首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imsande, J. 1986. Nitrate-ammonium ratio required for pH homeostasisin hydroponically grown soybean.—J. exp. Bot. 37: 341–347. Plant acid-base homeostasis is achieved when the mmoles of hydroxylions produced in the plant equal the mmoles of protons. Reductionof nitrate to ammonia is the major source of hydroxyl ions whereasammonium uptake-assimilation and the metabolism of neutral sugarsto organic acids are the primary sources of protons. Soybean[Glycine max (L.) Merr plants were grown hydroponically on mediumsupplemented with 3·0 mol m–3 nitrogen providedas various combinations of KNO3 and NH4NO3 Plant growth consumedessentially all available nitrogen in each case; however, onlyin flasks supplemented with approximately 1·8 minolesof KNO3 plus 0·6 mmole of NH4NO3 was the pH of the mediumunchanged. Thus, for every mmole of nitrogen assimilated, approximately0·6 mmole of dissociable protons must have been producedby the conversion of neutral sugars to carboxylic acids. Also,it was shown that a plant obtaining all of its nitrogen fromnitrate must neutralize or excrete approximately 0·5mmole of hydroxyl ion d–1. Conversely, the plant derivingall of its nitrogen from dinitrogen must excrete or neutralizeat least 0·8 mmole of hydrogen ion d–1 whereasthe plant deriving all of its nitrogen from aminonium must excreteor neutralize approximately 2·1 mmoles of hydrogen iond–1. Nevertheless, plants grown on medium supplementedwith 2·4 mol m–1 nitrate plus 0·6 mol m–3ammonium did not achieve a higher growth rate than plants grownon 3·0 mol m–3 nitrate. Key words: Glycine max, nitrogen fixation, nitrate utilization  相似文献   

2.
In studies of Trifolium repens nitrogen nutrition, the controlof nutrient solution pH using dipolar buffers, was evaluatedin tube culture under sterile conditions. Five buffers; MES,ADA, ACES, BES and MOPS with pK2s (20 °C) of 6.15, 6.60,6.90, 7.15 and 7.20 respectively, at a concentration of 2.0mol m–3, were provided to inoculated Trifolium repensgrowing in nutrient solution containing 7.13 mol m–3 nitrogenas (NH4)2SO4. Initial pH of each solution was adjusted to theappropriate buffer pK2 Two buffers, ADA and ACES completelyinhibited plant growth. The remaining buffers had little effectin limiting pH change, although plant dry matter was higherand nodule numbers lower in the presence of these buffers. MESand MOPS were supplied to nutrient solutions with and without7.13 mol m–3 (NH4)2SO4, at concentrations ranging from0–12 mol m–3. MES at 9 mol m–3 and 12 molm–3 reduced growth of plants reliant on the symbiosisfor providing nitrogen. The provision of MES to plants providedwith NH4+ significantly increased plant yield and reduced nodulenumber at all concentrations. MOPS did not affect plant yieldor nodule number. The use of dipolar buffers in legume nitrogennutrition studies is considered in terms of buffering capacity,and the side effects on plant growth and symbiotic development. Key words: Ammonium, Dipolar buffer, Nitrogen nutrition, pH control, Symbiosis, Trifolium repens  相似文献   

3.
Bean plants (Phaseolus vulgaris L. cv. Fardenlosa Shiny) werelabelled with carbon-11 via their first trifoliate leaves when3-weeks-old and the transient inhibitions of translocation causedby the application of ammonium chloride solutions (10 mol m–3)to a peeled region of stem were studied. At pH 6·5 theammonium was without effect. At pH 11·0 even a briefapplication inhibited translocation for many minutes, whilelonger applications inhibited translocation for considerablylonger. Solutions of 10 mol m–3 sodium chloride were withouteffect at either pH. At pH 6·5 ammonium chloride solution contains predominantlyammonium ions (NH4+) and at pH 11·0 predominantly dissolvedammonia gas (NH3). Hence we conclude that phloem transport withinbean stems is inhibited by dissolved ammonia gas but not ammoniumions. Key words: Phloem translocation, transient inhibition, ammonia, ammonium ion  相似文献   

4.
Allen, S. and Smith, J A. C. 1986. Ammonium nutrition in Ricinuscommunis: its effect on plantgrowth and the chemical compositionof the whole plant, xylem and phloem saps.—J. exp. Bot.37: 1599–1610. The growth and chemical composition of Ricinus communis cultivatedhydroponically on 12 mol m – 3 NO3-N were comparedwith plants raised on a range of NH4+-N concentrations. At NH4+-Nconcentrations between 0·5 and 4·0 mol m–3,fresh- and dry-weight yields of 62-d-old plants were not significantlydifferent from those of the NO3-N controls. Growth wasreduced at 0·2 mol m–3 NH4+-N and was associatedwith increased root. shoot and C: organic N ratios, suggestingthat the plants were N-limited. At 8·0 mol m–3NH4+-N, growth was greatly restricted and the plants exhibitedsymptoms of severe ‘NH4+ toxicity’. Plants growingon NH4+-N showed marked acidification of the rooting medium,this effect being greatest on media supporting the highest growthrates. Shoot carboxylate content per unit dry weight was lower at mostNH4+-N concentrations than in the NO3-N controls, althoughit increased at the lowest NH4+-N levels. Root carboxylate contentwas comparable on the two N sources, but also increased substantiallyat the lowest NH4+-N levels. N source had little effect on inorganic-cationcontent at the whole-plant level, while NO3 and carboxylatewere replaced by Cl as the dominant anion in the NH4+-N plants.This was reflected in the ionic composition of the xylem andleaf-cell saps, the latter containing about 100 mol m–3Cl in plants on 8·0 mol m–3 NH4+. Xylem-saporganic-N concentration increased more than threefold with NH4+-N(with glutamine being the dominant compound irrespective ofN source) while in leaf-cell sap it increased more than 12-foldon NH4+-N media (with arginine becoming the dominant species).In the phloem, N source had little or no effect on inorganic-cation,sucrose or organic-N concentrations or sap pH, but sap fromNH4+-N plants contained high levels of Cl and serine. Collectively, the results suggested that the toxic effects ofhigh NH4+ concentrations were not the result of medium acidification,reduced inorganic-cation or carboxylate levels, or restrictedcarbohydrate availability, as is commonly supposed. Rather,NH4+ toxicity in R. communis is probably the result of changesin protein N turnover and impairment of the photorespiratoryN cycle. Key words: Ricinus, ammonium nutrition, nitrate, whole-plant composition, xylem, Phloem, amino acids, carboxylate  相似文献   

5.
Nitrate reductase activity (NRA, in vivo assay) and nitrate(NO-3) content of root and shoot and NO-3 and reduced nitrogencontent of xylem sap were measured in five temperate cerealssupplied with a range of NO-3 concentrations (0·1–20mol m–3) and three temperate pasture grasses suppliedwith 0·5 or 5 0 mol m–3 NO-3 For one cereal (Hordeumvulgare L ), in vitro NRA was also determined The effect ofexternal NO-3 concentration on the partitioning of NO-3 assimilationbetween root and shoot was assessed All measurements indicatedthat the root was the major site of NO3 assimilation in Avenasatwa L, Hordeum vulgare L, Secale cereale L, Tnticum aestivumL and x Triticosecale Wittm supplied with 0·1 to 1·0mol m–3 NO-3 and that for all cereals, shoot assimilationincreased in importance as applied NO-3 concentration increasedfrom 1.0 to 20 mol m–3 At 5.0–20 mol m–3 NO3,the data indicated that the shoot played an important if notmajor role in NO-3 assimilation in all cereals studied Measurementson Lolium multiflorum Lam and L perenne L indicated that theroot was the main site of NO-3 assimilation at 0.5 mol m–3NO-3 but shoot assimilation was predominant at 5.0 mol m–3NO-3 Both NRA distribution data and xylem sap analysis indicatedthat shoot assimilation was predominant in Dactylis glomerataL supplied with 0.5 or 5.0 mol m–3 NO-3 Avena sativa L., oats, Hordeum vulgare L., barley, Secale cereale L., rye, x Triticosecale Wittm., triticale, Triticum aestivum L., wheat, Dactylis glomerata L., cocksfoot, Lolium multiflorum Lam., Italian ryegrass, Lolium perenne L., perennial ryegrass, nitrate, nitrate assimilation, nitrate reductase activity, xylem sap  相似文献   

6.
A comparison between two hydroponically-grown soybean genotypes(Glycine max [L.] Merr.) cv. Bragg and the supernodulating mutantnts 1007 was made in terms of dry matter accumulation, carbon,nitrogen, and mineral element distribution, 15N natural abundanceand the effect of short-term treatment with 4·0 mol m–3KNO3 on nitrogenase activity and respiration. Differences weremost pronounced in nodule dry weight and plant nitrogen content,both of which were recorded to be substantially elevated inthe mutant. Mineral element concentrations in different plantparts proved to be rather similar with the exception of Ca,found to be lower in leaves of the mutant, and Mn concentrationswhich were twice as high in roots of nts 1007. The values of15N natural abundance showed that both genotypes were equallydependent on nitrogen fixation when nitrate was absent. Theresults of the acetylene reduction assays indicated similarspecific nodule activity, while on a per plant basis nitrogenaseactivity of the mutant proved to be more than twice the amountof Bragg. This effect was also reflected in higher nodule respirationwhile root respiration remained below that of Bragg. Nitrate induced a substantial reduction in nitrogenase activitynot only in Bragg, but also in nts 1007. Nodule respiratoryactivity of Bragg was reduced by nitrate from 1·27 to0·34 mg C h–1 plant–1. In nts 1007 correspondingvalues were 2·70 to 1·52 mg C h–1 plant–1.Starch concentration in nodules was decreased in both genotypes,but nevertheless remained higher in nts 1007. Values for solublesugars in nodules even increased in the mutant in response tonitrate while the same treatment caused a reduction in Bragg.The data indicate that nitrogenase activities of Bragg and nts1007 are equally sensitive to short-term application of nitrate. Key words: Glycine max, C and N distribution, nitrate, root respiration, 15N natural abundance  相似文献   

7.
Potassium-Ammonium Uptake Interactions in Tobacco Seedlings   总被引:6,自引:0,他引:6  
Short-term (< 12 h) uptake experiments were conducted with6–7-week-old tobacco (Nicotiana tabacum L. cv. Ky 14)seedlings to determine absorption interactions between K+ andNH4+. At equal solution concentrations (0.5 mol m–3) netK+ uptake was inhibited 30–35% by NH4+ and NH4+ uptakewas decreased 9–24%. Removal of NH4+ resulted in completerecovery in K+ uptake rate, but NH4+ uptake rate did not recoverwhen K+ was removed. In both cases, inhibition of the uptakerate of one cation saturated as the concentration of the othercation was increased up to 0.5 mol m–3. The relative effectof K+-NH4+ interactions was not altered when Cl- was replacedwith SO42–, but the magnitudes of the uptake rates wereless in the absence of Cl-. The Vmax for NH4+ uptake was reducedfrom 128 to 105 µmol g–1 dry wt. h–1 in thepresence of 0.5 mol m–3 K+ and the Km for NH4+ doubledfrom 12 to 27 mmol m–3 in the presence of K+. The resultsof these K+-NH4+ experiments are interpreted as mixed-noncompetitiveinteractions. However, an enhanced efflux of K+ coupled to NH4+influx via an antiporter cannot be ruled out as contributingto the decrease in net K+ uptake. Key words: Nicotiana tabacum, K+, NH4+, Uptake interactions  相似文献   

8.
The effects of a range of applied nitrate (NO3) concentrations(0–20 mol m3) on germination and emergence percentageof Triticum aestivum L. cv. Otane were examined at 30, 60, 90and 120 mm sowing depths. Germination percentage was not affectedby either sowing depth or applied NO3 concentration whereasemergence percentage decreased with increased sowing depth regardlessof applied NO3 concentration. Nitrate did not affectemergence percentage at 30 mm sowing depth, but at 60 to 120mm depth, emergence percentage decreased sharply with an increasedapplied NO3 concentration of 0 to 1·0 mol m–3then decreased only slightly with further increases in appliedNO3 of about 5·0 mol m–3. Root and shoot growth, NO3 accumulation and nitrate reductaseactivity (NRA) of plants supplied with 0, 1·0 and 1·0mol m–3 NO3 at a sowing depth of 60 mm were measuredprior to emergence. The coleoptile of all seedlings opened withinthe substrate. Prior to emergence from the substrate, shootextension growth was unaffected by additional NO3 butshoot fr. wt. and dry wt. were both greater at 1·0 and1·0 mol m–3 NO3 than with zero NO3.Root dry wt. was unaffected by NO3. Nitrate concentrationand NRA in root and shoot were always low without NO3.At 1·0 and 10 mol m3 NO3, NO3 accumulatedin the root and shoot to concentrations substantially greaterthan that applied and caused the induction of NRA. Regardlessof the applied NO3 concentration, seedlings which failedto emerge still had substantial seed reserves one month afterplanting. Coleoptile length was substantially less for seedlingswhich did not emerge than for seedlings which emerged, but wasnot affected by NO3. It is proposed that (a) decreasedemergence percentage with increased sowing depth was due tothe emergence of leaf I from the coleoptile within the substrateand (b) decreased emergence percentage with additional NO3was due to the increased expansion of leaf 1 within the substrateresulting in greater folding and damage of the leaf. Key words: Triticum aestivwn L., nitrate, sowing depth, seedling growth, seedling emergence  相似文献   

9.
The influence of (NH4)2SO4 on 14C assimilation and cyclosisin internodal cells of Chara corallina was investigated. Severeinhibition of 14C assimilation was found at pH values above7·0, this inhibition being correlated with the exogenouslevel of NH3 rather than NH+4. Cyclosis was also affected athigher concentrations of (NH4)2SO4. This effect was similarlycorrelated with exogenous levels of NH3. 14C assimilation was inhibited non-competitively by (NH4)2SO4,the apparent Km being increased from 0·55 to 1·5mM. The results suggest that the site(s) of inhibition is locatedat the plasmalemma, rather than at the chloroplasts. (Evidencein support of in vivo uncoupling of photophosphorylation, bylow concentrations of (NH4)2SO4, was not obtained). Significant perturbation of the OH efflux pattern wasobserved as the level of (NH4)2SO4 was increased. Induced migrationof efflux sites indicates that NH3 may interfere with the cellularmechanism that controls OH transport. Using a cell-segmentisolating chamber it was shown that (NH4)2SO4 inhibited OHefflux rather than HCO3 transport. This inhibitory effectwas readily reversible. These data are discussed in terms of a possible relationshipbetween the observe NH4)2SO4 stimulation of 36Cl influxand the effect of this compound on 14C assimilation.  相似文献   

10.
Slater, R. J. and Bryant, J. A. 1987. RNA polymerase activityduring breakage of seed dormancy by low temperature treatmentof fruits of Acer platanoides (Norway maple).—J. exp.Bot. 38:1026–1032. Endogenous RNA polymerase activity has been characterized innuclei isolated from embryo axes of Acer platanoides. Optimalactivity was recorded at 4·0 mol m–3 MgCl2 and50 mol m–3 (NH4)2SO4 and total activity could be inhibitedby up to 30% by -amanitin. Stratification of fruits leads toa stimulation of RNA polymerase activity. A minimum of 3 d coldtreatment is required with at least 3-fold stimulation recordedafter 10 d at 4°C. The increased enzyme activity is resistantto -amanitin suggesting an effect on RNA polymerase I. Key words: Acer platanoides, RNA polymerase, seed dormancy  相似文献   

11.
The growth of four heathland species, two grasses (D. flexuosa,M. caerulea) and two dwarf shrubs (C. vulgaris, E. tetralix),was tested in solution culture at pH 4.0 with 2 mol m–3N, varying the N03/NH4+ ratio up to 40% nitrate. In addition,measurements of NRA, plant chemical composition, and biomassallocation were carried out on a complete N03/NH4+ replacementseries up to 100% nitrate. With the exception of M. caerulea, the partial replacement ofNH4+ by NO3 tended to enhance the plant's growth ratewhen compared to NH4+ only. In contrast to the other species,D. flexuosa showed a very flexible response in biomass allocation:a gradual increase in the root weight ratio (RWR) with NO3increasing from 0 to 100%. In the presence of NH4+, grassesreduced nitrate in the shoot only; roots did not become involvedin the reduction of nitrate until zero ambient NH4+. The dwarfshrubs, being species that assimilate N exclusively in theirroots, displayed an enhanced root NRA in the presence of nitrate;in contrast to the steady increase with increasing NO3in Calluna roots, enzyme activity in Erica roots followed arather irregular pattern. Free nitrate accumulated in the tissuesof grasses only, and particularly in D. flexuosa. The relative uptake ratio for NO3 [(proportion of nitratein N uptake)/(proportion of nitrate in N supply)] was lowestin M. caerulea and highest in D. flexuosa. Whereas M. caeruleaand the dwarf shrubs always absorbed ammonium highly preferentially(relative uptake ratio for NO3 <0.20), D. flexuosashowed a strong preference for NO3 at low external nitrate(the relative uptake ratio for N03 reaching a value of2.0 at 10% NO3). The ecological significance of thisprominent high preference for NO3 at low NO3/NH4+ratio by D. flexuosa and its consequences for soil acidificationare briefly discussed. Key words: Ammonium, heathland lants, N03/NH4+ ratio, nitrate, nitrate reductase activity, soil acidification, specific absorption rate  相似文献   

12.
Chickpea cultivar ILC 482 was inoculated with salt-tolerantRhizobium strain Ch191 in solution culture with different saltconcentrations added either immediately with inoculation or5 d later. The inhibitory effect of salinity on nodulation ofchickpea occurred at 40 dS m–1 (34.2 mol m–3 NaCl)and nodulation was completely inhibited at 7 dS m–1 (61.6mol m–3 NaCl); the plants died at 8 dS m–1 (71.8mol m–3 NaCl). Chickpea cultivar ILC 482 inoculated with Rhizobium strain Ch191spcstrwas grown in two pot experiments and irrigated with saline water.Salinity (NaCl equivalent to 1–4 dS m–1) significantlydecreased shoot and root dry weight, total nodule number perplant, nodule weight and average nodule weight. The resultsindicate that Rhizobium strain Ch191 forms an infective andeffective symbiosis with chickpea under saline and non-salineconditions; this legume was more salt-sensitive compared tothe rhizobia, the roots were more sensitive than the shoots,and N2 fixation was more sensitive to salinity than plant growth. Key words: Cicer arietinum, nodulation, N2 fixation, Rhizobium, salinity  相似文献   

13.
Two experiments were conducted to evaluate the effects of phenotypicrecurrent selection for high and low post-anthesis leaf-laminain vivo NRA on nitrate uptake, nitrate partitioning and in vitroNRA of seedling roots and leaves. In Experiment 1, intact plantsof cycle 0, 4, and 6 of the high and low NRA strains were grownon NH4-N for 11 d, then exposed to 1.0 mol m–3 KNO3, andcultures sampled at 6 h and 28 h (induction and post-inductionperiods). Nitrate uptake, tissue nitrate concentration and invitro NRA were determined. The pattern of response to selectionin seedling leaf NRA was similar to that observed for in vivoNRA of field grown plants. Leaf NRA increased between 6 h and28 h. Root NRA was not affected by selection or sampling time.Treatments differed in total fresh weight but not in reductionor uptake of nitrate per unit weight, indicating a lack of correspondencebetween NRA and reduction and supporting the idea that concomitantreduction by NR is not obligatorily linked to nitrate influxin the intact plant. In Experiment 2, dark-grown plants of cycle 0, and 6 of thehigh and low NRA strains were cultured without N, detopped onday 6, transferred the following day to 0-75 mol m–3 KNO3and sampled at 6 h and 28 h. In contrast to Experiment 1, selectionpopulations differed in nitrate reduction and root NRA, whichby 28 h reached higher average levels than root NRA of intactplants. Translocation and reduction were inversely related amongstrains within each sampling time. The high level of translocationin detopped plants of the low NRA strain was difficult to reconcilewith its low leaf NRA level of Experiment 1. It is suggestedthat nitrate transport in detopped roots is altered relativeto the intact system in a way which permits greater NRA inductionand nitrate reduction. The results indicate that nitrate partitioningby detopped root systems should be interpreted with caution. Key words: Zea, nitrate reductase activity, nitrate uptake, nitrate reduction, nitrate partitioning, selection  相似文献   

14.
Growth of two actinorhizal species was studied in relation tothe form of N supply in water culture. Non-nodulated bog myrtle(Myrica gale) and grey alder (Alnus incana) were grown withNH4+, NH4NO3 or NO3 (4 mol m–3 N). A nodulatedseries of bog myrtle was also cultivated in N-free medium. Relative growth rate (RGR), utilization rate of N, and shoot/rootratio were highest for the two species with the N completelysupplied as NH4+. In both species, nitrate was largely reducedin the roots and the presence of NO3 in combined-N supplyalways affected the RGR and N utilization rate negatively. BothN2 fixation and complete NO3 nutrition represented conditionsof relative N-deficiency resulting in relatively low tissue-Nconcentrations and a greater allocation of dry mass to the roots.The physiological N status of nodulated M. gale plants was comparativelygood, as indicated by a normal nodule weight ratio and a relativelyhigh N2-fixing rate per unit nodule mass. However, whole-plantN2-fixing capacity remained relatively low in comparison withacquisition rates of N in combined-N plants. The anion charge from the nitrate reduction was largely directlyexcreted as an OH efflux. H + /N ratios generally agreedwith the theory. In comparison with NH4+ nutrition, carboxylateconcentrations were higher in N2-fixing M. gale plants and theH + /N ratio in nodulated plants was less than unity below thevalue for ammonium plants as previously found for other actinorhizalspecies. Therefore, NH4+ should be an energetically more attractiveN source for actinorhizal plants than N2. The results agree with commonly accepted views on energeticsof N uptake and assimilation in higher plants and support theconcept of a basically similar physiological behaviour betweennon-legumes and legumes. Key words: Actinorhizal symbioses, ammonium, H+/OH efflux, nitrate, N2 fixation, NRA  相似文献   

15.
Whitehead, D. C. and Lockyer, D. R. 1986. The influence of theconcentration of gaseous ammonia on its uptake by the leavesof Italian ryegrass, with and without an adequate supply ofnitrogen to the roots.—J. exp. Bot. 38: 818–827. Plants of Italian ryegrass (Lolium multiflorum Lam.) were grownin pots of soil with two rates of 15N-labclled nitrate, oneproviding adequate, and the other less than adequate, N formaximum growth. After 25 d in a controlled environment cabinet,the plants were transferred to chambers and exposed for 33 dto NH3in the air at one of nine concentrations ranging from14 to 709 µg NH3 m–3. Increasing the concentrationof NH3 in the air increased the dry weight of the shoots ofplants grown at the lower but not the higher rate of nitrate.The content of total N in the plant shoots (% dry weight) waslinearly related to NH3 concentration; at 709 µg NH3 andin both sets of plants it was more than double the content at14 µg NH3 m–3. Calculations, based on 15N enrichment,indicated that the amount of N taken up from the NH3 per unitleaf area increased linearly with increasing concentration ofNH3 in the air uptake (µg dm–2 h–1) = 0.1009xat the lower rate of nitrate and 0-0829x at the higher rateof nitrate, where x is the concentration of NH3 in the air expressedas µg NH3m–3. The proportion of the total plant N that was derived from theNH3 ranged from 4?0% at a concentration of 14 µg NH3 m–3with the higher rate of nitrate addition to 77?5% at a concentrationof 709 µg m–3 with the lower rate of nitrate addition.The proportions of the total N in the water-insoluble proteinof the leaf tissue that were derived from nitrate and gaseousNH3 were similar to the proportions in the whole leaf material. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

16.
Growth-chamber studies were conducted to evaluate nitrogen assimilationby three hypernodulated soybean [Glycine max (L.) Merr.] mutants(NOD1–3, NOD2–4, NOD3–7) and the Williamsparent. Seeds were inoculated at planting and transplanted atday 7 to nutrient solution with 1 mol m–3 urea (optimizesnodule formation) or 5 mol m–3 NO3 (inhibits noduleformation). At 25 d after planting, separate plants were exposedto 15NO2 or 15NO3 for 3 to 48 h to evaluate N2 fixationand NO3 assimilation. Plant growth was less for hypernodulatedmutants than for Williams with both NO3 and urea nutrition.The major portion of symbiotically fixed 15N was rapidly assimilated(30 min) into an ethanol-soluble fraction, but by 24 h aftertreatment the ethanolinsoluble fraction in each plant part wasmost strongly labelled. Distribution patterns of 15N among organswere very similar among lines for both N growth treatments aftera 24 h 15N2 fixation period; approximate distributions were40% in nodules, 12% in roots, 14% in stems, and 34% in leaves.With urea-grown plants the totalmg 15N fixed plant–1 24h–1 was 1·18 (Williams), 1·40 (N0D1-3),107 (NOD2-4), and 0·80 (NOD3-7). The 5 mol m-3 NO3- treatmentresulted in a 95 to 97% decrease in nodule mass and 15N2 fixationby Williams, while the three mutants retained 30 to 40% of thenodule mass and 17 to 19% of the 15N2 fixation of respectiveurea-grown controls. The hypernodulated mutants, which had restrictedroot growth, absorbed less 15NO3- than Williams, irrespectiveof prior N growthcondition. The 15N from 15NO3- was primarilyretained in the soluble fraction of all plant parts through24 h. The 15N incorporation studies confirmed that nodule developmentis less sensitive to external NO3- in mutant lines than in theWilliams parent, and provide evidence that subsequent metabolismand distribution within the plant was not different among lines.These results further confirm that the hypernodulated mutantsof Williams are similar in many respects to the hyper- or supernodulatedmutants in the Bragg background, and suggest that a common mutationalevent affectingautoregulatory control of nodulation has beentargeted. Key words: Glycine max (L.) Merr., soybean, N2fixation, nitrate assimilation, nodulation mutants, 15N isotope  相似文献   

17.
Soybean [Glycine max (L.) Merrill] plants that had been subjectedto 15 d of nitrogen deprivation were resupplied for 10 d with1.0 mol m–3 nitrogen provided as NO3, NH4+, orNH4++NO3 in flowing hydroponic culture. Plants in a fourthhydroponic system received 1.0 mol m–3 NO3 duringboth stress and resupply periods. Concentrations of solublecarbohydrates and organic acids in roots increased 210 and 370%,respectively, during stress. For the first day of resupply,however, specific uptake rates of nitrogen, determined by ionchromatography as depletion from solution, were lower for stressedthan for non-stressed plants by 43% for NO3- resupply, by 32%for NH4+ + NO3 resupply, and 86% for NH4+ resupply. Whenspecific uptake of nitrogen for stressed plants recovered torates for non-stressed plants at 6 to 8 d after nitrogen resupply,carbohydrates and organic acids in their roots had declinedto concentrations lower than those of non-stressed plants. Recoveryof nitrogen uptake capacity of roots thus does not appear tobe regulated simply by the content of soluble carbon compoundswithin roots. Solution concentrations of NH4+ and NO3 were monitoredat 62.5 min intervals during the first 3 d of resupply. Intermittent‘hourly’ intervals of net influx and net effluxoccurred. Rates of uptake during influx intervals were greaterfor the NH4+ -resupplied than for the NO3 -resuppliedplants. For NH4+ -resupplied plants, however, the hourly intervalsof efflux were more numerous than for NO3 -resuppliedplants. It thus is possible that, instead of repressing NH4+influx, increased accumulation of amino acids and NH4+ in NH4+-resupplled plants inhibited net uptake by stimulation of effluxof NH4+ absorbed in excess of availability of carbon skeletonsfor assimilation. Entry of NH4+ into root cytoplasm appearedto be less restricted than translocation of amino acids fromthe cytoplasm into the xylem. Key words: Ammonium, nitrate, nitrogen-nutrition, nitrogen-stress, soybean  相似文献   

18.
Influx of nitrate into the roots of intact barley plants wasfollowed over periods of 1–15 min using nitrogen-13 asa tracer. Based on measurements taken over 15 min from a rangeof external nitrate concentrations (0·2–250 mmolm–3), the kinetic parameters of influx, Imax and Km, werecalculated. Compared with plants grown in the presence of nitrate throughout,plants that had been starved of N for 3 d showed a significantlygreater value ofImax for 13N-nitrate influx (by a factor of1·4–1·8), but a similar value of Km (12–14mmol m–3). Pre-treating N-starved plants with nitratefor about 5 h further increased the subsequent rate of 13N-nitrateinflux, but had little effect in the unstarved controls. Allowingfor this induction of additional nitrate transport, the differencein rates of nitrate influx in control and N-starved plants wassufficient to account for the previously-observed differencein net uptake by the two groups of plants. In barley plants grown without any exposure to nitrate, butwith ammonium as N-source, both Imax and Km for subsequent 13N-nitrateinflux were significantly decreased (by about one-half) comparedwith the corresponding nitrate-grown controls. The importance of changes in the rate of influx in the regulationof net uptake of nitrate is discussed. Key words: Ion transport, nitrate, influx, kinetic parameters, N-deficiency  相似文献   

19.
Various nitrate concentrations (0, 1, 2, 4, 8, 20, 50 mol m–3)were applied at weekly intervals for 10 weeks to the caesalpinioidlegume Chamaecrista fasciculata. Microscopic techniques andgeneral growth studies showed that nitrate affected both theplant and its rhizobial symbiosis. As the nitrate concentrationwas increased, nodule structure became increasingly disruptedeven though nitrate remained limiting to plant growth until8 mol m–3. Poly-ß-hydroxybutyrate (PHB) was observedusing transmission electron microscopy; as nitrate increasedfrom 0 to 2 mol m–3, the PHB stores were utilized Key words: Chamaecrista fasciculata, poly-ß-hydroxybutyrate, nitrogen fixation  相似文献   

20.
Two approaches to quantifying relationships between nutrientsupply and plant growth were compared with respect to growth,partitioning, uptake and assimilation of NO3 by non-nodulatedpea (Pisum sativum L. cv. Marma). Plants grown in flowing solutionculture were supplied with NO3 at relative addition rates(RAR) of 0·03, 0·06, 0·12, and 0·18d–1, or constant external concentrations ([NO3)of 3, 10, 20, and 100 mmol m–3 over 19 d. Following acclimation,relative growth rates (RGR)approached the corresponding RARbetween 0·03–0.12 d-1, although growth was notlimited by N supply at RAR =0.18 d-1. Growth rates showed littlechange with [NO3–] between 10–100 mmol m–3(RGR=0·15 –0·16 d-1). The absence of growthlimitation over this range was suggested by high unit absorptionrates of NO3, accumulation of NO3 in tissues andprogressive increases in shoot: root ratio. Rates of net uptakeof NO3 from 1 mol m–3 solutions were assessed relativeto the growth-related requirement for NO3, showing thatthe relative uptake capacity increased with RGR between 0·03–0·06d–1 , but decreased thereafter to a theoretical minimumvalue at RGR  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号