首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
HhaI DNA methyltransferase belongs to the C5-cytosine methyltransferase family, which is characterized by the presence of a set of highly conserved amino acids and motifs present in an invariant order. HhaI DNA methyltransferase has been subjected to a lot of biochemical and crystallographic studies. A number of issues, especially the role of the conserved amino acids in the methyltransferase activity, have not been addressed. Using sequence comparison and structural data, a structure-guided mutagenesis approach was undertaken, to assess the role of conserved amino acids in catalysis. Site-directed mutagenesis was performed on amino acids involved in cofactor S-adenosyl-L-methionine (AdoMet) binding (Phe18, Trp41, Asp60 and Leu100). Characterization of these mutants, by in vitro /in vivo restriction assays and DNA/AdoMet binding studies, indicated that most of the residues present in the AdoMet-binding pocket were not absolutely essential. This study implies plasticity in the recognition of cofactor by HhaI DNA methyltransferase.  相似文献   

2.
3.
Mutagenesis was used to investigate the functional role of six pairs of aspartate and glutamate residues (D450/D1093, E482/E1125, E552/E1197, D558/D1203, D592/D1237, and E604/E1249) that are highly conserved in the nucleotide binding sites of P-glycoprotein (Mdr3) and of other ABC transporters. Removal of the charge in E552Q/E1197Q and D558N/D1203N produced proteins with severely impaired biological activity when the proteins were analyzed in yeast cells for cellular resistance to FK506 and restoration of mating in a ste6Delta mutant. Mutations at other acidic residues had no apparent effect in the same assays. These four mutants were expressed in Pichia pastoris, purified to homogeneity, and biochemically characterized with respect to ATPase activity. Studies with purified proteins showed that mutants D558N and D1203N retained 14 and 30% of the drug-stimulated ATPase activity of wild-type (WT) Mdr3, respectively, and vanadate trapping of 8-azido[alpha-(32)P]nucleotide confirmed slower basal and drug-stimulated 8-azido-ATP hydrolysis compared to that for WT Mdr3. The E552Q and E1197Q mutants showed no drug-stimulated ATPase activity. Surprisingly, drugs did stimulate vanadate trapping of 8-azido[alpha-(32)P]nucleotide in E552Q and E1197Q at a level similar to that of WT Mdr3. This suggests that formation of the catalytic transition state can occur in these mutants, and that the bond between the beta- and gamma-phosphates is hydrolyzed. In addition, photolabeling by 8-azido[alpha-(32)P]nucleotide in the presence or absence of drug was also detected in the absence of vanadate in these mutants. These results suggest that steps after the transition state, possibly involved in release of MgADP, are severely impaired in these mutant enzymes.  相似文献   

4.
In methanogenic archaea, Sep-tRNA:Cys-tRNA synthase (SepCysS) converts Sep-tRNA(Cys) to Cys-tRNA(Cys). The mechanism of tRNA-dependent cysteine formation remains unclear due to the lack of functional studies. In this work, we mutated 19 conserved residues in Methanocaldococcus jannaschii SepCysS, and employed an in vivo system to determine the activity of the resulting variants. Our results show that three active-site cysteines (Cys39, Cys42 and Cys247) are essential for SepCysS activity. In addition, combined with structural modeling, our mutational and functional analyses also reveal multiple residues that are important for the binding of PLP, Sep and tRNA. Our work thus represents the first systematic functional analysis of conserved residues in archaeal SepCysSs, providing insights into the catalytic and substrate binding mechanisms of this poorly characterized enzyme.  相似文献   

5.
Isopenicillin N synthase (IPNS) is critical for the catalytic conversion of delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine to isopenicillin N in the penicillin and cephalosporin biosynthetic pathway. Two conserved glycine residues in Cephalosporium acremonium IPNS (cIPNS), namely glycine-42 and glycine-256, were identified by multiple sequence alignment and investigated by site-directed mutagenesis to study the effect of the substitution on catalysis. Our study showed that both the mutations from glycine to alanine or to serine reduced the catalytic activity of cIPNS and affected its soluble expression in a heterologous host at 37 degrees C. Soluble expression was restored at a reduced temperature of 25 degrees C, and thus, it is possible that these glycine residues may have a role in maintaining the local protein structure and are critical for the soluble expression of cIPNS.  相似文献   

6.
《BBA》2023,1864(2):148962
F1Fo ATP synthase is a ubiquitous molecular motor that utilizes a rotary mechanism to synthesize adenosine triphosphate (ATP), the fundamental energy currency of life. The membrane-embedded Fo motor converts the electrochemical gradient of protons into rotation, which is then used to drive the conformational changes in the soluble F1 motor that catalyze ATP synthesis. In E. coli, the Fo motor is composed of a c10 ring (rotor) alongside subunit a (stator), which together provide two aqueous half channels that facilitate proton translocation. Previous work has suggested that Arg50 and Thr51 on the cytoplasmic side of each subunit c are involved in the proton translocation process, and positive charge is conserved in this region of subunit c. To further investigate the role of these residues and the chemical requirements for activity at these positions, we generated 13 substitution mutants and assayed their in vitro ATP synthesis, H+ pumping, and passive H+ permeability activities, as well as the ability of mutants to carry out oxidative phosphorylation in vivo. While polar and hydrophobic mutations were generally tolerated in either position, introduction of negative charge or removal of polarity caused a substantial defect. We discuss the possible effects of altered electrostatics on the interaction between the rotor and stator, water structure in the aqueous channel, and interaction of the rotor with cardiolipin.  相似文献   

7.
Roles of conserved methionine residues in tobacco acetolactate synthase   总被引:2,自引:0,他引:2  
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target of several classes of herbicides, including the sulfonylureas, the imidazolinones, and the triazolopyrimidines. The conserved methionine residues of ALS from plants were identified by multiple sequence alignment using ClustalW. The alignment of 17 ALS sequences from plants revealed 149 identical residues, seven of which were methionine residues. The roles of three well-conserved methionine residues (M350, M512, and M569) in tobacco ALS were determined using site-directed mutagenesis. The mutation of M350V, M512V, and M569V inactivated the enzyme and abolished the binding affinity for cofactor FAD. Nevertheless, the secondary structure of each of the mutants determined by CD spectrum was not affected significantly by the mutation. Both M350C and M569C mutants were strongly resistant to three classes of herbicides, Londax (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine), while M512C mutant did not show a significant resistance to the herbicides. The mutant M350C was more sensitive to pH change, while the mutant M569C showed a profile for pH dependence activity similar to that of wild type. These results suggest that M512 residue is likely located at or near the active site, and that M350 and M569 residues are probably located at the overlapping region between the active site and a common herbicide binding site.  相似文献   

8.
Mutational analysis of the arginine repressor of Escherichia coli   总被引:1,自引:0,他引:1  
Arginine biosynthesis in Escherichia coli is negatively regulated by a hexameric repressor protein, encoded by the gene argR and the corepressor arginine. By hydroxylamine mutagenesis two types of argR mutants were isolated and mapped. The first type is transdominant. In heterodiploids, these mutant polypeptides reduce the activity of the wild-type repressor, presumably by forming heteropolymers. Four mutant repressor proteins were purified. Two of these map in the N-terminal half of the protein. Gel retardation experiments showed that they bind poorly to DNA, but they could be precipitated by l -arginine at the same concentration as the wild-type repressor. The other two mutant repressors map in the C-terminal half of the protein. They are poorly precipitated by L-arginine and they bind poorly to DNA. In addition, one of these mutants appears to exist as a dimer. The second type of argR mutant repressor consists of super-repressors. Such mutants behave as arginine auxotrophs as a result of hyper-repression of arginine biosynthetic enzymes. They map at many locations throughout the argR gene. Three arginine super-repressor proteins were purified, in comparison with the wild-type repressor, two of them were shown to have a higher DNA-binding affinity in the absence of bound arginine, while the third was shown to have a higher DNA-binding affinity when bound to arginine.  相似文献   

9.
CTPS (cytidine 5'-triphosphate synthase) catalyses the ATP-dependent formation of CTP from UTP using either ammonia or L-glutamine as the nitrogen source. Binding of the substrates ATP and UTP, or the product CTP, promotes oligomerization of CTPS from inactive dimers to active tetramers. In the present study, site-directed mutagenesis was used to replace the fully conserved glycine residues 142 and 143 within the UTP-binding site and 146 within the CTP-binding site of Escherchia coli CTPS. CD spectral analyses of wild-type CTPS and the glycine mutants showed a slight reduction of approximately 15% in alpha-helical content for G142A and G143A relative to G146A and wild-type CTPS, suggesting some local alterations in structure. Relative to wild-type CTPS, the values of k(cat)/K(m) for ammonia-dependent and glutamine-dependent CTP formation catalysed by G143A were reduced 22- and 16-fold respectively, whereas the corresponding values for G146A were reduced only 1.4- and 1.8-fold respectively. The glutaminase activity (k(cat)) of G146A was similar to that exhibited by the wild-type enzyme, whereas that of G143A was reduced 7.5-fold. G146A exhibited substrate inhibition at high concentrations of ammonia and a partial uncoupling of glutamine hydrolysis from CTP production. Although the apparent affinity (1/[S](0.5)) of G143A and G146A for UTP was reduced approximately 4-fold, G146A exhibited increased co-operativity with respect to UTP. Thus mutations in the CTP-binding site can affect UTP-dependent activity. Surprisingly, G142A was inactive with both ammonia and glutamine as substrates. Gel-filtration HPLC experiments revealed that both G143A and G146A were able to form active tetramers in the presence of ATP and UTP; however, nucleotide-dependent tetramerization of G142A was significantly impaired. Our observations highlight the sensitivity of the structure of CTPS to mutations in the UTP- and CTP-binding sites, with Gly(142) being critical for nucleotide-dependent oligomerization of CTPS to active tetramers. This 'structural sensitivity' may limit the number and/or types of mutations that could be selected for during the development of resistance to cytotoxic pyrimidine nucleotide analogues.  相似文献   

10.
Guo ZY  Tang YH  Zhang Z  Feng YM 《IUBMB life》2001,52(6):309-314
To further understand the role of the three conserved Val residues in insulin, B12Val, B18Val, and A3Val, five insulin mutants-[A3Ser]insulin, [B12Thr]insulin, (desB30)[B12Ser]insulin, [B18Thr] insulin, and [B18Leu]insulin--were obtained by means of site-directed mutagenesis and their receptor-binding activities as well as in vivo biological potencies were measured. The two B18 mutants, [B18Thr]insulin and [B18Leu]insulin, both retained relatively high receptor-binding activities (70% and 30% of native porcine insulin, respectively) as well as relatively high in vivo biological potencies. The receptor-binding activities of [B12Thr]insulin and (desB30)[B12Ser]insulin were 5.1% and 0.2%, respectively. However the in vivo biological potency of [B12Thr]insulin was still about 50% of native insulin, whereas that of (desB30)[B12Ser]insulin decreased drastically. The [A3Ser]insulin retained 1.4% of the receptor-binding activity and low in vivo biological potency. These results, together with previous reports showed that when the three conserved Val residues were replaced by residues containing a beta-branched side-chain, such as Thr or Ile, the insulin mutants retained higher biological activities than those mutants replaced by other residues. Here we propose that Val, Thr, and Ile are "isosteric residues' because they all contain a beta-branched side-chain. This proposal may have perhaps general significance in protein design and protein engineering.  相似文献   

11.
Recently the crystal structure of the DNA-unbound form of the full-length hexameric Bacillus stearothermophilus arginine repressor (ArgR) has been resolved, providing a possible explanation for the mechanism of arginine-mediated repressor-operator DNA recognition. In this study we tested some of these functional predictions by performing site-directed mutagenesis of distinct amino acid residues located in two regions, the N-terminal DNA-binding domain and the C-terminal oligomerization domain of ArgR. A total of 15 mutants were probed for their capacity to repress the expression of the reporter argC - lacZ gene fusion in Escherichia coli cells. Substitutions of highly conserved amino acid residues in the alpha2 and alpha3 helices, located in the winged helix-turn-helix DNA-binding motif, reduced repression. Loss of DNA-binding capacity was confirmed in vitro for the Ser42Pro mutant which showed the most pronounced effect in vivo. In E. coli, the wild-type B. stearothermophilus ArgR molecule behaves as a super-repressor, since recombinant E. coli host cells bearing B. stearothermophilusargR on a multicopy vector did not grow in selective minimal medium devoid of arginine and grew, albeit weakly, when l -arginine was supplied. All mutants affected in the DNA-binding domain lost this super-repressor behaviour. Replacements of conserved leucine residues at positions 87 and/or 94 in the C-terminal domain by other hydrophobic amino acid residues proved neutral or caused either derepression or stronger super-repression. Substitution of Leu87 by phenylalanine was found to increase the DNA-binding affinity and the protein solubility in the context of a double Leu87Phe/Leu94Val mutant. Structural modifications occasioned by the various amino acid substitutions were confirmed by circular dichroism analysis and structure modelling.  相似文献   

12.
Finking R  Mofid MR  Marahiel MA 《Biochemistry》2004,43(28):8946-8956
4'-Phosphopantetheinyl transferases (PPTases) are essential for the production of fatty acids by fatty acid synthases (primary metabolism) and natural products by nonribosomal peptide synthetases and polyketide synthases (secondary metabolism). These systems contain carrier proteins (CPs) for the covalent binding of reaction intermediates during synthesis. PPTases transfer the 4'-phosphopantetheine moiety from coenzyme A (CoA) onto conserved serine residues of the apo-CPs to convert them to their functionally active holo form. In bacteria, two types of PPTases exist that are evolutionary related but differ in their substrate spectrum. Acyl carrier protein synthases (AcpSs) recognize CPs from primary metabolism, whereas Sfp- (surfactin production-) type PPTases have a preference for CPs of secondary metabolism. Previous investigations showed that a peptidyl carrier protein (PCP) of secondary metabolism can be altered to serve as substrate for AcpS. We demonstrate here that a single mutation in PCP suffices for the modification of this CP by AcpS, and we have identified by mutational analysis several other PCP residues and two AcpS residues involved in substrate discrimination by this PPTase. These altered PCPs were still capable of serving their designated function in NRPS modules, and selective use of AcpS or Sfp leads to production of two different products by a trimodular NRPS.  相似文献   

13.
An understanding of the structure-function relationship of nerve growth factor (NGF) requires precise knowledge of all the residues and regions that participate in NGF receptor binding, receptor activation, and biological activity. Seven recombinant human NGF mutants having alanine substituted for residues located either in the NGF dimer interface or beta-strand region were studied to determine the role of each amino acid residue in NGF biological activity. F86A, T91A, R100A, and R103A remained nearly full active with 61, 120, 91, and 73% of wild-type activity, respectively, in the PC12 cell bioassay. Hydrophobic core and dimer interface residues Y52, F53, and F54 were studied in more detail. Y52A and F54A were expressed in very low levels, suggesting that these two residues may be important for protein stability. Y52A retained full biological activity (91%). F53A had a 20- and 70-fold reduction in biological activity and TrkA phosphorylation, respectively, with only a 5- to 10-fold effect on TrkA binding and no effect on low-affinity receptor binding. F54A had significantly decreased TrkA phosphorylation and biological activity (40-fold). The results suggest that F53 and F54 may play a structural role in TrkA receptor activation subsequent to binding.  相似文献   

14.
Arginines R23, R178, R179 and R218 in thymidylate synthase (TS, EC 2. 1.1.45) are hydrogen bond donors to the phosphate moiety of the substrate, dUMP. In order to investigate how these arginines contribute to enzyme function, we prepared complete replacement sets of mutants at each of the four sites in Lactobacillus casei TS. Mutations of R23 increase K:(m) for dUMP 2-20-fold, increase K:(m) for cofactor 8-40-fold and decrease k(cat) 9-20-fold, reflecting the direct role of the R23 side chain in binding and orienting the cofactor in ternary complexes of the enzyme. Mutations of R178 increase K:(m) for dUMP 40-2000-fold, increase K:(m) for cofactor 3-20-fold and do not significantly affect k(cat). These results are consistent with the fact that this residue is an integral part of the dUMP-binding wall and contributes to the orientation and ordering of several other dUMP binding residues. Kinetic parameters for all R179 mutations except R179P were not significantly different from wild-type values, reflecting the fact that this external arginine does not directly contact the cofactor or other ligand-binding residues. R218 is essential for the structure of the catalytic site and all mutations of this arginine except R218K were inactive.  相似文献   

15.
Leukotriene (LT) C(4) and its metabolites, LTD(4) and LTE(4), are involved in the pathobiology of bronchial asthma. LTC(4) synthase is the nuclear membrane-embedded enzyme responsible for LTC(4) biosynthesis, catalyzing the conjugation of two substrates that have considerably different water solubility; that amphipathic LTA(4) as a derivative of arachidonic acid and a water-soluble glutathione (GSH). A previous crystal structure revealed important details of GSH binding and implied a GSH activating function for Arg-104. In addition, Arg-31 was also proposed to participate in the catalysis based on the putative LTA(4) binding model. In this study enzymatic assay with mutant enzymes demonstrates that Arg-104 is required for the binding and activation of GSH and that Arg-31 is needed for catalysis probably by activating the epoxide group of LTA(4).  相似文献   

16.
Acridone synthase (ACS) and chalcone synthase (CHS) catalyse the pivotal reactions in the formation of acridone alkaloids or flavonoids. While acridone alkaloids are confined almost exclusively to the Rutaceae, flavonoids occur abundantly in all seed-bearing plants. ACSs and CHSs had been cloned from Ruta graveolens and shown to be closely related polyketide synthases which use N-methylanthraniloyl-CoA and 4-coumaroyl-CoA, respectively, as the starter substrate to produce the acridone or naringenin chalcone. As proposed for the related 2-pyrone synthase from Gerbera, the differential substrate specificities of ACS and CHS might be attributed to the relative volume of the active site cavities. The primary sequences as well as the immunological cross reactivities and molecular modeling studies suggested an almost identical spatial structure for ACS and CHS. Based on the Ruta ACS2 model the residues Ser132, Ala133 and Val265 were assumed to play a critical role in substrate specificity. Exchange of a single amino acid (Val265Phe) reduced the catalytic activity by about 75% but grossly shifted the specificity towards CHS activity, and site-directed mutagenesis replacing all three residues by the corresponding amino acids present in CHS (Ser132Thr, Ala133Ser and Val265Phe) fully transformed the enzyme to a functional CHS with comparatively marginal ACS activity. The results suggested that ACS divergently has evolved from CHS by very few amino acid exchanges, and it remains to be established why this route of functional diversity has developed in the Rutaceae only.  相似文献   

17.
18.
Glycoside hydrolysis by retaining family 18 chitinases involves a catalytic acid (Glu) which is part of a conserved DXDXE sequence motif that spans strand four of a (betaalpha)8 barrel (TIM barrel) structure. These glycoside hydrolases are unusual in that the positive charge emerging on the anomeric carbon after departure of the leaving group is stabilized by the substrate itself (the N-acetyl group of the distorted -1 sugar), rather than by a carboxylate group on the enzyme. We have studied seven conserved residues in the catalytic center of chitinase B from Serratia marcescens. Putative roles for these residues are proposed on the basis of the observed mutational effects, the pH-dependency of these effects, pKa calculations and available structural information. The results indicate that the pKa of the catalytic acid (Glu144) is 'cycled' during catalysis as a consequence of substrate-binding and release and, possibly, by a back and forth movement of Asp142 between Asp140 and Glu144. Rotation of Asp142 towards Glu144 also contributes to an essential distortion of the N-acetyl group of the -1 sugar. Two other conserved residues (Tyr10 and Ser93) are important because they stabilize the charge on Asp140 while Asp142 points towards Glu144. Asp215, lying opposite Glu144 on the other side of the scissile glycosidic bond, contributes to catalysis by promoting distortion of the -1 sugar and by increasing the pKa of the catalytic acid. The hydroxyl group of Tyr214 makes a major contribution to the positioning of the N-acetyl group of the -1 sugar. Taken together, the results show that catalysis in family 18 chitinases depends on a relatively large number of (partly mobile) residues that interact with each other and the substrate.  相似文献   

19.
In order to evaluate the potential contribution of conserved aromatic residues to the hydrophobic active site of 3-hydroxy-3-methylglutaryl-CoA synthase, site-directed mutagenesis was employed to produce Y130L, Y163L, F204L, Y225L, Y346L, and Y376L proteins. Each mutant protein was expressed at levels comparable with wild-type enzyme and was isolated in highly purified form. Initial kinetic characterization indicated that F204L exhibits a substantial (>300-fold) decrease in catalytic rate (kcat). Upon modification with the mechanism-based inhibitor, 3-chloropropionyl-CoA, or in formation of a stable binary complex with acetoacetyl-CoA, F204L exhibits binding stoichiometries comparable with wild-type enzyme, suggesting substantial retention of active site integrity. Y130L and Y376L exhibit inflated values (80- and 40-fold, respectively) for the Km for acetyl-CoA in the acetyl-CoA hydrolysis partial reaction; these mutants also exhibit an order of magnitude decrease in kcat. Formation of the acetyl-S-enzyme reaction intermediate by Y130L, F204L, and Y376L proceeds slowly in comparison with wild-type enzyme. However, solvent exchange into the thioester carbonyl oxygen of these acetyl-S-enzyme intermediates is not slow in comparison with previous observations for D159A and D203A mutants, which also exhibit slow acetyl-S-enzyme formation. The magnitude of the differential isotope shift upon exchange of H218O into [13C]acetyl-S-enzyme suggests a polarization of the thioester carbonyl and a reduction in bond order. Such an effect may substantially contribute to the upfield 13C NMR shift observed for [13C]acetyl-S-enzyme. The influence on acetyl-S-enzyme formation, as well as observed kcat (F204L) and Km (Y130L; Y376L) effects, implicate these invariant residues as part of the catalytic site. Substitution of phenylalanine (Y130F, Y376F) instead of leucine at residues 130 and 376 diminishes the effects on catalytic rate and substrate affinity observed for Y130L and Y376L, underscoring the influence of aromatic side chains near the active site.  相似文献   

20.
Journal of Plant Biochemistry and Biotechnology - The two decisive enzymes in flavonoid biosynthetic pathway are chalcone synthase (CHS) and chalcone isomerase (CHI), wherein the former carries the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号