首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Glucose-stimulated and pancreatic islet beta cell-specific expression of the insulin gene is mediated in part by the C1 DNA-element binding complex, termed RIPE3b1. In this report, we define the molecular weight range of the protein(s) that compose this beta cell-enriched activator complex and show that protein phosphatase treatment inhibits RIPE3b1 DNA binding activity. Fractionation of beta cell nuclear extracts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that RIPE3b1 binding was mediated by a protein(s) within the 37-49-kDa ranges. Direct analysis of the proteins within the RIPE3b1 complex by ultraviolet light cross-linking analysis identified three binding species of approximately 51, 45, and 38 kDa. Incubating beta cell nuclear extracts with either calf alkaline phosphatase or a rat brain phosphatase preparation dramatically reduced RIPE3b1 DNA complex formation. Phosphatase inhibition of RIPE3b1 binding was prevented by sodium pyrophosphate, a general phosphatase inhibitor. We discuss how changes in the phosphorylation status of the RIPE3b1 activator may influence its DNA binding activity.  相似文献   

7.
Deletion analysis of the human PRL promoter in endometrial stromal cells decidualized in vitro revealed a 536-bp enhancer located between nucleotide (nt) -2,040 to -1,505 in the 5'-flanking region. The 536-bp enhancer fragment ligated into a thymidine kinase (TK) promoter-luciferase reporter plasmid conferred enhancer activity in decidual-type cells but not nondecidual cells. DNase I footprint analysis of decidualized endometrial stromal cells revealed three protected regions, FP1-FP3. Transfection of overlapping 100-bp fragments of the 536-bp enhancer indicated that FP1 and FP3 each conferred enhancer activity. Gel shift assays indicated that both FP1 and FP3 bind activator protein 1 (AP-1), and JunD and Fra-2 are components of the AP-1 complex in decidual fibroblasts. Mutation of the AP-1 binding site in either FP1 or FP3 decreased enhancer activity by approximately 50%, while mutation of both sites almost completely abolished activity. Coexpression of the 536-bp enhancer and A-fos, a dominant negative to AP-1, decreased enhancer activity by approximately 70%. Conversely, coexpression of Fra-2 in combination with JunD or c-Jun and p300 increased enhancer activity 6- to 10-fold. Introduction of JunD and Fra-2 into nondecidual cells is sufficient to confer enhancer activity. JunD and Fra-2 protein expression was markedly increased in secretory phase endometrium and decidua of early pregnancy (high PRL content) compared with proliferative phase endometrium (no PRL). These investigations indicate that the 5'-flanking region of the human PRL gene contains a decidua-specific enhancer between nt -2,040/-1,505 and AP-1 binding sites within this enhancer region are critical for activity.  相似文献   

8.
9.
Enhancer factor 1A (EF-1A) is a mammalian nuclear protein that previously was shown to bind cooperatively to the repeated core enhancer element I sequence in the adenovirus E1A enhancer region. We now have characterized three binding sites for EF-1A in the polyomavirus A2 (Py) enhancer region. Site 1 resides in the Py A enhancer domain, and sites 2 and 3 reside in the Py B enhancer domain. EF-1A binding to Py site 1 is independent of cooperation with other EF-1A sites or the adjacent binding sites for PEA-1 and PEA-2, two murine nuclear factors that bind in the Py A enhancer domain. EF-1A binding to Py sites 2 and 3, in contrast, is cooperative, similar to the situation previously observed with binding sites in the adenovirus E1A enhancer region. In a transient replication assay, EF-1A site 1 functions synergistically with the PEA-1 and PEA-2 sites in the A enhancer domain to enhance Py replication. The functional cooperativity observed with the EF-1A, PEA-1, and PEA-2 sites in vivo does not reflect cooperative DNA binding interactions, as detected in vitro. Py EF-1A site 1 alone is capable of weakly stimulating Py replication. EF-1A site 1 overlaps with the binding sites for the murine nuclear protein PEA-3 and the ets family of oncoproteins.  相似文献   

10.
11.
12.
The 5'-flanking region of the rat insulin II gene (-448 to +50) is sufficient for tissue-specific expression. To further determine the tissue-specific cis-acting element(s), important sequences defined by linker-scanning mutagenesis were placed upstream of a heterologous promoter and transfected into insulin-producing and -nonproducing cells. Rat insulin promoter element 3 (RIPE3), which spans from -125 to -86, was shown to confer beta-cell-specific expression in either orientation. However, two subregions of RIPE3, RIPE3a and RIPE3b (defined by linker-scanning mutations), displayed only marginal activities. These results suggest that the two subregions cooperate to confer tissue specificity, presumably via their cognate binding factors.  相似文献   

13.
14.
Expression of the mouse cytokeratin EndoA gene is restricted in endodermal and epithelial cells, and is regulated by an enhancer that is located 1 kilobase (kb) 3' downstream from the gene. The enhancer consists of six direct repeats, of which each contains two predicted Ets binding sites (EBS1 and EBS2) containing GGAA as a core. Mutation analysis showed that EBS1 is essential for the enhancer activity and additional effects of EBS2, suggesting that some Ets-related proteins bind and activate the enhancer through EBS1. We also showed that Ets-2 mRNA is expressed in PYS-2 cells and that Ets-2 protein produced by E. coli interacts with EBS1 but not with EBS2. Using co-transfection assays, we showed that Ets-2 can trans-activate the enhancer in PYS-2 cells. Mutations that impair Ets-2 binding abolished the activity of the EndoA enhancer. The results obtained from the binding competition assay using an Ets-2 specific antibody, however, suggest that EBS1 binds to an Ets protein which is distinct from Ets-2. These data show that Ets-2 related protein binds and activates the EndoA enhancer in a sequence-specific fashion.  相似文献   

15.
16.
17.
18.
19.
We have systematically investigated the functional role of protein binding sites within the mouse immunoglobulin heavy chain enhancer which we previously identified by in vitro binding studies (1,2). Each binding site was deleted, mutant enhancers were cloned 3' of the chloramphenicol acetyl transferase gene in the vector pA10CAT2 and transfected into plasmacytoma cells. We demonstrate that the newly identified site E, located at 324-338 bp, is important for enhancer function; previously identified sites B(uE1), Cl(uE2), C2(uE3) and C3 were also shown to be important for enhancer activity. Sites A and D are not required for IgH enhancer function, as assayed by our methods. Thus, including the octamer site, six protein binding sites which bind at least six different proteins are important for enhancer function in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号