reaction leading to chalcone synthesis. The structure of CHS complexed with resveratrol also suggests how stilbene synthase, a related enzyme, uses the same substrates and an alternate cyclization pathway to form resveratrol. By using the three-dimensional structure and the large database of CHS-like sequences, we can identify proteins likely to possess novel substrate and product specificity. The structure elucidates the chemical basis of plant polyketide biosynthesis and provides a framework for engineering CHS-like enzymes to produce new products.  相似文献   

5.
6,7-Dimethyl-8-ribityllumazine is the biosynthetic precursor of riboflavin, which, as a coenzyme, plays a vital role in the electron transfer process for energy production in all cellular organisms. The enzymes involved in lumazine biosynthesis have been studied in considerable detail. However, the conclusive mechanism of the reaction catalyzed by lumazine synthase has remained unclear. Here, we report four crystal structures of the enzyme from the hyperthermophilic bacterium Aquifex aeolicus in complex with different inhibitor compounds. The structures were refined at resolutions of 1.72 A, 1.85 A, 2.05 A and 2.2 A, respectively. The inhibitors have been designed in order to mimic the substrate, the putative reaction intermediates and the final product. Structural comparisons of the native enzyme and the inhibitor complexes as well as the kinetic data of single-site mutants of lumazine synthase from Bacillus subtilis showed that several highly conserved residues at the active site, namely Phe22, His88, Arg127, Lys135 and Glu138 are most likely involved in catalysis. A structural model of the catalytic process, which illustrates binding of substrates, enantiomer specificity, proton abstraction/donation, inorganic phosphate elimination, formation of the Schiff base and cyclization is proposed.  相似文献   

6.
Previous studies of the low molecular mass family 11 xylanase from Bacillus circulans show that the ionization state of the nucleophile (Glu78, pK(a) 4.6) and the acid/base catalyst (Glu172, pK(a) 6.7) gives rise to its pH-dependent activity profile. Inspection of the crystal structure of BCX reveals that Glu78 and Glu172 are in very similar environments and are surrounded by several chemically equivalent and highly conserved active site residues. Hence, there are no obvious reasons why their apparent pK(a) values are different. To address this question, a mutagenic approach was implemented to determine what features establish the pK(a) values (measured directly by (13)C NMR and indirectly by pH-dependent activity profiles) of these two catalytic carboxylic acids. Analysis of several BCX variants indicates that the ionized form of Glu78 is preferentially stabilized over that of Glu172 in part by stronger hydrogen bonds contributed by two well-ordered residues, namely, Tyr69 and Gln127. In addition, theoretical pK(a) calculations show that Glu78 has a lower pK(a) value than Glu172 due to a smaller desolvation energy and more favorable background interactions with permanent partial charges and ionizable groups within the protein. The pK(a) value of Glu172 is in turn elevated due to electrostatic repulsion from the negatively charged glutamate at position 78. The results also indicate that all of the conserved active site residues act concertedly in establishing the pK(a) values of Glu78 and Glu172, with no particular residue being singly more important than any of the others. In general, residues that contribute positive charges and hydrogen bonds serve to lower the pK(a) values of Glu78 and Glu172. The degree to which a hydrogen bond lowers a pK(a) value is largely dependent on the length of the hydrogen bond (shorter bonds lower pK(a) values more) and the chemical nature of the donor (COOH > OH > CONH(2)). In contrast, neighboring carboxyl groups can either lower or raise the pK(a) values of the catalytic glutamic acids depending upon the electrostatic linkage of the ionization constants of the residues involved in the interaction. While the pH optimum of BCX can be shifted from -1.1 to +0.6 pH units by mutating neighboring residues within the active site, activity is usually compromised due to the loss of important ground and/or transition state interactions. These results suggest that the pH optima of an enzyme might be best engineered by making strategic amino acid substitutions, at positions outside of the "core" active site, that electrostatically influence catalytic residues without perturbing their immediate structural environment.  相似文献   

7.
Fatty acid synthesis in bacteria is catalyzed by a set of individual enzymes collectively known as type II fatty-acid synthase. Each enzyme interacts with acyl carrier protein (ACP), which shuttles the pathway intermediates between the proteins. The type II enzymes do not possess primary sequence similarity that defines a common ACP-binding site, but rather are hypothesized to possess an electropositive/hydrophobic surface feature that interacts with the electronegative/hydrophobic residues along helix alpha2 of ACP (Zhang, Y.-M., Marrakchi, H., White, S. W., and Rock, C. O. (2003) J. Lipid Res. 44, 1-10). We tested this hypothesis by mutating two surface residues, Arg-129 and Arg-172, located in a hydrophobic patch adjacent to the active site entrance on beta-ketoacyl-ACP reductase (FabG). Enzymatic analysis showed that the mutant enzymes were compromised in their ability to utilize ACP thioester substrates but were fully active in assays with a substrate analog. Direct binding assays and competitive inhibition experiments showed that the FabG mutant proteins had reduced affinities for ACP. Chemical shift perturbation protein NMR experiments showed that FabG-ACP interactions occurred along the length of ACP helix alpha2 and extended into the adjacent loop-2 region to involve Ile-54. These data confirm a role for the highly conserved electronegative/hydrophobic residues along ACP helix alpha2 in recognizing a constellation of Arg residues embedded in a hydrophobic patch on the surface of its partner enzymes, and reveal a role for the loop-2 region in the conformational change associated with ACP binding. The specific FabG-ACP interactions involve the most conserved ACP residues, which accounts for the ability of ACPs and the type II proteins from different species to function interchangeably.  相似文献   

8.
The enzymes involved in the biosynthesis of riboflavin represent attractive targets for the development of drugs against bacterial pathogens, because the inhibitors of these enzymes are not likely to interfere with enzymes of the mammalian metabolism. Lumazine synthase catalyzes the penultimate step in the riboflavin biosynthesis pathway. A number of substituted purinetrione compounds represent a new class of highly specific inhibitors of lumazine synthase from Mycobacterium tuberculosis. To develop potent antibiotics for the treatment of tuberculosis, we have determined the structure of lumazine synthase from M. tuberculosis in complex with two purinetrione inhibitors and have studied binding via isothermal titration calorimetry. The structures were determined by molecular replacement using lumazine synthase from Saccharomyces cerevisiae as a search model and refined at 2 and 2.3 A resolution. The R-factors were 14.7 and 17.4%, respectively, and the R(free) values were 19.3 and 26.3%, respectively. The enzyme was found to be a pentamer consisting of five subunits related by 5-fold local symmetry. The comparison of the active site architecture with the active site of previously determined lumazine synthase structures reveals a largely conserved topology with the exception of residues Gln141 and Glu136, which participate in different charge-charge interactions in the core space of the active site. The impact of structural changes in the active site on the altered binding and catalytic properties of the enzyme is discussed. Isothermal titration calorimetry measurements indicate highly specific binding of the purinetrione inhibitors to the M. tuberculosis enzyme with dissociation constants in micromolar range.  相似文献   

9.
Beta-ketoacyl-acyl carrier protein (ACP) synthase enzymes join short carbon units to construct fatty acyl chains by a three-step Claisen condensation reaction. The reaction starts with a trans thioesterification of the acyl primer substrate from ACP to the enzyme. Subsequently, the donor substrate malonyl-ACP is decarboxylated to form a carbanion intermediate, which in the third step attacks C1 of the primer substrate giving rise to an elongated acyl chain. A subgroup of beta-ketoacyl-ACP synthases, including mitochondrial beta-ketoacyl-ACP synthase, bacterial plus plastid beta-ketoacyl-ACP synthases I and II, and a domain of human fatty acid synthase, have a Cys-His-His triad and also a completely conserved Lys in the active site. To examine the role of these residues in catalysis, H298Q, H298E and six K328 mutants of Escherichia colibeta-ketoacyl-ACP synthase I were constructed and their ability to carry out the trans thioesterification, decarboxylation and/or condensation steps of the reaction was ascertained. The crystal structures of wild-type and eight mutant enzymes with and/or without bound substrate were determined. The H298E enzyme shows residual decarboxylase activity in the pH range 6-8, whereas the H298Q enzyme appears to be completely decarboxylation deficient, showing that H298 serves as a catalytic base in the decarboxylation step. Lys328 has a dual role in catalysis: its charge influences acyl transfer to the active site Cys, and the steric restraint imposed on H333 is of critical importance for decarboxylation activity. This restraint makes H333 an obligate hydrogen bond donor at Nepsilon, directed only towards the active site and malonyl-ACP binding area in the fatty acid complex.  相似文献   

10.
Chen D  Frey PA  Lepore BW  Ringe D  Ruzicka FJ 《Biochemistry》2006,45(42):12647-12653
Lysine 2,3-aminomutase (LAM) from Clostridium subterminale SB4 catalyzes the interconversion of (S)-lysine and (S)-beta-lysine by a radical mechanism involving coenzymatic actions of S-adenosylmethionine (SAM), a [4Fe-4S] cluster, and pyridoxal 5'-phosphate (PLP). The enzyme contains a number of conserved acidic residues and a cysteine- and arginine-rich motif, which binds iron and sulfide in the [4Fe-4S] cluster. The results of activity and iron, sulfide, and PLP analysis of variants resulting from site-specific mutations of the conserved acidic residues and the arginine residues in the iron-sulfide binding motif indicate two classes of conserved residues of each type. Mutation of the conserved residues Arg134, Asp293, and Asp330 abolishes all enzymatic activity. On the basis of the X-ray crystal structure, these residues bind the epsilon-aminium and alpha-carboxylate groups of (S)-lysine. However, among these residues, only Asp293 appears to be important for stabilizing the [4Fe-4S] cluster. Members of a second group of conserved residues appear to stabilize the structure of LAM. Mutations of arginine 130, 135, and 136 and acidic residues Glu86, Asp165, Glu236, and Asp172 dramatically decrease iron and sulfide contents in the purified variants. Mutation of Asp96 significantly decreases iron and sulfide content. Arg130 or Asp172 variants display no detectable activity, whereas variants mutated at the other positions display low to very low activities. Structural roles are assigned to this latter class of conserved amino acids. In particular, a network of hydrogen bonded interactions of Arg130, Glu86, Arg135, and the main chain carbonyl groups of Cys132 and Leu55 appears to stabilize the [4Fe-4S] cluster.  相似文献   

11.
Crystal structures of enoyl-coenzyme A (CoA) isomerase from Bosea sp. PAMC 26642 (BoECI) and enoyl-CoA hydratase from Hymenobacter sp. PAMC 26628 (HyECH) were determined at 2.35 and 2.70 Å resolution, respectively. BoECI and HyECH are members of the crotonase superfamily and are enzymes known to be involved in fatty acid degradation. Structurally, these enzymes are highly similar except for the orientation of their C-terminal helix domain. Analytical ultracentrifugation was performed to determine the oligomerization states of BoECI and HyECH revealing they exist as trimers in solution. However, their putative ligand-binding sites and active site residue compositions are dissimilar. Comparative sequence and structural analysis revealed that the active site of BoECI had one glutamate residue (Glu135), this site is occupied by an aspartate in some ECIs, and the active sites of HyECH had two highly conserved glutamate residues (Glu118 and Glu138). Moreover, HyECH possesses a salt bridge interaction between Glu98 and Arg152 near the active site. This interaction may allow the catalytic Glu118 residue to have a specific conformation for the ECH enzyme reaction. This salt bridge interaction is highly conserved in known bacterial ECH structures and ECI enzymes do not have this type of interaction. Collectively, our comparative sequential and structural studies have provided useful information to distinguish and classify two similar bacterial crotonase superfamily enzymes.  相似文献   

12.
Abe I  Utsumi Y  Oguro S  Noguchi H 《FEBS letters》2004,562(1-3):171-176
A cDNA encoding a novel plant type III polyketide synthase (PKS) was cloned from rhubarb (Rheum palmatum). A recombinant enzyme expressed in Escherichia coli accepted acetyl-CoA as a starter, carried out six successive condensations with malonyl-CoA and subsequent cyclization to yield an aromatic heptaketide, aloesone. The enzyme shares 60% amino acid sequence identity with chalcone synthases (CHSs), and maintains almost identical CoA binding site and catalytic residues conserved in the CHS superfamily enzymes. Further, homology modeling predicted that the 43-kDa protein has the same overall fold as CHS. This provides new insights into the catalytic functions of type III PKSs, and suggests further involvement in the biosynthesis of plant polyketides.  相似文献   

13.
Brosius JL  Colman RF 《Biochemistry》2002,41(7):2217-2226
Tetrameric adenylosuccinate lyase (ASL) of Bacillus subtilis catalyzes the cleavage of adenylosuccinate to form AMP and fumarate. We previously reported that two distinct subunits contribute residues to each active site, including the His68 and His89 from one and His141 from a second subunit [Brosius, J. L., and Colman, R. F. (2000) Biochemistry 39, 13336-13343]. Glu(275) is 2.8 A from His141 in the ASL crystal structure, and Lys268 is also in the active site region; Glu275 and Lys268 come from a third, distinct subunit. Using site-directed mutagenesis, we have replaced Lys268 by Arg, Gln, Glu, and Ala, with specific activities of the purified mutant enzymes being 0.055, 0.00069, 0.00028, and 0.0, respectively, compared to 1.56 units/mg for wild-type (WT) enzyme. Glu275 was substituted by Gln, Asp, Ala, and Arg; none of these homogeneous mutant enzymes has detectable activity. Circular dichroism and light scattering reveal that neither the secondary structure nor the oligomeric state of the Lys268 mutant enzymes has been perturbed. Native gel electrophoresis and circular dichroism indicate that the Glu275 mutant enzymes are tetramers, but their conformation is altered slightly. For K268R, the K(m)s for all substrates are similar to WT enzyme. Binding studies using [2-3H]-adenylosuccinate reveal that none of the Glu275 mutant enzymes, nor inactive K268A, can bind substrate. We propose that Lys268 participates in binding substrate and that Glu275 is essential for catalysis because of its interaction with His141. Incubation of H89Q with K268Q or E275Q leads to restoration of up to 16% WT activity, while incubation of H141Q with K268Q or E275Q results in 6% WT activity. These complementation studies provide the first functional evidence that a third subunit contributes residues to each intersubunit active site of ASL. Thus, adenylosuccinate lyase has four active sites per enzyme tetramer, each of which is formed from regions of three subunits.  相似文献   

14.
Potential domain-domain docking residues, identified from the x-ray structure of the Clostridium symbiosum apoPPDK, were replaced by site-directed mutagenesis. The steady-state and transient kinetic properties of the mutant enzymes were determined as a way of evaluating docking efficiency. PPDK mutants, in which one of two stringently conserved docking residues located on the N-terminal domain (Arg(219) and Glu(271)) was substituted, displayed largely unimpeded catalysis of the phosphoenolpyruvate partial reaction at the C-terminal domain, but significantly impaired catalysis (>10(4)) of the ATP pyrophosphorylation of His(455) at the N-terminal domain. In contrast, alanine mutants of two potential docking residues located on the N-terminal domain (Ser(262) and Lys(149)), which are not conserved among the PPDKs, exhibited essentially normal catalytic turnover. Arg(219) and Glu(271) were thus proposed to play an important role in guiding the central domain and, hence, the catalytic His(455) into position for catalysis. Substitution of central domain residues Glu(434)/Glu(437) and Thr(453), the respective docking partners of Arg(219) and Glu(271), resulted in mutants impaired in catalysis at the ATP active site. The x-ray crystal structure of the apo-T453A PPDK mutant was determined to test for possible misalignment of residues at the N-terminal domain-central domain interface that might result from loss of the Thr(453)-Glu(271) binding interaction. With the exception of the mutation site, the structure of T453A PPDK was found to be identical to that of the wild-type enzyme. It is hypothesized that the two Glu(271) interfacial binding sites that remain in the T453A PPDK mutant, Thr(453) backbone NH and Met(452) backbone NH, are sufficient to stabilize the native conformation as observed in the crystalline state but may be less effective in populating the reactive conformation in solution.  相似文献   

15.
L-Arginine deiminase from Pseudomonas aeruginosa (PaADI) catalyzes the hydrolysis of arginine to citrulline and ammonia. PaADI belongs to the guanidino group-modifying enzyme superfamily (GMSF), which conserves backbone fold and a Cys-, His-, and Asp-based catalytic core. In this paper the contributions made by the PaADI core residues Cys406, His278, and Asp166 and the contribution from the neighboring Asp280 (conserved in most but not all GMSF members) to catalysis of the formation and hydrolysis of the Cys406-alkyluronium intermediate were accessed by kinetic analysis of site-directed mutants. In addition, solution hydrolysis in a chemical model of the S-alkylthiouronium intermediate was examined to reveal the importance of general base catalysis in the enzymatic reaction. Substitutions of the active site gating residue Arg401, the l-arginine C(alpha)NH(3)(+)(COO(-)) binding residues, Arg185, Arg243, and Asn160, or the His278 hydrogen bond partner, Glu224, were found to cause dramatic reductions in the enzyme turnover rate. These results are interpreted to suggest that electrostatic interactions play a dominant role in PaADI catalysis. Structural variations observed in P. aeruginosa GMSF enzymes PaADI, agmatine deiminase (PaAgDI), and N(omega),N(omega)-dimethylarginine dimethylaminohydrolase (PaDDAH) indicate an early divergence of the encoding genes. Arginine analogues that are known substrates for PaAgDI and PaDDAH were tested with PaADI to define clear boundaries of biochemical function in the three hydrolases. The conservation of a catalytic core associated with the common chemical function and the divergence of substrate-binding residues (as well as one key catalytic residue) to expand the substrate range provide insight into the evolution of the catalysts that form the GMSF.  相似文献   

16.
Chemical modification of Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase, a target for the nonselective herbicide glyphosate (N-phosphonomethylglycine), with pyridoxal 5'-phosphate suggested that Lys-22 (equivalent to Lys-23 of the Petunia hybrida enzyme) is a potential active site residue (Huynh, Q. K., Kishore, G. M., and Bild, G. S. (1988) J. Biol. Chem. 263, 735-739). To investigate the possible role of this residue in the reaction mechanism, we have used site-directed mutagenesis to replace Lys-23 of the P. hybrida enzyme with 3 other amino acid residues: Ala, Glu, and Arg. Analysis of these mutant enzymes indicates that of these only the Lys-23 to Arg mutant enzyme is active; the other two replacements (Ala and Glu) result in inactivation of the enzyme. Two of the mutant enzymes (Lys-23 to Arg and Ala) were purified to homogeneity and characterized. The purified Lys-23 to Arg mutant enzyme is less sensitive than the wild type enzyme to pyridoxal 5'-phosphate. It showed identical Km values for substrates and a 5-fold higher I50 value for glyphosate in comparison with those from the wild type enzyme. Binding studies using fluorescence measurements revealed that the substrate shikimate 3-phosphate and glyphosate were able to bind the purified Lys-23 to Arg mutant enzyme but not to the purified catalytically inactive Lys-23 to Ala mutant enzyme. The above results suggest that the cationic group at position 23 of the enzyme may play an important role in substrate binding.  相似文献   

17.
Benzalacetone synthase (BAS) and chalcone synthase (CHS) are plant-specific type III polyketide synthases (PKSs) that share approximately 70% amino acid sequence identity. BAS catalyzes a one-step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce a diketide benzalacetone, whereas CHS performs sequential condensations with three malonyl-CoA to generate a tetraketide chalcone. A homology model suggested that BAS has the same overall fold as CHS with cavity volume almost as large as that of CHS. One of the most characteristic features is that Rheum palmatum BAS lacks active site Phe-215; the residues 214LF conserved in type III PKSs are uniquely replaced by IL. Our observation that the BAS I214L/L215F mutant exhibited chalcone-forming activity in a pH-dependent manner supported a hypothesis that the absence of Phe-215 in BAS accounts for the interruption of the polyketide chain elongation at the diketide stage. On the other hand, Phe-215 mutants of Scutellaria baicalensis CHS (L214I/F215L, F215W, F215Y, F215S, F215A, F215H, and F215C) afforded increased levels of truncated products; however, none of them generated benzalacetone. These results confirmed the critical role of Phe-215 in the polyketide formation reactions and provided structural basis for understanding the structure-function relationship of the plant type III PKSs.  相似文献   

18.
The riboflavin synthase catalyzed reaction proceeds through a pentacyclic intermediate of undetermined stereochemistry. Calculations at the B3LYP/6-31G(d) level of theory indicate that the trans pentacyclic structure is favored over the cis by 3.3kcal/mol. A model of the the trans, but not the cis, pentacycle in the enzyme active site shows good fitness and the availability of highly conserved protein residues for catalytic interactions. The model of the trans intermediate complements the model of the two substrates in the active site and allows for a hypothetical mechanism of the roles of specific protein residues in catalysis to be proposed.  相似文献   

19.
Previous NMR reports indicated that Tyr98, the C-terminal residue of the muscular form of acylphosphatase, is likely to be part of the enzyme's active site. In addition, there is evidence that an arginine residue participates to the catalyzed reaction, possibly as phosphate binding site. Among all Arg residues present in the muscular forms of acylphosphatase, four, i.e. Arg23, Arg74, Arg77, and Arg97, appear to be conserved in all species checked thus far. We prepared the des-Tyr98 and des-Arg97-Tyr98 derivatives of the native acylphosphatase to investigate the properties of both modified enzymes. The enzyme lacking Tyr98 was found to be catalytically less effective than the native one, whereas the des-Arg97-Tyr98 acylphosphatase was completely inactive. This evidence suggests that Arg97 participates directly to the active site catalytic mechanism. Fluorescence and CD spectra revealed that the latter enzyme could have been undergone some conformational change that could account for the loss of activity; on the other hand, the one-dimensional NMR spectra of either native and des-Arg97-Tyr98 enzymes were strictly similar, thus demonstrating that the removal of the two C-terminal residues does not markedly affect the fold of the enzyme. The results reported are proof of a critical contribution of Arg97 to the acylphosphatase active site; however, we cannot exclude that the function of this residue is merely to stabilize the active site conformation and dynamics.  相似文献   

20.
Enzymes of the thiolase superfamily catalyze the formation of carbon-carbon bond via the Claisen condensation reaction. Thiolases catalyze the reversible non-decarboxylative condensation of acetoacetyl-CoA from two molecules of acetyl-CoA, and possess a conserved Cys-His catalytic diad. Elongation enzymes (beta-ketoacyl-acyl carrier protein synthase (KAS) I and KAS II and the condensing domain of polyketide synthase) have invariant Cys and two His residues (CHH triad), while a Cys-His-Asn (CHN) triad is found in initiation enzymes (KAS III, 3-ketoacyl-CoA synthase (KCS) and the chalcone synthase (CHS) family). These enzymes all catalyze decarboxylative condensation reactions. 3-Hydroxyl-3-methylglutaryl-CoA synthase (HMGS) also contains the CHN triad, although it catalyzes a non-decarboxylative condensation. That the enzymes of the thiolase superfamily share overall similarity in protein structure and function suggested a common evolutionary origin. All thiolases were found to have, in addition to the Cys-His diad, either Asn or His (thus C(N/H)H) at a position corresponding to the His in the CHH and CHN triads. In our phylogenetic analyses, the thiolase superfamily was divided into four main clusters according to active site architecture. During the functional divergence of the superfamily, the active architecture was suggested to evolve from the C(H)H in archaeal thiolases to the C(N/H)H in non-archaeal thiolases, and subsequently to the CHH in the elongation enzymes and the CHN in the initiation enzymes. Based on these observations and available biochemical and structural evidences, a plausible evolutionary history for the thiolase superfamily is proposed that includes the emergence of decarboxylative condensing enzymes accompanied by a recruitment of the His in the CHH and CHN triads for a catalytic role during decarboxylative condensation. In addition, phylogenetic analysis of the plant CHS family showed separate clustering of CHS and non-CHS members of the family with a few exceptions, suggesting repeated gene birth-and-death and re-invention of non-CHS functions throughout the evolution of angiosperms. Based on these observations, predictions on the enzymatic functions are made for several members of the CHS family whose functions are yet to be characterized. Further, a moss CHS-like enzyme that is functionally similar to a cyanobacterial enzyme was identified as the most recent common ancestor to the plant CHS family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号