首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomato strains were grown under low-K stress (71 μM K) over a wide range of external Na levels (from 0.014 to 27.8 mM Na) to measure strain response in Na substitution capacity in relation to Na concentration. Relative differences among strains for Na substitution capacity were similar at all Na levels except for the minus Na control treatment. Successive doubling of external Na concentration over the range of Na levels tested resulted in a positive linear response in plant dry weight, under low-K stress, with a similar slope for all five strains. The five strains also were grown at a toxic Na level (87 mM Na) under low K and adequate K conditions. Plant dry weight was not reduced at the toxic Na level relative to the minus Na control when the strains were grown under low-K stress; however, plant dry weight was reduced an average of fifty-five percent at the toxic Na level relative to the control when the strains were grown under adequate K conditions. There was no relationship between Na substitution capacity of strains grown under low-K stress and tolerance to toxic Na levels under adequate K conditions.  相似文献   

2.
One hundred tomato strains, representing widely diverse geographic areas, were evaluated in a sand-zeolite culture medium for their response to both low (0.25 mM) and adequate (1.0 mM) K levels. Three types of strains differing in K acquisition were classified: (1) efficient strains characterized by their ability to acquire K under low-K stress and with dry matter accumulation comparable to the strains grown under adequate-K supply, (2) inefficient strains that grew well under adequate-K supply but with a low capacity to acquire K at low-K stress and correspondingly lesser dry weight production, and (3) slowly growing strains featured by low K content in tissue and low dry matter accumulation irrespective of external K levels. The efficient and slowly growing strains came mostly from South and Central America, where tomato originated and was domesticated. Strains from other regions, however, mostly showed inefficiency in K acquisition. Two distinct features associated with the efficiency of K acquisition were identified. One was the proliferation of root length and another was high net K-influx rates per unit root length under low-K stress. Our results suggested that mechanisms for efficient acquisition of nutrients were lost during the cultivation of plants, and centers of plant origin and domestication contain valuable genetic resources for improving plant efficiency in nutrient acquisition.  相似文献   

3.
棘孢木霉菌对钠胁迫的生理响应机制   总被引:1,自引:0,他引:1  
[背景]棘孢木霉菌制剂被广泛应用于生物防治和次生盐渍化土壤的微生物修复,但是关于棘孢木霉在盐渍化胁迫条件下生长的耐盐机理及其富集盐离子的能力尚缺乏深入研究.[目的]揭示一株耐盐棘孢木霉菌(Trichoderma asperellum)CTCCSJ-W-SBW10264(T264)对钠胁迫的生理响应机制及其对钠离子的吸附...  相似文献   

4.
燕江伟  李昌晓  崔振  刘媛 《生态学报》2017,37(21):7242-7250
为探究干旱条件下,互叶醉鱼草(Buddleja alternifolia Maxim.)幼苗对重金属镉胁迫的生长及光合生理响应机制,以两年生互叶醉鱼草幼苗为试验材料,设置对照与干旱两个水分处理组(土壤相对含水率分别为:65%—60%,35%—30%),每个水分处理条件下再分别设置3个镉处理浓度(0.28、(0.6+0.28)、(1.2+0.28)mg/kg),共6个处理。测定不同水分及镉处理对互叶醉鱼草生长、生物量、光合参数及体内重金属含量的影响。结果表明:干旱与镉复合胁迫下植物的存活率为100%。镉胁迫、干旱与镉复合胁迫均不同程度抑制了互叶醉鱼草幼苗生长、生物量积累、植株的光合作用及叶绿素含量,且其光合和叶绿素含量的降幅明显大于单一镉胁迫。镉胁迫下,互叶醉鱼草幼苗单株最高镉富集量为69.33 mg/kg,而复合胁迫下单株最高镉富集量为50.68 mg/kg。以上结果表明:干旱胁迫能够加重镉胁迫对植物的影响,使复合胁迫下互叶醉鱼草生长、光合生理及镉富集能力下降。但单一镉胁迫下,互叶醉鱼草对镉具有更强的耐受性,并有较高的生物富集能力,且干旱与Cd复合胁迫下互叶醉鱼草幼苗仍有一定的镉积累量。因此在干旱半干旱区园林绿化以及Cd污染地区的生态建设中,互叶醉鱼草是一种具有巨大应用潜力和前景的灌木树种。  相似文献   

5.
Vibrio parahaemolyticus mutants lacking three Na+/H+ antiporters (NhaA, NhaB, NhaD) were constructed. The DeltanhaA strains showed significantly higher sensitivity to LiCl regarding their growth compared to the parental strain. The DeltanhaA and DeltanhaB strains exhibited higher sensitivities to LiCl. The mutant XACabd lacking all of the three antiporters could not grow in the presence of 500 mM LiCl at pH 7.0, or 50 mM at pH 8.5. The XACabd mutant was also sensitive to 1.0 M NaCl at pH 8.5. These results suggest that Na+/H+ antiporters, especially NhaA, are responsible for resistance to LiCl and to high concentrations of NaCl. Reduced Na+/H+ and Li+/H+ antiport activities were observed with everted membrane vesicles of DeltanhaB strains. However, Li+/H+ antiport activities of DeltanhaB strains were two times higher than those of DeltanhaA strains when cells were cultured at pH 8.5. It seems that expression of nhaA and nhaB is dependent on medium pH to some extent. In addition, HQNO (2-heptyl-4-hydroxyquinoline N-oxide), which is a potent inhibitor of the respiratory Na+ pump, inhibited growth of XACabd, but not of the wild type strain. Moreover, survival rate of XACabd under hypoosmotic stress was lower than that of wild type strain. It is likely that the Na+/H+ antiporters are involved in osmoregulation under hypoosmotic stress. Based on these findings, we propose that the Na+/H+ antiporters cooperate with the respiratory Na+ pump in ionic homeostasis in V. parahaemolyticus.  相似文献   

6.
Seedlings of Aneurolepidium chinense (Trin.) Kitag. were subjected to stress with 30 kinds of 50 to 350 mmol/L of salt mixture which were composed of NaC1, NaHCO3, Na2SO4, and Na2CO3 in various proportion. The results showed that all the responded strains, such as changes in the relative growth rate (RGR), K+ and Na+ contents, content of proline accumulation, and leave electrolyte leakage rate, were aggravated with the increasing salt concentrations and the proportion of the basic salts. The strain reaction from high pH caused by the basic salt was closely related to salinity. The high pH reaction was weaker when the salinity was lower and became progressively stronger intensely with the increasing salinity. The results indicated that there were actually two stresses, the salt and the alkaline stress in the mixed salt stress. It was reasonable to consider the total salt concentration as the strength value of salt stress and the buffer capacity as the strength value of alkaline stress. When the alkaline stress was weak, the strain effect was mainly associated with the total salt concentration, but the buffer capacity became the dominant factor effecting strain with the increasing alkaline stress.  相似文献   

7.
Two strains of Bradyrhizobium japonicum, recognizable by their intrinsic resistance to high levels of antibiotics and their serological features were introduced into three calcareous soils under field conditions. These strains were re-isolated 16 or 20 years later and compared with the parental strains kept lyophilized. In the Dijon location, the survival was high although soybean was never grown in the field. But the B. japonicum completely disappeared in the Montpellier field after 10 years under vineyard. In the Toulouse field after the two initially introduced strains, inoculation of subsequent soybean crops with a new strain enabled this strain to occupy 70–80% of the nodules; these results suggest that under such conditions the problem of competition can be solved by repeated inoculation. In this field, the number of introduced B. japonicum remained high during 4 years without soybeans, but a new inoculation would be necessary after 5 years. In the two fields where the survival was high, the two strains remained at about the same relative level as at introduction, there was no detectable exchange of characters between them. With regards to agronomic characteristics, there were no important changes in the competitivity of the strains. Among the eight field isolates tested in a greenhouse for efficiency by comparison with eight lyophilized isolates, seven showed no significant difference for the total weight of soybean or seed yield but one field isolate showed a loss of efficiency corresponding to 27% less seed weight. This long-term experiment allowed us to conclude that the B. japonicumstrains used were stable for many characters, but variations in efficiency may rarely occur.  相似文献   

8.
The promoter region of the pur operon, which contains 12 genes for inosine monophosphate biosynthesis from phosphoribosylpyrophosphate, and the purA gene, encoding the adenylosuccinate synthetase, were compared among wild-type and three purine-producing Bacillus subtilis strains. A single nucleotide deletion at position 55 (relative to translation start site) in purA gene was found in a high inosine-producing strain and in a high guanosine-producing strain, which correlates with the absence of adenylosuccinate synthetase activity in these strains. Within the pur operon promoter of high guanosine-producing strain, in addition to a single nucleotide deletion in PurBox1 and a single nucleotide substitution in PurBox2, there were 4 substitutions in the flanking region of the PurBoxes and 32 nucleotide mutations in the 5′ untranslated region. These mutations may explain the purine accumulation in purine-producing strains and be helpful to the rational design of high-yield recombinant strains.  相似文献   

9.
Plant growth promoting rhizobacteria (PGPR) can enhance plant growth by alleviating soil stresses. Although previously investigated, some new interesting details are presented regarding the alleviating affects of Azospirillum sp. on wheat growth under drought stress in this research work. We hypothesized that the isolated strains of Azospirillum sp. may alleviate the adverse effects of drought stress on wheat (Triticum aestivum L.) growth. Three different strains of Azospirillum lipoferum (B1, B2 and B3) were used to inoculate wheat seedlings under drought. During the flowering stage the seedlings were subjected to three drought levels with five different time longevity, including control. Pots were water stressed at 80% (S0), 50% (S1) and 25% (S2) of field capacity moisture in a 25 day-period. Soil and plant water properties including water potential and water content, along with their effects on bacterial inoculum and wheat growth, were completely monitored during the experiment. While stress intensity significantly affected bacterial population and wheat growth, stress longevity only affected wheat water potential and water content. Compared to uninoculated treatments strain B3 (fixing and producing the highest amounts of N and auxin, respectively, with P solubilizing and ACC-deaminase activities) increased wheat yield at S1 and S2 by 43 and 109%, respectively. However, strain B2 (producing siderophore) was the most resistant strain under drought stress. The results of this experiment may elucidate the more efficient strains of Azospirillum sp. for wheat inoculation under drought stress and the mechanisms by which they alleviate the stress.  相似文献   

10.
不同盐浓度的混合盐对羊草苗的胁迫效应   总被引:19,自引:0,他引:19  
用50~350mmol/L含有不同比例的NaCl、Na2SO4、NaHCO3和Na2CO3等4种盐成分的30种混合盐对羊草(Aneurolepidiumchinense(Trin.)Kitag.)苗进行盐碱混合胁迫处理。结果表明:相对生长率、K和Na含量、脯氨酸积累量及叶片电解质外渗率等胁变反应均随盐浓度增大以及碱性盐比例增高而加剧。而且碱性盐所造成的高pH的致胁变效应与盐浓度关系极大,浓度低时作用较小,随浓度增大其作用加剧。在含有碱性盐的混合盐胁迫中,包含有盐胁迫和碱胁迫两种作用。以总盐浓度代表盐胁强,缓冲量代表碱胁强。在碱胁强较弱时胁变主要受盐浓度影响,随碱胁强增大缓冲量变为影响胁变的主导因素  相似文献   

11.
12.
Summary Two subspecies ofHypochaeris radicata were compared with respect to differences in drought tolerance. The soil water content of the sites ofH. radicata ssp. ericetorum Van Soest was always lower than that ofH. radicata L. ssp.radicata throughout a great part of the growing season. Two water culture experiments were conducted at different light intensities. Water stress was induced by addition of NaCl to the culture solution. Both subspecies accumulated free proline andmyo-inositol during water stress. The results are compared with those of field observations. In all experiments with stress application ssp.radicata showed heavier wilting symptoms than ssp.ericetorum, concomittantly with a lower osmotic potential of the cell sap, a higher percentage of dry-weight and irreversible desiccation of older leaves in some experiments after stress application. The observed effects are attributed to the higher transpiration rate maintained by ssp.radicata during stress. Free proline accumulation depended on the severity of the internal stress rather than on the applied level of external stress. At low light intensity the stress resulted in a significantly higher proline accumulation in ssp.ericetorum than in ssp.radicata whereas at high light intensity this was the reverse. No differences inmyo-inositol accumulation were observed in the water culture experiments. Since ssp.ericetorum occurs in a nitrogen poor environment, the effect of nitrogen deprivation on accumulation of free proline andmyo-inositol was investigated. Both subspecies tended to accumulate less proline under such conditions especially ssp.radicata. Accumulation ofmyo-inositol was not favoured by nitrogen deprivation in the water culture experiments. Neither of the subspecies accumulated proline during the sampling period in the field presumably as a result of the wet summer. Leaves of whole plants collected in the field and subsequently subjected to water deprivation showed a high capacity to accumulate free proline. The level ofmyo-inositol in the field was higher in ssp.ericetorum than in either ssp.radicata or control plants in the water culture experiments. When the cytoplasmic volume is estimated as 10% of the total cell volume, free proline andmyo-inositol account for 44–69% of the osmotic potential. It is concluded that ssp.ericetorum is better adapted to the drier environment by its higher capacity to accumulate proline and reduce transpiration during stress. Grassland species research group, publication no41.  相似文献   

13.
From an analysis of 481 Rhizobium leguminosarum bv. viceae strains with 7 pea cultivars in pot and field experiments, we demonstrated that effective strains could be isolated from a rich medium-acid grey forest soil of the Oröl area (Central region of the European part of Russia) but not from a poor acid podzolic soil of the St. Petersburg area (North-West Russia). The proportion of the isolates significantly increasing N accumulation in pea plants (10.2%) is higher than that of strains increasing the shoot dry mass (4.6%) in the pot experiments. The mean values of the increase for N accumulation (33.8%) upon inoculation are also higher than for shoot mass (27.0%) in these experiments. N accumulation in the inoculated pea plants in the pot experiments was significantly correlated with seed yield and seed N accumulation in field experiments, while for shoot dry mass these correlations were either weak or not significant. Two-factor analysis of variance demonstrated that the contribution of plant cultivars to the variation of the major symbiotic efficiency parameters is higher (30.8–31.6%) and contributions of cultivar-strain specificity is lower (5.4–8.8%) than the contributions of strain genotypes (13.4–14.9%). We identified an ineffective R. leguminosarum bv. viceae strain 50 which can be used as a tester for assessing the nodulation competitiveness of the effective strains by an indirect method (analysis of dry mass and N accumulation in pea plants inoculated with the mixture of the tested effective strains and the tester strain). The relative competitive ability (RCA) determined by this method was 75.7–82.8% for strain 52 but only 10.5–13.8% for strain 250a; this difference was confirmed by a direct method (use of the streptomycin-resistant mutants). Results of screening of the diverse collection of 53 effective R. leguminosarum bv. viceae strains by the indirect method permits us to divide them into 3 groups (32 high-competitive, 10 medium-competitive and 11 low-competitive strains) but reveals no correlation between the competitiveness and symbiotic efficiency. N accumulation in the pea shoots is demonstrated to be a much more suitable criterion than the shoot mass for selection either of the highly-effective or of highly-competitive (by the indirect estimation) R. leguminosarum bv. viceae strains in the pot experiments.  相似文献   

14.
The photoprotective function of leaf betacyanin in water-stressed Amaranthus cruentus plants was examined by comparing leaves of two strains which differ significantly in the amount of betacyanin. At 0, 1, and 2 days after the imposed water stress, leaves were subjected to high-light (HL) treatment to assess their photosynthetic capacity and photoinhibition susceptibility. The water stress equally reduced leaf relative water content (RWC), gas-exchange rate and chlorophyll (Chl) contents in both leaves, indicating that the severity of water stress was comparable between the strains. Consequently, the extent of photoinhibition after the HL treatment increased in both strains as water stress developed; however, it was significantly greater in acyanic leaves than in betacyanic leaves, suggesting lower photoinhibition susceptibility in the betacyanic strain. The betacyanic leaves also exhibited approximately 30% higher values for photochemical quenching coefficient (qP) during the period of water stress despite the nonphotochemical quenching coefficient (qN) did not differ significantly between the strains. These results may be partially explained by the increased amount of leaf betacyanin under water stress. Moreover, a decrease in Chl content in betacyanic leaves might have enhanced light screening effect of betacyanin by increasing relative abundance of betacyanin to Chl molecule. In addition, reduced Chl content increased light penetrability of leaves. As a result, the extent of photoinhibition at the deeper tissue was exacerbated and the Chl fluorescence emitted from these tissues was more readily detected, facilitating assessment of photoinhibition at deeper tissues where the effect of betacyanic light screening is considered to be most apparent. Our results demonstrated that leaf betacyanin contributes to total photoprotective capacity of A. cruentus leaves by lowering excitation pressure on photosystem II (PSII) via attenuation of potentially harmful excess incident light under water stress.  相似文献   

15.
Exposure of plants to sodium (Na) and salinity may increase glycine betaine accumulation in tissues. To study this, red-beet cvs. Scarlet Supreme and Ruby Queen, were grown for 42 days in a growth chamber using a re-circulating nutrient film technique with 0.25 mmol/L K and either 4.75 mmol/L (control) or 54.75 mmol/L (saline) Na (as NaCl). Plants were harvested at weekly intervals and measurements were taken on leaf water relations, leaf photosynthetic rates, chlorophyll fluorescence, chlorophyll levels, glycine betaine levels, and tissue elemental composition. Glycine betaine accumulation increased under salinity and this accumulation correlated with higher tissue levels of Na in both cultivars. Na accounted for 80 to 90% of the total cation uptake under the saline treatment. At final harvest (42 days), K concentrations in laminae ranged from approximately 65-95 micromoles g-1 dry matter (DM), whereas Na in shoot tissue ranged from approximately 3000-4000 micromoles g-1. Leaf sap osmotic potential at full turgor [psi(s100)] increased as lamina Na content increased. Glycine betaine levels of leaf laminae showed a linear relationship with leaf sap [psi(s100)]. Chlorophyll levels, leaf photosynthetic rates, and chlorophyll fluorescence were not affected by Na levels. These results suggest that the metabolic tolerance to high levels of tissue Na in red-beet could be due to its ability to synthesize and regulate glycine betaine production, and to control partitioning of Na and glycine betaine between the vacuole and the cytoplasm.  相似文献   

16.
Rapeseed (Brassica napus) is a crop relatively tolerant to salt and sodium. Our objective was to study the interactions between Na, K and Ca and their relationship with its yield under the isolated effects of soil salinity or sodicity.Two experiments were carried out using pots filled with the Ah horizon of a Typic Natraquoll. There were three salinity levels (2.3 dS m-1; 6.0 dS m-1 and 10.0 dS m-1) and three sodicity levels, expressed as sodium adsorption ratios (SAR: 12; 27 and 44). The soil was kept near field capacity.As soil salinity increased, the K/Na and Ca/Na ratios in the tissues decreased markedly but yields and aerial biomass production were not affected. As soil SAR value increased, the K/Na and Ca/Na ratios in plants and K-Na and Ca-Na selectivities decreased. Plants could not maintain their Ca concentration in soil with a high SAR. The grain yield and biomass production diminished significantly in the highest SAR treatment. Our results are consistent with those showing detrimental osmotic effects of salts in Brassica napus. Conversely, under sodicity, the K/Na and Ca/Na ratios in plant tissues decreased considerably, in accordance with grain and biomass production. These results show that the effects of sodicity are different from those of salinity.  相似文献   

17.
Despite the proven economic importance of Aloe vera, studies of saline stress and its effects on the biochemistry and mineral content in tissues of this plant are scarce. The objective of this study was to grow Aloe under NaCl stress of 0, 30, 60, 90 and 120 mM and compare: (1) proline, total protein, and enzyme phosphoenolpyruvate carboxylase (PEP-case) in chlorenchyma and parenchyma tissues, and (2) ion content (Na, K, Ca, Mg, Cl, Fe, P. N, Zn, B, Mn, and Cu) in roots, stems, leaves and sprouts. Proline and PEP-case increased as salinity increased in both parenchyma and chlorenchyma, while total protein increased in parenchyma and decreased in chlorenchyma, although at similar salt concentrations total protein was always higher in chlorenchyma. As salinity increased Na and Cl ions increased in roots, stems, leaves, while K decreased only significantly in sprouts. Salinity increases typically caused mineral content in tissue to decrease, or not change significantly. In roots, as salinity increased Mg decreased, while all other minerals failed to show a specific trend. In stems, the mineral concentrations that changed were Fe and P which increased with salinity while Cu decreased. In leaves, Mg, Mn, N, and B decreased with salinity, while Cu increased. In sprouts, the minerals that decreased with increasing salinity were Mg, Mn, and Cu. Zinc did not exhibit a trend in any of the tissues. The increase in protein, proline and PEP-case activity, as well as the absorption and accumulation of cations under moderate NaCl stress caused osmotic adjustment which kept the plant healthy. These results suggest that Aloe may be a viable crop for soil irrigated with hard water or affected by salinity at least at concentrations used in the present study.  相似文献   

18.
We compared the efficiency of two Agrobacterium tumefaciens strains, AGL 1 and KYRT1, for producing transgenic pea plants. KYRT1 is a disarmed strain of Chry5 that has been shown to be highly tumourigenic on soybean. The efficacies of the strains were compared using cotyledon explants from three pea genotypes and two plasmids. The peas were sourced from field-grown plants over three Southern Hemisphere summer seasons. Overall, KYRT1 was found to be on average threefold more efficient than AGL 1 for producing transgenic plants. We suggest that KYRT1 is sensitive to cocultivation temperature as the expected increase in efficiency was not achieved at high laboratory temperatures.Communicated by P. Debergh  相似文献   

19.
Xu RR  Qi SD  Lu LT  Chen CT  Wu CA  Zheng CC 《The FEBS journal》2011,278(13):2296-2306
The molecular mechanism for sensing and transducing the stress signals initiated by K(+) deprivation in plants remains unknown. Here, we found that the expression of AtHELPS, an Arabidopsis DExD/H box RNA helicase gene, was induced by low-K(+), zeatin and cold treatments, and downregulated by high-K(+) stress. To further investigate the expression pattern of AtHELPS, pAtHELPS::GUS transgenic plants were generated. Histochemical staining indicated that AtHELPS is mainly expressed in the young seedlings and vascular tissues of leaves and roots. Using both helps mutants and overexpression lines, we observed that, in the low-K(+) condition, AtHELPS affected Arabidopsis seed germination and plant weight. Interestingly, the mRNA levels of AKT1, CBL1/9 and CIPK23 in the helps mutants were much higher than in the overexpression lines under low-K(+) stress. Moreover, under low-K(+) stress, the helps mutants displayed increased K(+) influx, whereas the overexpression line of AtHELPS had a lower flux rate in the roots by the noninvasive micro-test technique. Taken together, these results provide information for the functional analysis of plant DEVH box RNA helicases, and suggest that AtHELPS, as an important negative regulator, plays a role in K(+) deprivation stress.  相似文献   

20.
Ethylene synthesis is accelerated in response to various environmental stresses like salinity. Ten rhizobacterial strains isolated from wheat rhizosphere taken from different salt affected areas were screened for growth promotion of wheat under axenic conditions at 1, 5, 10 and 15 dS m−1. Three strains, i.e., Pseudomonas putida (N21), Pseudomonas aeruginosa (N39) and Serratia proteamaculans (M35) showing promising performance under axenic conditions were selected for a pot trial at 1.63 (original), 5, 10 and 15 dS m−1. Results showed that inoculation was effective even in the presence of higher salinity levels. P. putida was the most efficient strain compared to the other strains and significantly increased the plant height, root length, grain yield, 100-grain weight and straw yield up to 52, 60, 76, 19 and 67%, respectively, over uninoculated control at 15 dS m−1. Similarly, chlorophyll content and K+/Na+ of leaves also increased by P. putida over control. It is highly likely that under salinity stress, 1-aminocyclopropane-1-carboxylic acid-deaminase activity of these microbial strains might have caused reduction in the synthesis of stress (salt)-induced inhibitory levels of ethylene. The results suggested that these strains could be employed for salinity tolerance in wheat; however, P. putida may have better prospects in stress alleviation/reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号