首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initial step of virus-cell interaction was studied by immunofluorescence microscopy. Single particles of murine leukemia virus (MLV) vectors and human immunodeficiency virus (HIV) were visualized by immunofluorescence. Fluorescent dots representing single virions could be localized by staining of capsid proteins (CA) or surface envelope proteins (SU) after fixation of virus supernatants. This technique can be used to determine particle concentration in viral supernatants and also to study virus-cell interaction. We investigated the role of the Env-receptor interaction for the initial binding event between the cell and the viral particles. Ecotropic MLV vector particles were shown to bind to human cells which do not express the specific viral receptor. In addition, MLV particles defective for Env were shown to bind the cells similarly to infectious MLV. Time course experiments of virus-cell binding and dissociation showed identical profiles for infectious and Env-defective MLV particles and suggested that MLV Env is not involved in the early phases of attachment of virus to cells. The possible implication of cellular factors in enhancing viral binding and infectivity is discussed.  相似文献   

2.
3.
During the maturation of two strains of herpes simplex virus type 1 (VR3 and Patton), intramembrane changes were detected with the freeze-fracture technique in the viral envelope and the infected cell plasma membrane, and these changes were compared with data obtained from thin sections. Regardless of the strain, the inner leaflet of the viral envelope of extracellular virions was characterized by a density of intramembrane particles (IMP) three times larger than the host nuclear and plasma membrane. Addition of IMP, which probably represent virus-coded proteins, was detected in the viral envelope only after budding from the nuclear membrane, whereas it occurred during envelopment of capsids at cytoplasmic vacuoles. Fused membranes also showed one of their fracture faces covered with a high density of IMP similar to that of the mature virion envelope. The internal side of the membrane leaflet bearing these numerous particles was always characterized by the presence of an electron-dense material in thin sections. In addition, the plasma membrane of fibroblasts and Vero cells showed strain-specific changes: patches of closely packed IMP were observed with the VR3 strain, whereas ridges almost devoid of IMP characterized the plasmalemma of cells infected with the Patton strain. These intramembrane changes, however, were not observed as early as herpes membrane antigens. Thus, application of the freeze-fracture technique to herpes simplex virus type 1-infected cells revealed striking structural differences between viral and uninfected cell membranes. These differences are probably related to insertion and clustering of virus-coded proteins in the hydrophobic part of the membrane bilayer.  相似文献   

4.
X Lu  T M Block    W H Gerlich 《Journal of virology》1996,70(4):2277-2285
The human hepatoblastoma cell line HepG2 produces and secretes hepatitis B virus (HBV) after transfection of cloned HBV DNA. Intact virions do not infect these cells, although they attach to the surface of the HepG2 cell through binding sites in the pre-S1 domain. Entry of enveloped virions into the cell often requires proteolytic cleavage of a viral surface protein that is involved in fusion between the cell membrane and the viral envelope. Recently, we observed pre-S-independent, nonspecific binding between hepatitis B surface (HBs) particles and HepG2 cells after treatment of HBs antigen particles with V8 protease, which cleaves next to a putative fusion sequence. Chymotrypsin removed this fusion sequence and did not induce binding. In this study, we postulate that lack of a suitable fusion-activating protease was the reason why the HepG2 cells were not susceptible to HBV. To test this hypothesis, virions were partially purified from the plasma of HBV carriers and treated with either staphylococcal V8 or porcine chymotrypsin protease. Protease-digested virus lost reactivity with pre-S2-specific antibody but remained morphologically intact as determined by electron microscopy. After separation from the proteases, virions were incubated with HepG2 cells at pH 5.5. Cultures inoculated with either intact or chymotrypsin-digested virus did not contain detectable levels of intracellular HBV DNA at any time following infection. However, in cultures inoculated with V8-digested virions, HBV-specific products, including covalently closed circular DNA, viral RNA, and viral pre-S2 antigen, could be detected in a time-dependent manner following infection. Immunofluorescence analysis revealed that 10 to 30% of the infected HepG2 cells produced HBV antigen. Persistent secretion of virus by the infected HepG2 cells lasted at least 14 days and was maintained during several reseeding steps. The results show that V8-digested HBV can productively infect tissue cultures of HepG2 cells. It is suggested that proteolysis-dependent exposure of a fusion domain within the envelope protein of HBV is necessary during natural infection.  相似文献   

5.
Antinone SE  Smith GA 《Journal of virology》2006,80(22):11235-11240
Alphaherpesvirus infection of the mammalian nervous system is dependent upon the long-distance intracellular transport of viral particles in axons. How viral particles are effectively trafficked in axons to either sensory ganglia following initial infection or back out to peripheral sites of innervation following reactivation remains unknown. The mechanism of axonal transport has, in part, been obscured by contradictory findings regarding whether capsids are transported in axons in the absence of membrane components or as enveloped virions. By imaging actively translocated viral structural components in living peripheral neurons, we demonstrate that herpesviruses use two distinct pathways to move in axons. Following entry into cells, exposure of the capsid to the cytosol resulted in efficient retrograde transport to the neuronal cell body. In contrast, progeny virus particles moved in the anterograde direction following acquisition of virion envelope proteins and membrane lipids. Retrograde transport was effectively shut down in this membrane-bound state, allowing for efficient delivery of progeny viral particles to the distal axon. Notably, progeny viral particles that lacked a membrane were misdirected back to the cell body. These findings show that cytosolic capsids are trafficked to the neuronal cell body and that viral egress in axons occurs after capsids are enshrouded in a membrane envelope.  相似文献   

6.
Nonoccluded baculovirus-and filamentous virus-like particles were found in nuclei of hemocytes or midgut cells of field-collected spotted cucumber beetles. Each type of particle was associated with a different type of virogenic stroma containing various viral components similar to those referred to as capsid, nucleocapsid, viroplasm, and viral envelope in other known baculovirus infections. Nucleocapsids of the virus which occured only in hemocytes were rod-shaped particles approximately 230 nm long and 52 nm wide and were enveloped singly by a trilaminar unit membrane. Enveloped and partly enveloped particles appeared to be released from the nucleus to the cytoplasm by budding through the nuclear envelope acquiring additional membranes. The nucleocapsids of the virus which occurred only in nuclei of midgut cells were filamentous particles with an average diameter of 25 nm and variable length up to 2 μm. Some extremely long particles were bent almost 360° near the middle, resulting in a hairpin-like configuration. The particles were always enveloped singly. No particles budding through the nuclear envelope were observed.  相似文献   

7.
Human lymphoblastoid Raji cells, which do not produce virus, supported replication of Epstein-Barr virus (EBV) upon superinfection. Early antigen, viral capsid antigen, and virions were produced in Raji cells superinfected with EBV. Viral DNA replicated under complete inhibition of host cell DNA synthesis to the extent that a few micrograms of EBV DNA were recovered from 107 superinfected Raji cells, corresponding to 5,000 viral genomes/cell. Homology of the synthesized viral DNA to parental EBV DNA was more than 90%. Virions produced by the Raji cells contained a 55S DNA but failed to induce early antigen, viral capsid antigen, and viral DNA synthesis after a second superinfection of Raji cells.  相似文献   

8.
R Harson  C Grose 《Journal of virology》1995,69(8):4994-5010
The pathway of envelopment and egress of the varicella-zoster virus (VZV) and the primary site of viral production within the epidermal layer of the skin are not fully understood. There are several hypotheses to explain how the virus may receive an envelope as it travels to the surface of the monolayer. In this study, we expand earlier reports and provide a more detailed explanation of the growth of VZV in human melanoma cells. Human melanoma cells were selected because they are a malignant derivative of the melanocyte, the melanin-producing cell which originates in the neural crest. We were able to observe the cytopathic effects of syncytial formation and the pattern of egress of virions at the surfaces of infected monolayers by scanning electron microscopy and laser-scanning confocal microscopy. The egressed virions did not appear uniformly over the syncytial surface, rather they were present in elongated patterns which were designated viral highways. In order to document the pathway by which VZV travels from the host cell nucleus to the outer cell membrane, melanoma cells were infected and then processed for examination by transmission electron microscopy (TEM) at increasing intervals postinfection. At the early time points, within minutes to hours postinfection, it was not possible to localize the input virus by TEM. Thus, viral particles first observed at 24 h postinfection were considered progeny virus. On the basis of the TEM observations, the following sequence of events was considered most likely. Nucleocapsids passed through the inner nuclear membrane and acquired an envelope, after which they were seen in the endoplasmic reticulum. Enveloped virions within vacuoles derived from the endoplasmic reticulum passed into the cytoplasm. Thereafter, vacuoles containing nascent enveloped particles acquired viral glycoproteins by fusion with vesicles derived from the Golgi. The vacuoles containing virions fused with the outer plasma membrane and the particles appeared on the surface of the infected cell. Late in infection, enveloped virions were also present within the nuclei of infected cells; the most likely mechanism was retrograde flow from the perinuclear space back into the nucleus. Thus, this study suggests a role for the melanocyte in the pathogenesis of VZV infection, because all steps in viral egress can be accounted for if VZV subsumes the cellular pathways required for melanogenesis.  相似文献   

9.
A guinea pig herpesvirus (GPHV) has consistently been isolated from leukemic lymphoblasts of strain-2 guinea pigs. GPHV is serologically related to the guinea pig herpes-like virus isolated by Hsiung and Kaplow. The virions of GPHV consist of an icosahedral capsid containing a dense nucleoprotein core enclosed in a double-layered membrane. The average diameters of GPHV virion and capsid were 166 and 101 nm, respectively. Studies on the morphogenesis of GPHV revealed that, as in other herpesvirus infections, only the naked capsids with or without the nucleoprotein core were found in the infected cell nuclei; it was also learned that the virion acquired its envelope by budding from the nuclear membrane of the infected cells. However, GPHV-infected cell nuclei also contained dense fibrous rods, resembling nucleo-protein core outside the capsids, and tubules resembling viral core protein. The capsids were often embedded in dense granular antigen. GPHV deoxyribonucleic acid (DNA) has a density of 1.716 g/ml in cesium chloride compared to herpes simplex virus DNA (rho = 1.728 g/ml) and cellular DNA (rho = 1.700 g/ml).  相似文献   

10.
The surface distribution of the envelope glycoproteins of influenza, Sendai and Vesicular Stomatitis viruses was studied by immunofluorescence and immunoelectromicroscopy in infected epithelial cell monolayers, from which these viruses bud in a polarized fashion. It was found that before the onset of viral budding, the envelope proteins are exclusively localized into the same plasma membrane domains of the epithelial cells from which the virions ultimately bud: the glycoproteins of influenza and Sendai were detected at the apical surface, while the G protein of Vesicular Stomatitis virus was concentrated at the basolateral region. On the other hand, Sendai virus nucleocapsids, which can be easily identified in the cytoplasm before viral assembly, could be observed throughout the cell, not showing any preferential localization near the surface that the virions utilize for budding. These results are consistent with a model in which the asymmetric distribution of viral envelope proteins, rather than a polarized delivery of nucleocapsids, directs the polarity of viral budding. Furthermore, the asymmetric surface localization of viral glycoproteins suggests that these proteins share with intrinsic surface proteins of epithelial cells common biogenetic mechanisms and informational features or "sorting out" signals that determine their compartmentalization in the plasma membrane.  相似文献   

11.
Primary envelopment of several herpesviruses has been shown to occur by budding of intranuclear capsids through the inner nuclear membrane. By subsequent fusion of the primary envelope with the outer nuclear membrane, capsids are released into the cytoplasm and gain their final envelope by budding into vesicles in the trans-Golgi area. We show here that the product of the UL34 gene of pseudorabies virus, an alphaherpesvirus of swine, is localized in transfected and infected cells in the nuclear membrane. It is also detected in the envelope of virions in the perinuclear space but is undetectable in intracytoplasmic and extracellular enveloped virus particles. Conversely, the tegument protein UL49 is present in mature virus particles and absent from perinuclear virions. In the absence of the UL34 protein, acquisition of the primary envelope is blocked and neither virus particles in the perinuclear space nor intracytoplasmic capsids or virions are observed. However, light particles which label with the anti-UL49 serum are formed in the cytoplasm. We conclude that the UL34 protein is required for primary envelopment, that the primary envelope is biochemically different from the final envelope in that it contains the UL34 protein, and that perinuclear virions lack the tegument protein UL49, which is present in mature virions. Thus, we provide additional evidence for a two-step envelopment process in herpesviruses.  相似文献   

12.
Herpesviruses acquire a primary envelope by budding of capsids at the inner leaflet of the nuclear membrane. They then traverse into the cytoplasm after fusion of the primary envelope with the outer leaflet of the nuclear membrane. In the alphaherpesvirus pseudorabies virus (PrV), the latter process is impaired when the US3 protein is absent. Acquisition of final tegument and envelope occurs in the cytoplasm. Besides the capsid components, only the UL31 and UL34 gene products of PrV have unequivocally been shown to be part of primary enveloped virions, whereas they lack several tegument proteins present in mature virions (reviewed by T. C. Mettenleiter, J. Virol. 76:1537-1547, 2002). Using immunoelectron microscopy, we show that the US3 protein is present in primary enveloped as well as in mature virions. It is also detectable in intracytoplasmic inclusions produced in the absence of other viral tegument components or envelope-associated glycoproteins. In particular, inclusions formed in the absence of the inner tegument protein UL37 contained the US3 protein. Thus, the US3 protein is a tegument component of both forms of enveloped alphaherpes virions. We hypothesize that US3 protein in primary virions modulates deenvelopment at the outer leaflet of the nuclear membrane and is either lost from primary virions during nuclear egress and subsequently reacquired early during tegumentation or is retained during transit of the nucleocapsid through the nuclear membrane.  相似文献   

13.
African green monkey kidney cells infected by simian virus 40 were analyzed for the presence of the major capsid protein (capsid protein I) by immunological and radiolabeling techniques. Antisera with different specificities were prepared by immunization with intact or denatured viral particles. Antisera prepared against intact virus reacted by complement fixation with viral particles and with an 8S subunit containing the capsid protein I. Antisera prepared against denatured viral particles reacted with unassembled capsid protein(s) as well as with viral particles. These antisera were used to detect 8S viral subunits or unassembled viral capsid protein in soluble extracts of infected cells after centrifugation at 100,000 x g to remove viral particles. The soluble antigen pool was found to be small during infection with wild-type virus or a temperature-sensitive mutant deficient in the synthesis of viral particles. Pulse-chase experiments, performed at a high multiplicity of infection, also indicated a small pool of nonparticle capsid protein I. Radioactive lysine was incorporated into capsid protein I of virus particles during a 2-hr pulse. A subsequent chase with excess unlabeled lysine resulted in only a slight increase in the radio-activity found in capsid protein I of viral particles. Furthermore, in the same experiments, capsid protein I was incorporated preferentially into empty shells during the pulse with a shift in radioactivity to intact virions during the chase period, indicating a possible precursor relationship between the two types of virus particles.  相似文献   

14.
Role of nuclear pore complex in simian virus 40 nuclear targeting.   总被引:9,自引:2,他引:7       下载免费PDF全文
Cytoplasmically injected simian virus 40 (SV40) virions enter the nucleus through nuclear pore complexes (NPCs) and can express large T antigen shortly thereafter (J. Clever, M. Yamada, and H. Kasamatsu, Proc. Natl. Acad. Sci. USA 88:7333-7337, 1991). The nuclear import of the protein components of introduced SV40 was reversibly arrested by chilling and energy depletion, corroborating our previous observation that the nuclear entry of injected SV40 is blocked in the presence of wheat germ agglutinin and an antinucleoporin monoclonal antibody (mAb414), general inhibitors of NPC-mediated import. The nuclear accumulation of virion protein components and large T antigen in nonpermissive NIH 3T3 cells was similar to that in the permissive host, indicating that the ability to use NPCs as a route of nuclear entry appears to be a general property of the injected virus. Injected virions were capable of completing their lytic cycle and forming plaques in permissive cells. During the early phase of SV40 infection, the cytoplasmic injection of mAb414 effectively blocked nuclear T-antigen accumulation for up to 8 h of infection but had very little effect after 12 h of infection. The time-dependent interference with nuclear T-antigen accumulation by the antinucleoporin antibody is consistent with the hypothesis that the infecting virions enter the nucleus through NPCs. The interference study also suggests that the early phase of infection consists of at least two steps: a step for virion cell entry and intracytoplasmic trafficking and a step for virion nuclear entry followed by large-T-antigen gene expression and subsequent nuclear localization of the gene product. Virions were visualized as electron-dense particles in ultrathin sections of samples in which transport was permitted or arrested. In the former cells, electron-dense particles were predominantly observed in the nucleus. The virions were distributed randomly and nonuniformly in the nucleoplasm but were not observed in heterochromatin or in nucleoli. In the latter cells, the electron-dense particles were seen intersecting the nuclear envelope, near the inner nuclear membrane, and in NPCs. In tangential cross sections of NPCs, which appeared as donut-shaped structures, a spherical electron-dense particle was observed in the center of the structure. Immunoelectron microscopy revealed that NPCs were selectively decorated with 5-nm colloidal gold particles-anti-Vp1 immunoglobulin G at the cytoplasmic entrance to and in NPCs, confirming that the morphologically observed electron-dense particles in NPCs contain the viral structural protein. These results support the hypothesis that the nuclear import of SV40 is catalyzed through NPCs by an active transport mechanism that is similar to that of other karyophiles.  相似文献   

15.
Electron Microscopy of Measles Virus Replication   总被引:15,自引:5,他引:10       下载免费PDF全文
Replication of measles virus in HeLa cells was examined by electron microscopy with ultrathin sectioning and phosphotungstic acid negative staining methods. The cytoplasmic inclusion bodies consisted of masses of helical nucleocapsid which was similar in structure to the nucleocapsid found in measles virions. The cytoplasmic helical nucleocapsid appeared to align near the HeLa cell membrane, and the membrane differentiated into the internal membrane of the viral envelope and the outer layer of the short projections. The viral particles were released by a budding process involving incorporation into the viral envelope of membrane which was contiguous to but morphologically altered from the membrane of the HeLa cells. The intranuclear inclusion bodies were composed of tubular structures similar to those found in the cytoplasmic inclusion bodies. These structures aggregated to crystalline arrangement. The relationship between nuclear inclusion body and replication of measles virus was not clear.  相似文献   

16.
During the cytoplasmic maturation of African swine fever virus (ASFV) within the viral factories, the DNA-containing core becomes wrapped by two shells, an inner lipid envelope and an outer icosahedral capsid. We have previously shown that the inner envelope is derived from precursor membrane-like structures on which the capsid layer is progressively assembled. In the present work, we analyzed the origin of these viral membranes and the mechanism of envelopment of ASFV. Electron microscopy studies on permeabilized infected cells revealed the presence of two tightly apposed membranes within the precursor membranous structures as well as polyhedral assembling particles. Both membranes could be detached after digestion of intracellular virions with proteinase K. Importantly, membrane loop structures were observed at the ends of open intermediates, which suggests that the inner envelope is derived from a membrane cisterna. Ultraestructural and immunocytochemical analyses showed a close association and even direct continuities between the endoplasmic reticulum (ER) and assembling virus particles at the bordering areas of the viral factories. Such interactions become evident with an ASFV recombinant that inducibly expresses the major capsid protein p72. In the absence of the inducer, viral morphogenesis was arrested at a stage at which partially and fully collapsed ER cisternae enwrapped the core material. Together, these results indicate that ASFV, like the poxviruses, becomes engulfed by a two-membraned collapsed cisterna derived from the ER.  相似文献   

17.
Simian virus 40 (SV40) induces cell division in microcultures of sparsely plated nongrowing mouse BALB/3T3 cells during acute infection at moderate multiplicities of infection (MOI = 10–100). The infected cells are killed when a MOI of 1,000 is used. SV40 tumor (T) antigen is synthesized in the infected cells, but viral DNA, virion antigen, and progeny virions are not synthesized (abortive infection). The addition of exogenous dibutyryl adenosine 3′-5′-monophosphate (dbcAMP) at the time of infection stimulates the SV40-induced cell division at all MOI and inhibits SV40-induced cell death at high MOI. The percentage of T antigen-positive cells, as monitored by immunofluorescence, is also increased by the addition of dbcAMP at the time of infection. This regulation of SV40-induced cell division and T antigen formation by exogenous dbcAMP occurs within the first 6 hr after infection at 37° C and is dependent upon both the MOI and the concentration of added dbcAMP. The addition of dbcAMP to productively infected TC7 monkey cells has little effect on the SV40-induced cell death or T antigen formation.  相似文献   

18.
19.
Herpes virions are amongst the most complex virus particles: they comprise in excess of thirty virally encoded proteins, and also contain cellular components. Capsid formation and the cleavage and encapsidation of replicated viral DNA occur in the nucleus and resemble similar processes in tailed dsDNA (double-stranded DNA) bacteriophages, which indicates they might have common ancestry. In contrast, final virion maturation takes place in the cytoplasm. Nucleocapsids gain access to this compartment by envelopment at the inner nuclear membrane, which involves the interaction between viral and cellular proteins in order to locally alter nuclear architecture. Fusion of the primary viral envelope with the outer nuclear membrane results in translocation of the nucleocapsid to the cytoplasm. Here, the majority of the tegument - a structure, composed of a multitude of different proteins, that links the capsid and the envelope - is added to nucleocapsids, which obtain their final envelope by budding into glycoprotein-containing Golgi-derived vesicles. Thus, herpesvirus morphogenesis proceeds in two different cellular compartments, involving different viral and cellular proteins.  相似文献   

20.
Studies with many viruses have revealed that viral specific protein synthesis is an obligatory step in generating antigens on target cells for antiviral cytotoxic T lymphocytes. This has been most clearly demonstrated with DI particles, virions that are structurally complete but lack infectious RNA. Adsorption of such particles onto target cell membranes does not render these cells susceptible to lytic attack by antiviral effector cells, unless some viral protein synthesis transpires. However, some viruses, such as Sendai virus, circumvent the requirement for viral protein synthesis via fusion of the viral envelope with the target cell membrane, a process mediated by a specialized fusion protein. Once inserted into the lipid bilayer, it is likely that viral components and self H-2 noncovalently associate so that the complex can be recognized by antiviral cytotoxic T cells. This idea is supported by the demonstration that viral proteins and H-2 containing membrane proteins, incorporated into reconstituted membrane vesicles or liposomes are recognized by cytotoxic T cells. These data further show that native rather than altered viral and H-2 molecules are the moieties recognized. Associations between antigen and H-2 have been detected by a variety of techniques and in some cases are not random but selective; that is, viral antigens perferentially associate with some H-2 alleles and not others. In summary, these findings indicate that although viral antigens are present in the mature virions, these components are not recognized by antiviral killer cells until integrated into the plasma membrane. This may be achieved either through direct fusion of the viral envelope with the target cell or following viral protein synthesis and insertion of viral antigens into the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号