首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laboratory experiments were performed to assess the effects of age, status (fresh versus freezekilled), and storage regime on the suitability of house fly, Musca domestica L. (Diptera: Muscidae) pupae as hosts for Muscidifurax raptor Girault & Saunders, M. raptorellus Kogan & Legner, M. zaraptor Kogan & Legner, Spalangia cameroni Perkins, Trichomalopsis sarcophagae (Gahan) and Urolepis rufipes (Ashmead) (Hymenoptera: Pteromalidae). Production of all species was maximized on pupae aged 24 + h post-pupation. Fresh pupae could not be refrigerated at 10°C or less, or at 15°C without a significant decline in their suitability as hosts. Although production of S. cameroni was essentially limited to the use of fresh house fly pupae, M. raptor , M. raptorellus , M. zaraptor , T. sarcophagae and U. rufipes could be reared on either fresh or freeze-killed pupae stored at - 20 °C for up to 6 months prior to parasitism. The suitability of freeze-killed pupae declined during storage when used for production of male and female M. raptorellus and M. zaraptor , and possibly for male T. sarcophagae . No other effects of storage on parasitoid production were detected. These results suggest that insectaries can stockpile fly pupae in freezers during times of overproduction for future use in mass-rearing M. raptor, M. raptorellus, M. zaraptor, T. sarcophagae and U. rufipes as biocontrol agents of filth flies.  相似文献   

2.
Three laboratory experiments were performed to assess parasitization of freeze-killed house fly puparia, buried 0 to 6 cm in media, by Muscidifurax raptor Girault & Saunders, Muscidifurax raptorellus Kogan & Legner, Muscidifurax zaraptor Kogan & Legner, Trichomalopsis sarcophagae (Gahan) and Urolepis rufipes (Ashmead) (Hymenoptera: Pteromalidae). Virtually no parasitization occurred at depths greater than 1 cm in large arenas (988 cm2) with densities of 0.3 puparia and 0.008 female parasitoids per cm2. Parasitization was observed at depths as great as 4 cm for three of five species in small arenas (3 cm2) with densities of 6.4 puparia and 1.0 female per cm2. Combined across experiments, M. raptor achieved the highest level of parasitization, followed by M. zaraptor, M. raptorellus, U. rufipes, and T. sarcophagae. The greatest number of F1 females was produced by the gregarious species T. sarcophagae (834 female female) and M. raptorellus (708 female female), and then by the solitary species M. raptor (530 female female), M. zaraptor (365 female female) and U. rufipes (163 female female). High parasitization by M. raptor and high production of offspring by T. sarcophagae identify these species as being particularly attractive as biological control agents.  相似文献   

3.
1. About 11,000 each of Muscidifurax raptor Girault and Saunders and Urolepis rufipes (Ashmead) were released weekly for 7 weeks at a commercial dairy farm in central New York state, U.S.A. Dispersal behaviour was monitored by parasitism rates of house fly, Musca domestica L., pupae placed in sentinel bags. 2. M. raptor, which was released inside the barn, parasitized fly pupae both inside and outside, and it achieved highest rates of parasitism in indoor straw calf-bedding and in outdoor manure and silage. 3. U. rufipes, which was released outside the barn, did not attack pupae inside the barn, and its highest rates of parasitism occurred in outdoor manure and silage. 4. M. raptor appeared to be more effective than U. rufipes in parasitizing pupae located at sites where natural fly-breeding occurred. 5. Interspecific competition did not appear to explain these distribution patterns. 6. There was no significant trend in parasitism by M. raptor as a function of distance from the release station. Furthermore, high rates of parasitism near open doorways and at an outdoor site 30 m away suggests that M. raptor dispersed throughout the barn and its immediate surroundings. 7. Air temperature was positively correlated to flight activity, but not to parasitization activity in natural fly-breeding substrates.  相似文献   

4.
Parasitoid development, parasitoid-induced host mortality and parasitoid progeny emergence were determined at five constant temperatures for Muscidifurax raptor Girault and Sanders, Muscidifurax zaraptor Kogan and Legner, Spalangia cameroni Perkins and Spalangia endius Walker using pupae of the house fly, Musca domestica L., as hosts. At temperatures of 20, 25, 30 and 35 degrees C the median development times (days from oviposition to adult emergence), respectively, were M. raptor (28.4, 20.7, 14.3, 14.5), M. zaraptor (30.6, 22.8, 14.1, 14.2), S. cameroni (55.6, 35.2, 21.8, 25.0) and S. endius (52.4, 31.5, 16.3, 14.6). All species failed to emerge at 15 degrees C. Using densities of five parasitoids and 100 hosts and a 24 h exposure period, Muscidifurax species oviposited at a greater rate over a wider range of temperatures than Spalangia species. At 15, 20, 25, 30 and 35 degrees C the mean number of pupae killed per parasitoid were, respectively, M. raptor (1.4, 7.4, 10.5, 13.7, 14.1), M. zaraptor (0.0, 3.3, 8.9, 14.4, 15.0), S.cameroni (0.0, 7.8, 11.0, 11.9, 7.4), S.endius (0.6, 4.0, 7.5, 12.0, 11.7), and means of the number of parasitoid progeny per parasitoid were, respectively, M.raptor (0.2, 5.2, 7.9, 11.8, 11.6), M.zaraptor (1.3, 4.4, 8.2, 13.0, 13.7), S.cameroni (0.0, 2.4, 4.7, 5.1, 1.0), S.endius (0.0, 0.9, 3.4, 7.5, 4.9). Development and ovipositional activity in S.cameroni was strongly inhibited at 35 degrees C. The model by Sharpe & DeMichele (1977) was used to describe temperature-dependent development and the number of parasitoid progeny produced per parasitoid at temperatures of 15-30 degrees C in all species.  相似文献   

5.
Parasitoid-induced mortality of house fly, Musca domestica L., pupae and parasitoid progeny emergence by four species of pteromalid parasitoids, Muscidifurax raptor Girault & Sanders, M.zaraptor Kogan & Legner, Spalangia cameroni Perkins and S.endius Walker, were determined for a 24 h exposure period using parasitoid: host ratios ranging from 1:2 to 1:50. When the number of parasitoids was held constant (n = 5) and the numbers of hosts varied, and when the number of hosts was held constant (n = 100) and the number of parasitoids varied, both the number of pupae killed per parasitoid and the number of parasitoid progeny per parasitoid increased with increasing parasitoid:host ratios to reach an upper limit asymptotically. Maximum values were, respectively: M.raptor (14.7, 11.1), M.zaraptor (12.3, 9.3), S.cameroni (16.9, 5.5), S.endius (14.8, 9.7) with no consistent effects attributed to parasitoid interference. For M.raptor and S.cameroni at parasitoid:host ratios of 1:10, the pupal mortality and progeny emergence were determined for a 24 h exposure period when hosts were distributed in poultry manure at four levels of aggregation ranging from clumped to uniform. Pupal mortality was least in clumped distributions, while parasitoid progeny emergence was not significantly different.  相似文献   

6.
Commercially obtained Nasonia vitripennis Walker and Muscidifurax raptorellus Kogan & Legner were released weekly for 12 wk into a high-rise, caged-layer poultry house. After the release period, parasitoids were sampled using sentinel house fly (Musca domestica L.) pupae that were either laboratory-reared or field-collected as larvae and exposed for 2, 4, 7, and 14 d. Parasitoid-induced mortality was observed in 31% of laboratory colony pupae and in 26% of field-collected pupae, whereas successful parasitism rates of 48 and 51% were observed from these pupal sources, respectively. Parasitism was primarily by M. raptorellus (88%), and Muscidifurax raptor Girault & Sanders (11%), while N. vitripennis accounted for <1%. Percent female progeny ranged from 43%, in M. raptorellus to 76% in N. vitripennis. Parasitoid emergence from 2-d exposed sentinel pupae was the lowest of all treatments. Parasitoid emergence from 7-d exposed sentinel pupae was the highest of all treatments. We found no differences between pupal source, suggesting that when sampling for M. raptor, M. raptorellus, and N. vitripennis, in poultry facilities, pupal source is not a confounding factor.  相似文献   

7.
Assays of five commercial insecticides applied as residual sprays at label rates to plywood indicated the most toxic insecticide overall for pteromalid parasitoids of house flies, Musca domestica L., was Atroban (permethrin), followed by Ciodrin (crotoxyphos), Rabon (tetrachlorvinphos), Ectrin (fenvalerate), and Cygon (dimethoate). Insecticide-susceptible house flies were susceptible to all five insecticides (mortality, 62-100%). Flies that were recently colonized from populations on dairy farms in New York were susceptible only to Rabon. Urolepis rufipes (Ashmead) was the most susceptible parasitoid species overall to these insecticides, followed by Muscidifurax raptor Girault & Sanders, Nasonia vitripennis Walker, Pachycrepoideus vindemmiae (Rondani), and Spalangia cameroni Perkins. Compared with susceptible flies, newly colonized flies showed moderate resistance to avermectin B1a (abamectin). Abamectin was more toxic to all of the parasitoids except N. vitripennis and S. cameroni than to newly colonized house flies when exposed for 90 min to plywood boards treated with 0.001-0.1% abamectin. Space sprays with Vapona (dichlorvos) killed all of the parasitoids and susceptible flies and 64% of the newly colonized flies when insects were placed directly in the path of the spray; mortality was substantially lower among flies and parasitoids protected under 5 cm of wheat straw. Space sprays with Pyrenone (pyrethrins) killed greater than 86% of all insects exposed to the spray path except for the newly colonized flies (1% mortality); mortality of insects protected under straw was low (less than 12%) except for S. cameroni (76%). Because responses of the five parasitoids to the different insecticides varied considerably, general conclusions about parasitoid susceptibility to active ingredients, insecticide class, or method of application were not possible.  相似文献   

8.
Commercially reared parasitoids were released into three high-rise, caged-layer poultry houses; one house received only N. vitripennis Walker, the second house received only M. raptorellus Kogan & Legner, and the third house received an equal ratio of both species. Overall, house fly parasitism by M. raptorellus was never higher than 7% in any house. Most parasitism in the M. raptorellus release house was attributed to N. vitripennis. Parasitism of house fly pupae by M. raptorellus did not significantly increase during or after the 6-wk release period in the house that received both parasitoids. However, a depression in total parasitism was not detected when releases of the two species were made in this house.  相似文献   

9.
The toxicity of seven insecticides was evaluated against unparasitized Musca domestica L. pupae and pupae parasitized by Muscidifurax raptor Girault & Sanders or Spalangia cameroni Perkins, two important biological control agents. Only pyrethrins + piperonyl butoxide (Pyrenone) was less toxic to M. raptor compared with house flies. Conversely, all of the insecticides except crotoxyphos were less toxic to S. cameroni compared with house flies. A plateau in the tetrachlorvinphos bioassay line for S. cameroni suggested that this colony had approximately 45% resistant individuals. The selectivity observed between immature stages of house flies and M. raptor or S. cameroni is different from that reported against adult stages of these same species, suggesting that selectivity of an insecticide varies considerably between different life stages.  相似文献   

10.
The objective of this study was to evaluate the suitability of killed house fly (Musca domestica L) pupae for production of two economically important pupal parasitoids. Two-day-old fly pupae were subjected to heat shock treatments of varying temperatures and durations in an oven at >or=70% RH; exposure to temperatures of 55 degrees C or higher for 15 min or longer resulted in 100% mortality. Exposure to 50 degrees C resulted in 40 and 91% mortality at 15 and 60 min, respectively. All (100%) pupae placed in a -80 degrees C freezer were killed after 10-min exposure; exposure times of <5 min resulted in <21% mortality. Progeny production of Spalangia cameroni Perkins and Muscidifurax raptor Girault and Sanders (Hymeoptera: Pteromalidae) from pupae killed by heat shock or 50 kR of gamma radiation was not significantly different from production on live hosts on the day when pupae were killed. Freeze-killed pupae produced 16% fewer S. cameroni than live pupae and an equivalent amount of M. raptor progeny on the day when pupae were killed. When killed pupae were stored in freezer bags at 4 degrees C for 4 mo, heat-killed, irradiated, and freeze-killed pupae remained as effective for production of M. raptor as live pupae. Production of S. cameroni on heat-killed and irradiated pupae was equal to parasitoid production on live pupae for up to 2 mo of storage, after which production on killed pupae declined to 63% of that observed with live pupae. Production of S. cameroni on freeze-killed pupae was 73-78% of production using live pupae during weeks 2-8 of storage and declined to 41 and 28% after 3 and 4 mo, respectively. Killing pupae by heat shock provides a simple and low-cost method for stockpiling high-quality hosts for mass-rearing both of these filth fly biological control agents.  相似文献   

11.
The ability of Spalangia cameroni Perkins, Spalangia endius Walker, and Muscidifurax raptorellus Kogan and Legner to locate and attack stable fly hosts was evaluated under laboratory conditions. Postfeeding third-instar stable fly larvae were released and allowed to pupate in two arena types: large 4.8 liter chambers containing a field-collected, soiled equine bedding substrate; or 120-ml plastic cups containing wood chips. At the time of fly pupariation, parasitoids were released and permitted 72 h to locate and attack hosts. On average, parasitism rates of freely accessible stable fly pupae in cups were not significantly different between parasitoid species. However, parasitism rates in chambers containing either Spalangia spp. were ≈50-fold more than M. raptorellus. Additional intraspecies analysis revealed that parasitism rates both by S. cameroni and S. endius were not significantly different when pupae were freely accessible or within bedding, whereas M. raptorellus attacked significantly more pupae in cups than in the larger chambers where hosts were distributed within bedding. These results suggest that Spalangia spp. are more suited to successfully locate and attack hosts in habitats created by equine husbandry in Florida. Therefore, commercially available parasitoid mixtures containing Muscidifurax spp. may be ineffective if used as a control measure at Florida equine facilities.  相似文献   

12.
House fly, Musca domestica L., pupae were exposed to six species of pteromalid parasitoids, Muscidifurax zaraptor Kogan and Legner, M. raptor Girault and Sanders, M. raptorellus Kogan and Legner, Pachycrepoideus vindemiae (Rondani), Spalangia nigroaenea Curtis, and Urolepis rufipes Ashmead. Exposures were made for 48 h at six parasitoid-to-host ratios to measure the effect of parasitoid density on parasitoid-induced mortality (PIM) of hosts (excluding mortality as measured by parasitoid emergence). PIM was evident at all parasitoid-to-host ratios for all six species. Fly eclosion declined with a corresponding increase in the parasitoid-to-host ratio; the reverse was generally true for PIM. Parasitoid emergence increased initially with a corresponding increase in the parasitoid-to-host ratio to a point (depending on the parasitoid species), but then declined. The three Muscidifurax spp. and P. vindemiae exhibited similar behavior and generally avoided previously stung hosts until ovipositional restraints broke down at the higher parasitoid-to-host ratios. S. nigroaenea and U. rufipes exhibited little ovipositional restraint, resulting in a high proportion of PIM of hosts. Understanding factors that influence PIM will provide better evaluations of field releases of parasitoids to control flies and will aid in the development of the most economic procedures for large scale rearing of pteromalid parasitoids.  相似文献   

13.
The efficacy of the pupal parasitoid Spalangia cameroni Perkins as a biological control agent was tested against house flies Musca domestica Linnaeus and stable flies Stomoxys calcitrans (Linnaeus) in one dairy cattle and two pig installations in Denmark. Weekly releases of S. cameroni from April through to September-October 1999 and 2000 resulted in significant suppressions of house fly populations to below nuisance level, whereas no effect on stable flies was found. Parasitism was significantly higher in the release years compared to the control years, but was below 25% averaged over the fly season for each farm. A statistical model based on a functional relationship between the innate capacity of increase of the two fly species and three explanatory variables (air temperature, fly density and parasitism) provided a fairly good fit to data with the abundances of house flies and stable flies explained mostly by temperature, but intra- and interspecific competition, and parasitism had a significant effect as well. Overall, the model was capable of explaining 14% and 6.6% of the total variation in data for house fly and stable fly, respectively. Spalangia cameroni was the predominant parasitoid to emerge from exposed house fly pupae, but from mid summer onwards Muscidifurax raptor Girault & Sanders (Hymenoptera: Pteromalidae) was also quite common. The study indicated that biological control of house flies can be an efficient alternative to chemical control.  相似文献   

14.
Filth fly parasites reared by commercial insectaries were released on two dairies (MO, DG) in southern California to determine their effect on populations of house flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.). Spalangia endius Walker, Muscidifurax raptorellus Kogan and Legner, and Muscidifurax zaraptor Kogan and Legner were released on the MO dairy from 1985 to 1987 in varying quantities. Parasitism by Muscidifurax zaraptor on the MO dairy was significantly higher (P less than 0.05) from the field-collected stable fly (4.4%) and house fly (12.5%) pupae, compared with a control dairy (0.1%, stable fly; 1.3%, house fly). Muscidifurax zaraptor, released from April through October during 1987 on the DG dairy (350,000 per month), was not recovered in a significantly higher proportion from either fly species relative to the corresponding control dairy. No specimens of Muscidifurax raptorellus were recovered from the MO dairy. Parasite treatments had no apparent effect on adult populations of either fly species or on overall parasitism rate of field-collected stable fly (16.8%, MO; 17.2%, DG) and house fly (23.3%, MO; 20.9%, DG) pupae. Spalangia spp. were the predominant parasites recovered from field-collected stable fly and house fly pupae on all four dairies. Sentinel house fly pupae placed in fly-breeding sites on both release dairies were parasitized at a significantly higher rate, as compared with sentinel pupae on control dairies. The generic composition of parasites emerging from sentinel house fly pupae was 20.6% Spalangia spp. and 73.2% Muscidifurax spp., whereas in field-collected house fly pupae, Spalangia spp. and Muscidifurax spp. constituted 74.3 and 19.6% of the parasites, respectively.  相似文献   

15.
The pteromalid wasp, Muscidifurax zaraptor Kogan and Legner, was released at three locations at a dairy in May before housefly and stable fly breeding had begun. Freeze-killed housefly pupae were placed adjacent to the emerging parasites at biweekly intervals for a 6-week period. Hosts placed out weeks 0 and 2 were heavily parasitized. Decreased parasitism in hosts placed out at week 4 suggested that many of the M. zaraptor had dispersed or died. High parasitism of hosts placed in the field at week 6 was the result of second generation parasites emerging from pupae placed out at week 0. Parasitism of freeze-killed housefly pupae placed 6 m and in the four cardinal directions from the release points was similar but lower than for hosts placed adjacent to the emerging parasites. The study demonstrated that emerging M. zaraptor readily utilized nearby freeze-killed housefly pupae but the availability of these hosts did not deter the parasites from searching for additional hosts.  相似文献   

16.
The parasitic wasp Muscidifurax zaraptor Kogan & Legner was mass-reared in the field to control house flies, Musca domestica L., on two Nebraska beef cattle confinements. About 50,000 freeze-killed house fly pupae were exposed to a single release of M. zaraptor in the field. Placement of six additional cohorts of 50,000 freeze-killed pupae at the release sites at 2-wk intervals resulted in a mean parasite emergence of 56.4% over the study period. Mean fly mortality of 37.3 and 25.9% occurred in sentinel pupae placed around the perimeter of two release sites, compared with 3.9% for two control sites. We demonstrated a negative correlation between host reduction in sentinel cohorts and distances the cohorts were placed from parasite release sites. However, data indicated that other environmental factors also influenced the success of M. zaraptor in locating sentinel hosts. Correlation between mortality in sentinel pupae and numbers of parasites released was not evident. Temperatures above approximately 28 degrees C appeared to reduce the effectiveness of M. zaraptor.  相似文献   

17.
E. F. Legner 《BioControl》1989,34(4):523-530
The precise phenotypic measurements, percent multiple oviposition and the number of parasitoids developed per host, can be used to assess quantitative genetic variation governing multiple oviposition and development in the muscoid Diptera parasitoid,Muscidifurax raptorellus Kogan & Legner. Evidence for polygenic control was based on the significance of correlations between expected genomic content and behavioral expression. Data accumulated from 8 oviposition days seem sufficient to measure accurately polygenic expression in this species.   相似文献   

18.
Gas chromatographic analysis of cuticular hydrocarbons ofMuscidifuraxspp. adult females revealed species-specific patterns of composition that allowed identification ofMuscidifurax raptorGirault and Sanders,Muscidifurax zaraptorKogan and Legner, andMuscidifurax raptorellusKogan and Legner. A total of 18 components, all C29–C37 alkanes and methylalkanes, accounted for over 90% of the total cuticular hydrocarbons for all three species.Muscidifurax zaraptorwas characterized by a high ratio (11.9) of 3-MeC31:internal Me2C35's, whereas this ratio was <3 for the other species.Muscidifurax raptorelluswas characterized by a low (<1) 3-MeC31:3,7,15-Me3C37ratio compared with ratios of 3.1 and 6.3 for these components inM. raptorandM. zaraptor, respectively. Three populations ofM. raptorelluscould be distinguished from one another based on two other component ratios (5- and 7-MeC31:3MeC32, 5- and 7-MeC31:3,7- to 3,15-Me2C33) with either 100% (Nebraska population) or 90% (Chilean and Peruvian populations) certainty. Comparison ofM. raptorcolonies established from five different locations (Florida, France, Germany, Brazil, Hungary) indicated that the hydrocarbon pattern was highly conserved in this species. A dichotomous key to species based on ratios of cuticular hydrocarbon components unambiguously classified the 50 samples ofMuscidifuraxspp. used to construct the key, plus five additional samples from different geographic locations.  相似文献   

19.
Urolepis rufipes Ashmead, a pteromalid wasp, was recently discovered parasitizing house fly and stable fly pupae in eastern Nebraska dairies. Studies have been conducted on the biology of this parasite to evaluate its potential as a biological control agent of stable flies (Stomoxys calcitrans (L.] and house flies (Musca domestica L.). House fly pupae were suitable as hosts for U.rufipes at all ages; however, significantly higher parasitism occurred on host pupae aged 96-120 h. Parasite-induced mortality (host mortality without progeny production) was higher than for other pteromalid parasites of filth flies under similar conditions. Parasitism increased with parasite--host ratio at 20 degrees C; however, the opposite was noted at 30 degrees C for parasite--host ratios ranging from 5:50 to 50:50. Fly eclosion decreased as parasite--host ratio increased at 20 degrees C, and no host eclosion occurred at the highest parasite--host ratios (20:50 and 50:50) at 30 degrees C. Females produced an average of 18.6 female and 7.6 male progeny. 88% of the progeny were produced during the first 6 days post parental eclosion. The short life span, low progeny emergence rate and high per cent host eclosion, in comparison with other parasite species, suggests that the Nebraska strain of U.rufipes may not an effective biological control agent of house flies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号