首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Somatostatin has profound effects on both splanchnic and portal vascular beds. The effects of intravenous somatostatin (100 micrograms/h) on urinary volume, effective renal plasma flow, and glomerular filtration rate were compared with the effects of a control infusion of physiological saline in six normal subjects. Renal plasma flow and glomerular filtration rate were measured by primed constant isotope infusions of iodine-125 iodohippurate and chromium-51 edetic acid. Urinary volume, renal plasma flow, and glomerular filtration rate were measured during 20 minute clearance periods. During the control infusion urinary volume, renal plasma flow, and glomerular filtration rate remained essentially unchanged at 254 (SEM 3) ml/20 min, 568 (5) ml/min/1.73 m2, and 110 (2) ml/min/1.73 m2 respectively. From similar basal values the infusion of somatostatin led to a rapid decrease in all three variables. After 120 minutes of infusion of somatostatin urinary volume, renal plasma flow, and glomerular filtration rate were reduced to 148 (17) ml/20 min (p less than 0.01), 422 (7) ml/min/1.73 m2 (p less than 0.001), and 93 (3) ml/min/1.73 m2 (p less than 0.05) respectively. This effect on renal function should be borne in mind whenever somatostatin is used.  相似文献   

2.
Glomerular filtration rate and renal plasma flow were examined in 16 young male non-proteinuric diabetics (mean age 28·4 years) with a duration of diabetes of over 15 years (mean duration 21·5 years.) In this selected group of long-term diabetics the glomerular filtration rate was clearly increased, the mean being 136 ml/min (±S.D. 11·8) (normal value 114 ml/min (±14·1), being comparable to that found earlier in short-term diabetics. There was no change in renal plasma flow. It is concluded that kidney function is generally well preserved in long-term diabetics who have not developed proteinuria.  相似文献   

3.
The effects of alpha-rat calcitonin gene-related peptide (alpha-rCGRP) on systemic and renal hemodynamics and on renal electrolyte excretion were examined in normal anesthetized rats. In one group of rats (n = 7), infusions of alpha-rCGRP at doses of 10, 50, 100, and 500 ng/kg/min for 15 min each produced dose-related and significant decreases in mean arterial pressure from a control of 130 +/- 3 mm Hg to a maximal depressor response of 91 +/- 2 mm Hg. During the first three doses of alpha-rCGRP, renal blood flow progressively and significantly increased from a control of 5.0 +/- 0.3 ml/min to a peak level of 6.3 +/- 0.3 ml/min achieved during the 100 ng/kg/min infusion. With the highest infusion rate of 500 ng/kg/min, renal blood flow fell below the control level to 4.5 +/- 0.2 ml/min (P less than 0.05). The responses in renal blood flow and mean arterial pressure were associated with reductions in renal vascular resistance. After cessation of alpha-rCGRP infusions, arterial pressure, renal blood flow, and renal vascular resistance gradually returned toward the baseline values. In another group of rats (n = 9), infusion of alpha-rCGRP for 30 min at 100 ng/kg/min produced a significant reduction in urinary sodium excretion from 0.28 +/- 0.06 to 0.14 +/- 0.5 muEq/min (P less than 0.05). Urine flow and urinary potassium excretion also appeared to decrease, but the changes were not significantly different (P greater than 0.05) from their respective baselines. These results demonstrate that alpha-rCGRP is a potent and reversible hypotensive and renal vasodilatory agent in the anesthetized rat. The data also suggest that alpha-rCGRP may have significant effects on the excretory function of the kidney.  相似文献   

4.
Renal plasma flow (RPF) and glomerular filtration rate (GFR) are markedly increased during pregnancy. We recently reported that the renal hemodynamic changes observed during pregnancy in rats are associated with enhanced renal protein expression of neuronal nitric oxide synthase (nNOS). The purpose of this study was to determine the role of nNOS in mediating renal hemodynamic changes observed during pregnancy. To achieve this goal, we examined the effects of the nNOS inhibitor 7-nitroindazole (7-NI) on kidney function in normal conscious, chronically instrumented virgin (n = 6) and pregnant rats (n = 9) at day 16 of gestation. Infusion of 7-NI had no effect on RPF (4.7 +/- 0.7 vs. 4.8 +/- 0.9 ml/min), GFR (2.2 +/- 0.2 vs. 2.5 +/- 0.4 ml/min), or mean arterial pressure (MAP; 127 +/- 7 vs. 129 +/- 10 mmHg) in virgin rats. In contrast, 7-NI infused into pregnant rats decreased RPF (8.9 +/- 1.6 vs. 6.5 +/- 1.4 ml/min) and GFR (4.4 +/- 0.7 vs. 3.3 +/- 0.7 ml/min) while having no effect on MAP (123 +/- 4 vs. 123 +/- 3 mmHg). In summary, inhibition of nNOS in pregnant rats at midgestation results in significant decreases in RPF and GFR. nNOS inhibition in virgin rats had no effect on renal hemodynamics. These data suggest that nNOS may play a role in mediating the renal hemodynamic changes that occur during pregnancy.  相似文献   

5.
This study examined the influence of a calcium channel antagonist, nitrendipine, on blood pressure and kidney function in a rat model of chronic renal failure. Additionally, the effects of low frequency renal nerve stimulation were studied in the presence and absence of nitrendipine. Male Wistar rats were fed a diet high in adenine for 4 weeks and then acutely anaesthetised and prepared for renal functional measurements. Blood pressure was elevated but renal blood flow and glomerular filtration rate were reduced, between 30 to 50%, urine flow and absolute sodium excretion were lower and fractional sodium excretion was two to three times higher than in normal rats. Nitrendipine (0.25 microg/kg/min i.v.) decreased blood pressure at 114+/-7 mm Hg, by 11% (P<0.05), increased left renal blood flow, at 1.3+/-0.2 ml/min(-1) g(-1), by 16% (P<0.01), and urine flow, absolute and fractional sodium excretions, by between 50-83% (all P<0.05). Renal nerves stimulation (0.7-1.3 Hz, 15V, 0.2 ms) decreased (P<0.02) left renal blood flow by 10% but had no effect on excretory variables, irrespective of nitrendipine administration. These results show that in renal failure rats the vascular and tubular responses to nitrendipine are preserved. However, the neural regulation of tubular reabsorption is abolished in this experimental model, irrespective of nitrendipine administration.  相似文献   

6.
The impact of reduced hepatic flow on lactate uptake and gluconeogenesis was examined in isolated glucagon-stimulated perfused livers from 24-h-fasted rats. After surgical isolation, livers were perfused (single pass) for 30 min with Krebs-Henseleit (KH) bicarbonate buffer, fresh bovine erythrocytes (hematocrit approximately 20%), and no added substrate. After this "washout" period, steady-state perfusions were initiated with a second reservoir containing the KH buffer, bovine erythrocytes, [U-(14)C]lactate (10,000 dpm/ml), lactate (2.5 mM), and glucagon (250 microg/ml). Perfusion flow rate was adjusted to one of five rates (i.e., 1.8, 2.7, 3.9, 7.4, and 11.0 ml.min(-1).100 g body wt(-1)). After the perfusion, the liver was dissected out and weighed so as to establish the actual flow rate per gram of liver. The resulting flow rates ranged from 0.52 to 4.03 ml.min(-1).g liver(-1). As a function of flow rate, lactate uptake rose in a hyperbolic fashion to an apparent plateau of 2.34 micromol.min(-1).g liver(-1). Fractional extraction (FX) of lactate from the perfusate demonstrated an exponential decline with increased flow rates (r=0.97). At flow rates above 1.0 ml.min(-1).g liver(-1), adjustments in FX compensated for changes in lactate delivery, resulting in steady rates of lactate uptake and gluconeogenesis. Below 1.0.min(-1).g liver(-1) the increased FX was unable to compensate for the decline in lactate delivery and lactate uptake declined rapidly. Gluconeogenesis demonstrated similar kinetics to lactate uptake, reflecting its dominant role among pathways for lactate removal under the current conditions.  相似文献   

7.
Abstract: The radionuclide determination of glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) has been validated in man, but not in the primate. GFR, ERPF, and renal blood flow (RBF) were measured in a group of 12 adult male chacma baboons using radiopharmaceuticals. GFR was determined using 99mtechnetium-labelled diethylenetriamine-pentacetic acid. ERPF was measured with 131iodine-labelled hippuran. RBF, body surface area, and kidney weights were calculated using standard formulae. GFR was 49 ± 11 ml/min and ERPF was 237.9 ± 54.2 ml/min. Calculated RBF was 430.7 ± 111.9 ml/min and 507.4 ± 138.4 ml/min/100g of renal tissue. The results are in agreement with those obtained using more laborious nonradioisotopic techniques such as para-aminohippurate (PAH) and creatinine clearance and could serve as baseline normal values in the adult male chacma baboon.  相似文献   

8.
Pregnancy is associated with profound changes in renal hemodynamics and electrolyte handling. Relaxin, a hormone secreted by the corpus luteum, has been shown to induce pregnancy-like increases in renal blood flow and glomerular filtration rate (GFR) and alter osmoregulation in nonpregnant female and male rats. However, its effects on renal electrolyte handling are unknown. Accordingly, the influence of short (2 h)- and long-term (7 day) infusion of relaxin on renal function was determined in the male rat. Short term infusion of recombinant human relaxin (rhRLX) at 4 microg.h(-1).100 g body wt(-1) induced a significant increase in effective renal blood flow (ERBF) within 45 min, which peaked at 2 h of infusion (vehicle, n = 6, 2.1 +/- 0.4 vs. rhRLX, n = 7, 8.1 +/- 1.1 ml.min(-1).100 g body wt(-1), P < 0.01). GFR and urinary excretion of electrolytes were unaffected. After a 7-day infusion of rhRLX at 4 microg/h, ERBF (1.4 +/- 0.2 vs. 2.5 +/- 0.4 ml.min(-1).100 g body wt(-1), P < 0.05), urine flow rate (3.1 +/- 0.3 vs. 4.3 +/- 0.4 microl.min(-1).100 g body wt(-1), P < 0.05) and urinary sodium excretion (0.8 +/- 0.1 vs. 1.2 +/- 0.1 micromol.min(-1).100 g body wt(-1), P < 0.05) were significantly higher; plasma osmolality and sodium concentrations were lower in rhRLX-treated rats. These data show that long-term relaxin infusion induces a natriuresis and diuresis in the male rat. The mechanisms involved are unclear, but they do not involve changes in plasma aldosterone or atrial natriuretic peptide concentrations.  相似文献   

9.
To assess the effect of Fluosol-DA treatment on infarct morphology, detailed histologic examination was performed in 17 dogs with permanent proximal left anterior descending coronary artery occlusion. Two of the three groups of dogs received an equal blood volume exchange (40 ml/kg i.v.) with either Fluosol-DA (F) or heparinized autologous blood (H) 30 min post occlusion while being ventilated with 100% oxygen. A third group received no therapy (C). Animals were sacrificed 3 days post occlusion and sections were obtained for light and electron microscopy. Histologic studies showed that infarct size was statistically smaller in dogs treated with F 54 +/- 7% versus heparin 64 +/- 10% treatment or no therapy 79 +/- 6%. Fluosol-DA animals demonstrated decreased inflammatory infiltrate, larger viable subepicardial zones and greater endocardial sparing in the area surrounding the central zone of necrosis. By electron microscopy, perfluorochemical particles were found within endothelial and inflammatory cells in subepicardial zones of infarction. In midmyocardial zones, Fluosol-DA particles were present in capillaries, extracellular spaces and necrotic myocytes. In the normal myocardium Fluosol-DA particles were rarely seen within endothelial cells and never within the interstitium or myocytes. Thus, Fluosol-DA reduces infarct size and alters infarct morphology in the 3 day post permanent coronary occlusion model.  相似文献   

10.
Renal blood flow decreases with the progression of chronic glomerulonephritis (CGN). This disease induces medullary ischemia and further renal dysfunction in patients with chronic renal insufficiency (CRI). Prostacyclin (PGI2), with its vasodilative action, increases renal blood flow (RBF) without increasing glomerular filtration rate (GFR). We therefore examined the possibility that PGI2 would mitigate the progression of renal dysfunction by increasing RBF in patients with CRI. Sixteen patients with progressive renal insufficiency (serum creatinine: 2.14+/-0.89 mg/dl) due to CGN were prospectively chosen for this study. The blood pressure was already under control using calcium channel blockers before and during this study in nine hypertensive patients. In the first 6 months the patients received a low-protein (0.6 g/kg/day) and low-salt (5.0 g/day) diet. In the next 6 months they received 60 microg/day of PGI2 analogue (Beraprost sodium) orally. GFR was determined by 24-hour creatinine clearance, and effective renal plasma flow (ERPF) was determined by 99mTc-MAG3 scintigraphy. Glomerular capillary pressure, the resistance ratio of afferent and efferent arterioles (R(A)/R(E)), and the other hemodynamic parameters from Gomez's estimation equation were determined at the start of this study, just before the administration of Beraprost and at the end of the study. The levels of GFR and ERPF were 34.6+/-12.4 and 140.6+/-52.1 ml/min at the start of this study respectively, and decreased to 28.0+/- 12.0 and 115.6+/-45.3 ml/min after the first 6 months without Beraprost. The levels of GFR and ERPF stayed at 28.1+/-15.7 and 119.2+/-57.6 ml/min after the next 6 months with Beraprost in the same patients. R(A)/R(E) increased in the first 6 months from 7.9+/-3.6 to 10.8+/-8.6, but remained constant during 6 months of Beraprost administration, at 10.5+/-8.0. These data indicate that PGI2 analogue diminishes the vascular resistance of glomerular afferent and efferent arterioles regulating the decrease of renal blood flow without glomerular hyperfiltration, thus mitigating the progression rate of renal dysfunction.  相似文献   

11.
We have induced acute renal failure (ARF) in barbiturate anesthetized rabbits, through warm ischaemia of 30 or 60 min duration caused by transient bilateral occlusion of renal arteries. In this model we have monitored some renal performance parameters, before and 4 hours after reperfusion, aiming to characterize ARF in this animal species. Glomerular filtration rate (determined by the inulin clearance technique) was of 9.74 +/- 0.48 ml min-1 in 4 rabbits before injury and declined by 91% (60 min ischemia) during the first reperfusion hour. In 6 rabbits undergoing 30 min occlusion, pre-ARF values of 10.70 +/- 0.98 ml min-1 declined by 47%. In both groups no recovery was observed in the following hours. Tubular enzymes (alanine-amino-peptidase, AAP and N-acetyl-beta-glucosaminidase, NAG) were released into urines before injury at the rate of 1.11 +/- 0.18 and 1.32 +/- 0.41 mU min-1, respectively, in the 30 min model (3 animals/group). During ARF, maximal AAP output was five-fold increased (5.83 +/- 0.35 mU min-1), whereas NAG was unmodified. On the other hand, renal haemodynamics in 5 rabbits did not change after the ischaemic procedure: total renal blood flow (44 +/- 5 ml min-1) and renal vascular resistances (225 +/- 26 Pa ml-min) displayed less than 10% variations throughout the reperfusion period. We concluded that ARF in rabbits can be reliably and reproducibly monitored and that the pathogenesis of the disease, in our situation, is attributable mainly to tubular cell damage and not to impairment of the vascular component of renal performance.  相似文献   

12.
The renal effects of dopexamine, a new dopaminergic agonist with marked beta 2-adrenergic agonist properties, but no alpha-adrenergic effect, has been studied in 8 newborn New Zealand rabbits, whose renal functional characteristics show close similarities with those of premature infants. Six animals were used as controls. After a control period, dopexamine was infused intravenously at a rate of 4 micrograms/kg per min and after a wash-out period, at 10 micrograms/kg per min. The renal effects of dopamine were studied in similar conditions. Glomerular filtration rate (GFR) and renal plasma flow (RPF) were determined by inulin and para-aminohippuric acid clearances, respectively. Dopexamine, 4 micrograms/kg per min, did not induce changes in cardiovascular and renal hemodynamics or in renal functions. At 10 micrograms/kg per min, a significant increase in urine flow rate (25 +/- 5%; p less than 0.01), urine sodium excretion (77 +/- 17%; p less than 0.01) and fractional sodium excretion (69 +/- 25%; p less than 0.05) was observed. The GFR, RPF and renal vascular resistance (RVR) were not affected. Heart rate increased slightly but significantly (8 +/- 3%; p less than 0.05), without change in mean blood pressure (MBP). Dopamine, 4 micrograms/kg per min, decreased slightly albeit significantly MBP (3 +/- 1%; p less than 0.05). At 10 micrograms/kg per min the only renal effect was a significant increase in RVR (19 +/- 6%; p less than 0.02). The different actions of these two dopaminergic agonists in this immature model could be explained by their respective ability to activate electively the adrenergic and dopaminergic peripheral receptors. The natriuretic and diuretic effect of dopexamine in normal immature rabbits, in the absence of changes in RPF or GFR is probably mediated by a direct action of this agent on dopaminergic tubular receptors. Failure of these two drugs to increase RPF may be related to an immaturity of the dopaminergic vascular receptors.  相似文献   

13.
Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to treat chronic RVD.  相似文献   

14.
Increased intra-abdominal pressure (IAP) during laparoscopy adversely affects kidney function. The mechanism underlying this phenomenon is largely unknown. This study was designed to investigate the involvement of endothelin (ET)-1 and nitric oxide (NO) systems in IAP-induced renal dysfunction. Rats were subjected to IAP of 14 mmHg for 1 h, followed by a deflation for 60 min (recovery). Four additional groups were pretreated with 1) ABT-627, an ET(A) antagonist; 2) A-192621, an ET(B) antagonist; 3) nitroglycerine; and 4) N(G)-nitro-L-arginine methyl ester, a NO synthase inhibitor, before IAP. Urine flow rate (V), absolute Na+ excretion (U(Na)V), glomerular filtration rate (GFR), and renal plasma flow (RPF) were determined. Significant reductions in kidney function and hemodynamics were observed when IAP was applied. V decreased from 8.1 +/- 1.0 to 5.8 +/- 0.5 microl/min, U(Na)V from 1.08 +/- 0.31 to 0.43 +/- 0.10 microeq/min, GFR from 1.84 +/- 0.12 to 1.05 +/- 0.06 ml/min (-46.9 +/- 2.7% from baseline), and RPF from 8.62 +/- 0.87 to 3.82 +/- 0.16 ml/min (-54 +/- 3.5% from baseline). When the animals were pretreated with either ABT-627 or A-192621, given alone or combined, the adverse effects of IAP on GFR, RPF, V, and U(Na)V were significantly augmented. When the animals were pretreated with nitroglycerine, the adverse effects of pneumoperitoneum on GFR and RPF were substantially improved. In contrast, pretreatment with N(G)-nitro-L-arginine methyl ester remarkably aggravated pneumoperitoneum-induced renal dysfunction. In conclusion, decreased renal excretory function and hypofiltration are induced by increased IAP. These effects are related to impairment of renal hemodynamics and could be partially ameliorated by pretreatment with nitroglycerine and aggravated by NO and ET blockade.  相似文献   

15.
Working rat hearts were perfused with either buffer or with defibrinated, undiluted rat blood dialyzed to remove vasoconstrictor factors. With precautions taken for sterility in the preparation of the perfusate and the apparatus, hearts were obtained which were stable as judged by stroke rate and cardiac output. In these hearts, cardiac output and coronary flow averaged 46.0 and 1.7 ml/g heart per min, respectively. Perfusion with erythrocyte-free buffer depressed cardiac output by 30%, while coronary flow averaged 8.8 ml/g of heart per min. The mean stroke rate of blood-perfused hearts was 300 beats/min but only 240 beats/min during buffer perfusion. In blood-perfused hearts, insulin did not alter stroke rate but significantly lowered coronary flow. The hormone caused a transient increase in cardiac output in hearts perfused with buffer. Insulin did not alter glucose uptake in buffer-perfused hearts but increased lactate release in perfusions with blood. Both serum fatty acids and triacylglycerol fatty acids were significant metabolic fuels in hearts perfused with undiluted blood. The preparation described would appear to be potentially useful for the study of myocardial metabolism in vitro.  相似文献   

16.
OBJECTIVE: To study the association between apolipoprotein E (apoE) genotype and the rate of decline in glomerular filtration rate (GFR) in type 2 diabetic patients in a 9-year prospective study. METHODS: GFR was determined in 84 type 2 diabetic patients by plasma clearance of (51)Cr-EDTA at baseline and after 9 years of follow-up. ApoE genotypes were determined by polymerase chain reaction and restriction enzyme HHAI digestion and designated as epsilon4 allele group (apoE4/2, 4/3 and 4/4 genotypes; n = 20) and non-epsilon4 allele group (apoE3/3 and E3/2 genotypes; n = 64). We focused our analysis on those patients who were more likely to progress to diabetic renal disease, i.e. whose GFR fell more than expected in the normal course of ageing [1 ml x min(-1) x (1.73 m(2))(-1) per year]. RESULTS: In the whole population, the decline in the GFR did not differ statistically significantly between the apoE genotype groups [p = 0.65 with analysis of variance for repeated variables (RANOVA) for interaction between apoE genotype group and time point]. However, among patients whose GFR changed more than 9 ml x min(-1) x (1.73 m(2))(-1), GFR showed a statistically significantly greater decline in the epsilon4 allele group (n = 11) than in the non-epsilon4 allele group (n = 43) [from 116 +/- 36 to 80 +/- 29 ml x min(-1) x (1.73 m(2))(-1) vs. from 119 +/- 20 to 96 +/- 18 ml x min(-1) x (1.73 m(2))(-1); p = 0.005 with RANOVA]. CONCLUSION: ApoE allele epsilon4 may speed up the rate of decline of the GFR in patients with progressive diabetic renal disease.  相似文献   

17.
The responses to infusion of nitric oxide synthase substrate (L-arginine 3 mg.kg(-1).min(-1)) and to slow volume expansion (saline 35 ml/kg for 90 min) alone and in combination were investigated in separate experiments. L-Arginine left blood pressure and plasma ANG II unaffected but decreased heart rate (6 +/- 2 beats/min) and urine osmolality, increased glomerular filtration rate (GFR) transiently, and caused sustained increases in sodium excretion (fourfold) and urine flow (0.2 +/- 0.0 to 0.7 +/- 0.1 ml/min). Volume expansion increased arterial blood pressure (102 +/- 3 to 114 +/- 3 mmHg), elevated GFR persistently by 24%, and enhanced sodium excretion to a peak of 251 +/- 31 micromol/min, together with marked increases in urine flow, osmolar and free water clearances, whereas plasma ANG II decreased (8.1 +/- 1.7 to 1.6 +/- 0.3 pg/ml). Combined volume expansion and L-arginine infusion tended to increase arterial blood pressure and increased GFR by 31%, whereas peak sodium excretion was enhanced to 335 +/- 23 micromol/min at plasma ANG II levels of 3.0 +/- 1.1 pg/ml; urine flow and osmolar clearance were increased at constant free water clearance. In conclusion, L-arginine 1) increases sodium excretion, 2) decreases basal urine osmolality, 3) exaggerates the natriuretic response to volume expansion by an average of 50% without persistent changes in GFR, and 4) abolishes the increase in free water clearance normally occurring during volume expansion. Thus L-arginine is a natriuretic substance compatible with a role of nitric oxide in sodium homeostasis, possibly by offsetting/shifting the renal response to sodium excess.  相似文献   

18.
The effects of a 60-min intravenous infusion of angiotensin II (A II; 4 or 20 ng A II/min/kg body weight) on renal blood flow (RBF; electromagnetic flow transducer, control value 19-25 ml/min/kg), glomerular filtration rate (GFR; control value 4.2-5.0 ml/min/kg), mean arterial blood pressure, sodium excretion, water excretion, and plasma A II and plasma aldosterone concentrations were examined in 6 chronically instrumented female conscious beagle dogs kept on three different dietary sodium intakes (SI): SI 0.5 or SI 2.5 mmol Na/kg/day or SI 4.5 mmol Na/kg/day plus an oral saline load prior to the experiment SI 4.5(+) dogs. Four nanograms A II decreased RBF and GFR in SI 4.5(+) dogs without changing the filtration fraction (FF%); in SI 0.5 dogs the RBF decreased, and the FF% increased. Twenty nanograms A II decreased RBF and increased FF% in all dietary protocols, less in SI 4.5(+) dogs. The mean arterial blood pressure increased in all dietary protocols by 10-15 mm Hg (4 ng A II) and 32-37 mm Hg (20 ng A II). Sodium and water excretions decreased by 32 and 46%, respectively, in SI 4.5(+) dogs at both doses of A II. The plasma aldosterone concentration increased in all but one protocol: 4 ng A II, SI 4.5(+) dogs. It is concluded that when A II plasma concentrations are most likely borderline to pathophysiological conditions (up to an average of 370 pg/ml), the GFR is less decreased than the RBF. This phenomenon also can be observed at lower plasma A II concentrations (average 200 pg/ml), when the renin-angiotensin system had been previously moderately activated.  相似文献   

19.
Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution regarding antioxidant strategies in RAS.  相似文献   

20.
Tracheobronchial circulation during exercise has previously not been examined. Therefore blood flow to the trachea and bronchi (up to 7th generation of branching) was studied in seven healthy adult ponies at rest and during the 3rd and 10th min of exercise performed at a treadmill speed setting of 25 km/h. The ambient air temperature varied from 19 to 20 degrees C and humidity from 35 to 45%. To determine blood flow radionuclide-labeled 15-microns-diameter microspheres were injected into the left ventricle via a catheter advanced from the left carotid artery (exposed using local anesthesia), and a reference sample was obtained from the aorta. Adequate mixing of microspheres with blood was demonstrated by similar perfusion values for left and right kidneys. Exercise increased heart rate (194 +/- 9 and 200 +/- 7 beats/min) and mean aortic pressure (169 +/- 8 and 156 +/- 4 mmHg) of ponies at 3rd and 10th min. Tracheal blood flow (6.7 +/- 0.5 ml.min-1 x 100 g-1) of resting ponies was only one-third of the bronchial blood flow (21.6 +/- 4.9 ml.min-1 x 100 g-1) Significant changes in tracheal perfusion did not occur at 3rd or 10th min of exercise. Although bronchial perfusion also did not change at the 3rd min of exercise, it rose dramatically to 202.8 +/- 30.3 ml.min-1 x 100 g-1 during the 10th min. Concomitantly, renal blood flow decreased at 10th min of exertion. The large increase in bronchial blood flow at 10th min of exertion may have been necessitated by the need to help dissipate body heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号