首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
2.
Phaeomonas parva gen. et sp. nov., a marine photosynthetic stramenopile from oceanic water near the Caroline Islands, is described. Cells are naked and spherical to ovoid. The alga is motile with two laterally inserted flagella during the light period, whereas during the dark period, it absorbs the flagella and rounds up. The anterior (immature, No. 2) long flagellum possesses tubular tripartite mastigonemes. The posterior (mature, No. 1) short flagellum is smooth and has autofluorescence at the base. The cupshaped, yellowish‐brown chloroplast occupies the posterior half of the cell, and a pyrenoid occurs in the inner cavity of the cup‐shaped chloroplast. The flagellar apparatus has several unusual features. Two basal plates and a two‐gyred proximal helix in the flagellar transitional region may suggest that P. parva is related to the Pelagophyceae, Dictyochophyceae and Sulcochrysis biplastida, a photosynthetic stramenopile of uncertain taxonomic position. The R3 and R4 roots form a loop that resembles phagotrophic chrysophytes. However, this resemblance is superficial because Phaeomonas is not phagotrophic, its R3 root has a different number of microtubules and its R3 root does not split to form a food‐uptake mouth. Phaeomonas has a ‘bypassing root’, which is found only with the Phaeophyceae, Giraudyopsis stellifera (Chrysomerophyceae), and Ankylochrysis lutea (probably a member of the Pelagophyceae). The taxonomic position of P. parva could not be determined solely from ultrastructural features. However, molecular phylogeny and biochemical analyses (published separately) strongly supported a relationship between P. parva and four other monotypic strameno‐piles, Glossomastix, Pinguiochrysis, Pinguiococcus and Polypodochrysis. Although these algae are morphologically distinct, they have unusually high percentages of polyunsaturated fatty acids, especially eicosapentoic acid. This unusual assemblage of stramenopiles is classified in a new class, the Pinguiophyceae (published separately), and P. parva is its only biflagellate member.  相似文献   

3.
Glossomastix chrysoplasta gen. et sp. nov. is described from cultures isolated from sandstone rubble, Sorrento Back Beach, Mornington Peninsula, Victoria, Australia. The alga forms wall‐less, coccoidal vegetative cells that congregate in mucilaginous colonies and reproduce by successive bipartition. Plastids have girdle lamellae and partially embedded pyrenoids that are traversed by cytoplasmic channels. Zoospores are uniflagellate and swim poorly; a narrow lingulate pseudopod provides their primary form of motion. The single flagellum, which lacks hairs, a flagellar swelling, and autofluorescence, is the equivalent of the posterior flagellum in other golden algae. The anterior flagellum is absent; the basal body with which it would normally be associated is blind. The flagellar apparatus has two basal bodies, three microtubular roots, and a rhizoplast. The posterior (elder) basal body has a transitional helix that is proximal to the basal plate. Glossomastix chrysoplasta, placed in the Pinguiophyceae on the basis of molecular sequence and biochemical data, shares some ultrastructural features with other members of the class, especially Polypodochrysis teissieri, which has similar zoospores, but it also differs from other pinguiophytes in many respects. Glossomastix chrysoplasta is the pinguiophyte with, on average, the largest cells (exclusive of external materials), and it is the only one with a colonial habit.  相似文献   

4.
Pinguiochrysis pyriformis gen. et sp. nov. is a brown, naked, non‐motile, marine picoplankton. A culture was established from a surface sample collected in 1991 from the tropical Western Pacific Ocean. Typical cells of P. pyriformis are distinctively pear‐shaped and have one ovoid chloroplast; these two features distinguish this species from the other picophytoplankton species. However, the pyriform morphology is not consistent and cells frequently change to a subspherical shape. The chloroplast and mitochondrion ultrastructure confirm that this species belongs to the photosynthetic stramenopiles (chromophytes). Additional distinctive ultrastructural characteristics of P. pyriformis include (i) a chloroplast envelope forming a tubular invagination that penetrates into the pyrenoid; (ii) thylakoid lamellae consisting of more than three layers in some cells; (iii) the lack of basal bodies and centrioles; and (iv) the lack of scales or other extracellular structures. Based on the morphological features, this picoplanktonic species was described as a new species and placed in the Pinguiophyceae on the basis of the molecular phylogenetic analysis and biochemical data published elsewhere.  相似文献   

5.
The ultrastructure of sperm from 13 species in 11 genera of Laminariales collected in the northeast Pacific Ocean is unique in the brown algae. The sperm are elongate, and possess a nucleus, several mitochondria and two or three chloroplasts, but no eyespot. The anterior flagellum bears mastigonemes on the proximal half of its length; a distal “whiplash” portion lacks mastigonemes and is an extension of only the two central singlet microtubules of the axoneme. A peculiar feature of these sperm is the posterior flagellum, which is longer than the anterior flagellum and tapers distally as the doublet microtubules become singlets and decrease in number. This feature contrasts with the laminarialean zoospore, which possesses a short posterior flagellum with the usual “9 + 2” axoneme. The structure of these sperm differs from that reported for Chorda, the sperm of which resembles a primitive brown algal zoospore. The facts support the concept that Chorda is the most primitive member of the Laminariales.  相似文献   

6.
A revised version of an earlier phylogenetic model for the eukaryotes is presented. It is postulated that mitosis, phagotrophy, the mitochondrion, the flagellum, sexual reproduction, and the chloroplast are so complex that it is improbable that they evolved de novo more than once. It is assumed that their distribution among existing organisms is a reflection of their order of appearance in evolutionary history. Their distribution suggests that the nucleate organisms evolved through the sequence: amoeba, amoeboflagellate, sexual amoeboflagellate, and that the chloroplast first appeared in sexual flagellates. Sequence data indicate that the sexual amoeboflagellates gave rise to a line of holozoic protozoans that culminated in the metazoans. An amoeba-metazoan line can be envisaged as representing the mainstream of eukaryote evolution. Sequence data indicate that the sexual flagellates bearing mastigonemes, the eumycetes, and the metaphytes diverged from such a line, and in that order. Cytological and biochemical data strongly suggest that the rhodophytes and metaphytes derive from a common algal ancestor, that this ancestor would have arisen from a sexual, biflagellate, holozoic protozoan lacking mastigonemes, and that it would have been closely related to the most recent monocellular ancestor of the metazoans. Sequence data indicate that the chloroplast derives from an ancestral blue-green bacterium that was originally an endosymbiont within a phagotrophic protozoan. Thus the metaphytes may be secondary in a series of organisms able to produce chlorophyll a. There is evidence that subsequently a fully developed chloroplast able to produce chlorophylls a and b was transferred by a further symbiosis to a holozoic euglenoid protozoan; the chloroplast of the euglenophytes is so similar to that of the chlorophytes, but the morphologies of these algae are so different, it was postulated that euglenophytes arose through symbiosis between a euglenid and a chlorophyte. It is proposed here that the distribution of phylogenetic features among organisms bearing mastigonemes indicates that the euglenophytes gave rise to dinophytes, cryptophytes, and all other organisms bearing mastigonemes. Thus the algae bearing mastigonemes may be tertiary in a series of organisms able to produce chlorophyll a. It is postulated that the production of chlorophyll b in algae, and the stacking of thylakoids first appeared in a line from rhodophytes to chlorophytes, and that replacement of chlorophyll b by chlorophyll c2 occurred in a line from euglenophytes to dinophytes. To account for the presence of biliproteins in rhodophytes and cryptophytes, it is proposed that the putative transfer of the chloroplast from chlorophytes to euglenophytes occurred before a loss of biliproteins in the metaphyte line, and that the primordial euglenophytes, dinophytes, and cryptophytes were able to produce biliproteins; subsequently, biliprotein production was abandoned in all algae except rhodophytes and cryptophytes. The interrelationships of the chytrids, eumycetes, and oomycetes remain obscure. However, the model is consistent with the hypothesis that the chytrids represent ancestors to the eumycetes, and that the eumycete line and the oomycete-hyphochytrid group of fungi arose independently. The distribution of phagotrophy, biflagellate form, and sexuality suggests that the paired form of flagella first appeared in asexual amoeboflagellates, and became stabilised in sexual amoeboflagellates. The overall model is in accord with sequence evidence that the genomes of the nucleus, mitochondrion, and chloroplast derive from different genetic sources in ancestral prokaryotes, and is consistent with the hypothesis that the mitochondrion and chloroplast were acquired through endosymbioses initiated by phagotrophic inclusion of an aerobic bacterium, and a blue-green bacterium, respectively. Avenues for phylogenetic and sequence investigation for testing the model are suggested.  相似文献   

7.
The phylogenetic group stramenopiles refers to the systematic groups that possess tripartite tubular hairs (stramenopiles) on their flagella. There have been a number of studies describing the fine structure of these mastigonemes and a few studies isolating the component proteins; however, these proteins and their gene sequences have not yet been identified. In the present study, we identified a mastigoneme protein (Ocm1) of the chrysophycean alga Ochromonas danica Pringsh. (UTEX LB1298). Its corresponding gene, Ocm1, was identified by using degenerate primers that correspond to the partial amino acid sequences of a protein (85 kDa) obtained from a mastigoneme‐rich fraction of isolated flagella. The polypeptide encoded by Ocm1 has four cysteine‐rich, epithelial growth factor (EGF)–like motifs, potentially involved in protein–protein interactions. It lacks obvious hydrophobic regions characteristic of transmembrane domains, suggesting that this polypeptide is not likely a protein for anchoring the mastigoneme. In addition, a polyclonal antibody against Ocm1 labeled the area where the tubular shafts of the mastigonemes are located, but not the basal portion or the terminal filaments.  相似文献   

8.
The silica-scaled algae (Synuraceae, Chrysophyceae sensu lato) are compared to other Chrysophyceae, Phaeophyceae and Bacillariophyceae with occasional comparisons to other chlorophyll c-containing algae, scaled protozoa and oomycete fungi. The silica-scaled algae have several unique characters which separate them from the above groups and based upon these differences a new order, Synurales ord. nov., and a new class, Synurophyceae class. nov., are described. The major distinguishing characters of the Synurophyceae class. nov. are: they have chlorophylls a and c1 but lack chlorophyll c2; their flagellar apparatus includes a microtubular root that loops around two parallel flagella and a flagellar root system which occurs in four absolute orientations; the photoreceptor consists of paired flagellar swellings which are not associated with the cell membrane and chloroplast; no eyespot is present; the nuclear envelope is not or is only weakly associated with the chloroplast endoplasmic reticulum. The Synurophyceae class. nov. are about equally distinct from the Chrysophyceae sensu stricto, Phaeophyceae and Bacillariophyceae when the class level characters are compared. Although the Phaeophyceae have a long history of being placed by themselves in the division Phaeophyta, and the Bacillariophyceae and Chrysophyceae have recently been placed alone in the Bacillariophyta and Chrysophyta, respectively, the similarities found among these classes suggest these algae are not so distinct that they require separate divisions. Tentatively, therefore, the Synurophyceae are placed in the division Phaeophyta along with the Bacillariophyceae and Chrysophyceae sensu stricto.  相似文献   

9.
Abstract— It is now well established that the algae do not constitute a monophyletic group. A number of brown and golden algae are related to various heterotrophic protists, which have recently been characterized and described as a kingdom, the Chromista. The kingdom was defined primarily by two ultrastructural features: the presence of tubular, tripartite hairs (mastigonemes) on the surface of at least one flagellum, and the presence of a chloroplast endoplasmic reticulum. This included the watermoulds which, although they lack chloroplasts, do have mastigonemes. In addition, a number of heterotrophic flagellates also possess mastigonemes and should therefore be considered in the determination of interrelationships. This paper presents a cladistic analysis that focuses on 79 ultrastructural, cytological and biochemical characters. The unpigmented taxa appear at the base of the cladogram, suggesting a single origin for the chromophytic chloroplast. The crytomonads and Eustigmatophyta, usually considered primitive taxa, are sister to all the chrysophycean taxa which, with the exception of two monotypic genera and the Sarcinochrysidales, are monophyletic. The Prymnesiophyta, Bacillariophyta and Phaeophyta form a monophylectic group.  相似文献   

10.
Chloroplasts in heterokont algae probably originated from a red algal endosymbiont which was engulfed and retained by a eukaryotic host, and are surrounded by four envelope membranes. The outermost of these membranes is called chloroplast ER (CER) and usually connects with the nuclear envelope. This information, however, is based mainly on studies on single‐plastid heterokont algae. In multi‐plastid heterokont algae, it is still unclear whether CER is continuous with the nuclear envelope. Since nuclear‐encoded chloroplast proteins are synthesized by ribosomes on the ER membrane, clarifying the ER‐CER structure in the heterokont algae is important in order to know the targeting pathway of those proteins. We did a detailed ultrastructural observation of endomembrane systems in a multi‐plastid heterokont alga: Heterosigma akashiwo, and confirmed that the CER membrane was continuous with the ER membrane. However, unlike the CER membranes in other heterokont algae, it seemed to have very few ribosome attached. We also performed experiments for protein targeting into canine microsomes using a precursor for a nuclear‐encoded chloroplast protein, a fucoxanthin‐chlorophyll protein (FCP), of H. akashiwo, to see if the protein is targeted to the ER. It demonstrated that the precursor has a functional signal sequence for ER targeting, and is co‐translationally translocated into the microsomes. Based on these data, we propose a hypothesis that, in H. akashiwo, nuclear‐encoded chloroplast protein precursors that have been co‐translationally inserted into the ER lumen are sorted in the ER and transported to the chloroplasts through the ER.  相似文献   

11.
Nuclear‐encoded SSU rDNA, chloroplast LSU rDNA, and rbcL genes were sequenced from 53 strains of conjugating green algae (Zygnematophyceae, Streptophyta) and used to analyze phylogenetic relationships in the traditional order Zygnematales. Analyses of a concatenated data set (5,220 nt) established 12 well‐supported clades in the order; seven of these constituted a superclade, termed “Zygnemataceae.” Together with genera (Zygnema, Mougeotia) traditionally placed in the family Zygnemataceae, the “Zygnemataceae” also included representatives of the genera Cylindrocystis and Mesotaenium, traditionally placed in the family Mesotaeniaceae. A synapomorphic amino acid replacement (codon 192, cysteine replaced by valine) in the LSU of RUBISCO characterized this superclade. The traditional genera Netrium, Cylindrocystis, and Mesotaenium were shown to be para‐ or polyphyletic, highlighting the inadequacy of phenotypic traits used to define these genera. Species of the traditional genus Netrium were resolved as three well‐supported clades each distinct in the number of chloroplasts per cell, their surface morphology (structure and arrangement of lamellae) and the position of the nucleus or nuclear behavior during cell division. Based on molecular phylogenetic analyses and synapomorphic phenotypic traits, the genus Netrium has been revised, and a new genus, Nucleotaenium gen. nov., was established. The genus Planotaenium, also formerly a part of Netrium, was identified as the sister group of the derived Roya/Desmidiales clade and thus occupies a key position in the evolutionary radiation leading to the most species‐rich group of streptophyte green algae.  相似文献   

12.
A new species, Marsupiomonas pelliculata gen. et sp. nov. (Pedinophyceae), is described. A single flagellum emerges from a deep pit with a distinctive thickened margin. The flagellum has rigid fibrillar hairs which are probably formed in the perinuclear space. A short second flagellar basal body lies within the cell close to the basal body of the emergent flagellum and the flagellar root system consists of striated and microtubular roots. There is a distinctive theca covering all but the anterior end of the cell and also a single large bright green chloroplast with an immersed pyrenoid surrounded by a starch shell. The wide salinity tolerance of the species is discussed in relation to its distribution in estuarine and salt marsh habitats. The salient features of the new species—the insertion of the emergent flagellum into a deep pit and the possession of a theca—are also seen in Pedinomonas tenuis, and it is suggested that P. tenuis could be transferred to the new genus Marsupiomonas. The class Pedinophyceae now includes three genera (Pedinomonas, Resultor and Marsupiomonas) and the distinguishing features are discussed.  相似文献   

13.
The algal class Chlorarachniophyceae is comprised of a small group of unicellular eukaryotic algae that are often characterized by an unusual amoeboid morphology. This morphology is hypothesized to be the result of a secondary endosymbiosis in which a green alga was engulfed as prey by a nonphotosynthetic amoeba or amoebaflagellate. Whereas much is known about the phylogenetic relationships of individual chlorarachniophytes to one another, and to possible ancestral host organisms in the genera Cercomonas and Heteromita, little is known about their physiology, particularly that of their lipids. In an initial effort to characterize the lipids of this algal class, seven organisms were examined for their fatty acid and sterol composition. These included Bigelowiella natans, Chlorarachnion globusum, Chlorarachnion reptans, Gymnochlora stellata, Lotharella amoeboformis, Lotharella globosa, and Lotharella sp. Fatty acids associated with chloroplast‐associated glycolipids, cytoplasmic membrane‐associated phospholipids, and storage triglycerides were characterized. Glycolipid fatty acids were found to be of limited composition, containing principally eicosapentaenoic acid [20:5(n‐3)] and hexadecanoic acid (16:0), which ranged in relative percentage from 67–90% and 10–29%, respectively, in these seven organisms. Triglyceride‐associated fatty acids were found to be similar. Phospholipid fatty acid composition was more variable. The principal phospholipid fatty acids, 16:0 (25–32%) and a compound tentatively identified as docosapentaenoic acid [22:5(n‐3)] (26–35%), were found along with a number of C18 and C20 fatty acids. All organisms contained two sterols as free sterols. These were tentatively identified as 24‐ethylcholesta‐5,22E‐dien‐3b‐ol (stigmasterol; 70–95%) and 24‐methylcholesta‐5,22E‐dien‐3b‐ol (brassicasterol; 5–30%).  相似文献   

14.
Summary Ultrastructure of the zoospores ofVischeria stellata (R. Chodat ex Poulton) Pascher is investigated, with particular reference to the system of flagellar roots. Microtubular roots and a rhizoplast are present and a model showing their distribution is proposed. Four microtubular roots attach to the basal bodies in a system basically similar to that displayed by the heterokont algae and fungi. The rhizoplast is also similar to that of other heterokont algae. We conclude from these observations that the class Eustigmatophyceae should be placed within the division Heterokontophyta.Abbreviations C chloroplast - B basal body of the emergent flagellum - B' second basal body - E eyespot - F emergent flagellum - FS flagellar swelling - LV lamellate vesicle - M mastigonemes - MTs microtubules - N nucleus - R 1–R 4 microtubular roots - Rh rhizoplast - SB striated band - SV spiral vesicle  相似文献   

15.
The plastids of ecologically and economically important algae from phyla such as stramenopiles, dinoflagellates and cryptophytes were acquired via a secondary endosymbiosis and are surrounded by three or four membranes. Nuclear‐encoded plastid‐localized proteins contain N‐terminal bipartite targeting peptides with the conserved amino acid sequence motif ‘ASAFAP’. Here we identify the plastid proteomes of two diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum, using a customized prediction tool (ASAFind) that identifies nuclear‐encoded plastid proteins in algae with secondary plastids of the red lineage based on the output of SignalP and the identification of conserved ‘ASAFAP’ motifs and transit peptides. We tested ASAFind against a large reference dataset of diatom proteins with experimentally confirmed subcellular localization and found that the tool accurately identified plastid‐localized proteins with both high sensitivity and high specificity. To identify nucleus‐encoded plastid proteins of T. pseudonana and P. tricornutum we generated optimized sets of gene models for both whole genomes, to increase the percentage of full‐length proteins compared with previous assembly model sets. ASAFind applied to these optimized sets revealed that about 8% of the proteins encoded in their nuclear genomes were predicted to be plastid localized and therefore represent the putative plastid proteomes of these algae.  相似文献   

16.
The first flagellum of Hibberdia magna comb. nov. bears mastigonemes that have both short and long lateral filaments attached to the tubular shaft. The second flagellum is very short (ca. 850 nm) and is directed posteriorly approximately 160° from the first flagellum. Three microtubular flagellar roots (R1, R2 and R4) and a rhizoplast (= striated root) are present. The R1 root consists of four microtubules that arise near the right surface of the first flagellum basal body; the R1 root extends to the dorsal side of the cell and then curves back along the left side of the cell. Cytoskeletal microtubules are nucleated from the R1 root including one loose cluster of cytoskeletal microtubules that extends down the left side of the cell adjacent to the contractile vacuole. The R2 root is a single microtubule that arises along the left surface of the first flagellum basal body and extends to the left side of the cell. The R4 root consists of three microtubules that arise along the left side of the second flagellum basal body. A helical band wraps around two microtubules at the proximal end of the R4 root. Two of the three R4 root microtubules extend along the left side of the second flagellum, curve around to the right side of that flagellum and terminate. No R3 root was found. The orientation of the basal bodies of Hibberdia gen. nov. is similar to that of the Xanthophyceae and Oomycetes. There are apparent homologies in the R1, R2 and R4 roots of Hibberdia and these and other protists, but only Hibberdia lacks a R3 root. Three long flagella are present in preprophase but later one is endocytosized and the axoneme extends to the posterior of the cell. During metaphase the nuclear envelope is more or less intact except at the poles; the flagellar apparatuses are at the poles and the spindle microtubules originate near the basal bodies. Two stages are known in the life history: 1) a capsoidlike state with non-swimming flagellate cells inside a colonial gel, and 2) a free-swimming single-celled monad state. Vegetative cell division occurs in both stages. The flagellar apparatus, the cell division process and the life history combined with the previously described unique light-harvesting antheraxanthin make H. magna distinct from other algae. A new genus, Hibberdia gen. nov., a new family, Hibberdiaceae fam. nov. and a new order, Hibberdiales, ord. nov. are described.  相似文献   

17.
Details of zoospore germination in Chorda tomentosa Lyngb. are outlined. Uninucleate zoospores, when released are embedded in a mucilaginous mass of carbohydrate which dissolves and the biflagellate zoospores become motile. The long anterior flagellum is composed of a highly coiled terminal region and a rigid lower section bearing mastigonemes. The rigid, short posterior flagellum lacks mastigonemes. After initial contact by the tightly coiled region of the anterior flagellum, the zoospore draws itself to the substrate by flagellar resorbtion. After deposition of 3 wall layers the germling produces a germ tube. During this time the disc-shaped chloroplast enlarges undergoing changes in shape. As the germ tubes reach ca. 15 μm they cease forward growth and swell at their tips. The majority of cytoplasm of the original zoospore moves into the tube. Just before the nucleus enters the tube, centriole replication occurs. Mitosis is presumed to take place somewhere in the germ tube so that at 24 h, 2-celled gametophytes are produced.  相似文献   

18.
Many freshwater protists harbor unicellular green algae within their cells and these host‐symbiont relationships slowly are becoming better understood. Recently, we reported that several ciliate species shared a single species of symbiotic algae. Nonetheless, the algae from different host ciliates were each distinguishable by their different genotypes, and these host‐algal genotype combinations remained unchanged throughout a 15‐month period of sampling from natural populations. The same algal species had been reported as the shared symbiont of several ciliates from a remote lake. Consequently, this alga appears to play a key role in ciliate‐algae symbioses. In the present study, we successfully isolated the algae from ciliate cells and established unialgal cultures. This species is herein named Brandtia ciliaticola gen. et sp. nov. and has typical ‘Chlorella‐like’ morphology, being a spherical autosporic coccoid with a single chloroplast containing a pyrenoid. The alga belongs to the Chlorella‐clade in Chlorellaceae (Trebouxiophyceae), but it is not strongly connected to any of the other genera in this group. In addition to this phylogenetic distinctiveness, a unique compensatory base change in the SSU rRNA gene is decisive in distinguishing this genus. Sequences of SSU‐ITS (internal transcribed spacer) rDNA for each isolate were compared to those obtained previously from the same host ciliate. Consistent algal genotypes were recovered from each host, which strongly suggests that B. ciliaticola has established a persistent symbiosis in each ciliate species.  相似文献   

19.
Recently, heterotrophic nanoflagellates (HNF) have been reported to actively ingest prokaryotes in high salinity waters. We report the isolation and culture of an HNF from a Korean saltern pond of 300‰ salinity. The organism is biflagellated with an acronematic anterior flagellum and never glides on surfaces. The mitochondria have tubular cristae. Neither transitional helix nor spiral fiber were observed in the transition zones of the flagella. The cell has a cytostome supported by an arc of eight microtubules, suggesting that our isolate is a bicosoecid. Our isolate had neither mastigonemes, lorica, body scales, nor cytopharynx and thus could not be placed in any of the presently described bicosoecid genera. Phylogenetic analysis of 18S rRNA gene sequences from stramenopiles confirmed the bicosoecid affinities of our isolate, but did not place it within any established genus or family. Its closest relatives include Caecitellus and Cafeteria. The optimal range of growth temperature was 30–35°C. The isolated HNF grew optimally at 150‰ salinity and tolerated up to 363‰ salinity, but it failed to grow below 75‰ salinity, indicating that it could be a borderline extreme halophile. On the basis of its morphological features and position in 18S rRNA trees we propose a novel genus for our isolate; Halocafeteria, n. gen. The species name Halocafeteria seosinensis sp. nov. is proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号