首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian poly(A) polymerase (PAP), a key enzyme in the pre-mRNA 3'-end processing reaction, carries the catalytic domain in the N-terminal region, an RNA binding domain, two nuclear localization signals, and a serine/threonine-rich regulatory domain in the C-terminal region. Using LexA-based yeast two-hybrid screening, we identified a cDNA encoding the 25-kDa subunit of cleavage factor I (CFI-25) as a protein that interacts with the C-terminal region of mouse PAP. The glutathione S-transferase pull-down assay and the immunoprecipitation experiment revealed that PAP directly interacts with CFI-25 and that the C-terminal 69 residues of PAP and the N-terminal 60 residues of CFI-25 are sufficient for the interaction between CFI-25 and PAP. Since CFI is known to function in the assembly of the pre-mRNA 3'-processing complex, this interaction may play an important role in the assembly of the processing complex and/or in the regulation of PAP activity within the complex.  相似文献   

2.
Regulation of poly(A) site selection in adenovirus.   总被引:20,自引:4,他引:20  
  相似文献   

3.
4.
5.
6.
Sequence conservation among mammalian poly(A) sites is limited to the sequence AAUAAA, coupled with an amorphous downstream U- or GU-rich region. Since these sequences may also occur within the coding region of mRNAs, additional information must be required to define authentic poly(A) sites. Several poly(A) sites have been shown to contain sequences outside the core elements that enhance the efficiency of 3' processing in vivo and in vitro. The human immunodeficiency virus type 1, equine infectious anemia virus, and adenovirus L1 3' processing enhancers have been shown to promote the binding of cleavage and polyadenylation specificity factor (CPSF), the factor responsible for recognition of AAUAAA, to the pre-mRNA, thereby facilitating the assembly of a stable 3' processing complex. We have used in vitro selection to examine the mechanism by which the human immunodeficiency virus type 1 3' processing enhancer promotes the interaction of CPSF with the AAUAAA hexamer. Surprisingly, RNAs selected for efficient polyadenylation were related by structure rather than sequence. Therefore, in the absence of extensive sequence conservation, our results strongly suggest that RNA structure is a critical determinant of poly(A) site recognition by CPSF and may play a key role in poly(A) site definition.  相似文献   

7.
8.
9.
Previous studies have shown that a sequence element downstream of the poly(A) addition site is required for efficient cleavage in vivo. We tested a group of downstream element point mutations in an in vitro reaction using HeLa cell nuclear extract as a source of cleavage activity. In close agreement with earlier studies (M. A. McDevitt, R. P. Hart, W. W. Wong, and J. R. Nevins, EMBO J. 5:2907-2913, 1986), a downstream element from the adenovirus E2a gene directed a higher level of cleavage activity than one from the simian virus 40 early gene. Furthermore, a single-base change in the downstream element could result in a decrease in cleavage activity of about 50-fold. That these mutations have similar effects in vivo and in vitro indicates that the HeLa cell nuclear extract system contains all of the factors required to study the mechanism of sequence recognition.  相似文献   

10.
The CstF polyadenylation factor is a multisubunit complex required for efficient cleavage and polyadenylation of pre-mRNAs. Using an RNase H-mediated mapping technique, we show that the 64-kDa subunit of CstF can be photo cross-linked to pre-mRNAs at U-rich regions located downstream of the cleavage site of the simian virus 40 late and adenovirus L3 pre-mRNAs. This positional specificity of cross-linking is a consequence of CstF interaction with the polyadenylation complex, since the 64-kDa protein by itself is cross-linked at multiple positions on a pre-mRNA template. During polyadenylation, four consecutive U residues can substitute for the native downstream U-rich sequence on the simian virus 40 pre-mRNA, mediating efficient 64-kDa protein cross-linking at the downstream position. Furthermore, the position of the U stretch not only enables the 64-kDa polypeptide to be cross-linked to the pre-mRNA but also influences the site of cleavage. A search of the GenBank database revealed that a substantial portion of mammalian polyadenylation sites carried four or more consecutive U residues positioned so that they should function as sites for interaction with the 64-kDa protein downstream of the cleavage site. Our results indicate that the polyadenylation machinery physically spans the cleavage site, directing cleavage factors to a position located between the upstream AAUAAA motif, where the cleavage and polyadenylation specificity factor is thought to interact, and the downstream U-rich binding site for the 64-kDa subunit of CstF.  相似文献   

11.
12.
13.
14.
15.
Members of the caspase family of cysteine proteases play essential roles in the disintegration of cellular architecture during apoptosis. Caspases have been grouped into subfamilies according to their preferred cleavage sites, with the "apoptotic executioner" caspase-3 as the prototype of DEXD-dependent proteases. We show here that caspase-3 is more tolerant to variations of the cleavage site than previously anticipated and present an example of a noncanonical recognition site that is efficiently cleaved by caspase-3 in vitro and in vivo. The new cleavage site was identified in human scaffold attachment factor A, one of the major scaffold attachment region DNA-binding proteins of human cells thought to be involved in nuclear architecture by fastening chromatin loops to a proteinaceous nuclear skeleton, the so-called nuclear matrix or scaffold. Using an amino-terminal recombinant construct of scaffold attachment factor A and recombinant caspase-3, we have mapped the cleavage site by matrix-assisted laser desorption ionization/time of flight mass spectrometry and Edman sequencing. We find that cleavage occurs after Asp-100 in a sequence context (SALD) that does not conform to the hitherto accepted DEXD consensus sequence of caspase-3. A point mutation, D100A, abrogates cleavage by recombinant caspase-3 in vitro and during apoptosis in vivo, confirming SALD as a novel caspase-3 cleavage site.  相似文献   

16.
17.
The primary structure of the human CstF-64 polyadenylation factor contains 12 nearly identical repeats of a consensus motif of five amino acid residues with the sequence MEAR(A/G). No known function has yet been ascribed to this motif; however, according to secondary structure prediction algorithms, it should form a helical structure in solution. To validate this theoretical prediction, we synthesized a 31 amino acid residue peptide (MEARA(6)) containing six repeats of the MEARA sequence and characterized its structure and stability by circular dichroism (CD) spectroscopy and differential scanning calorimetry (DSC). No effects of concentration on the CD or DSC properties of MEARA(6) were observed, indicating that the peptide is monomeric in solution at concentrations up to 2 mM. The far UV-CD spectra of MEARA(6) indicates that at a low temperature (1 degrees C) the MEARA(6) peptide has a relatively high helical content (76% at pH 2.0 and 65% at pH 7.0). The effects of pH and ionic strength on the CD spectrum of MEARA(6) suggest that a number of electrostatic interactions (e.g., i, i + 3 Arg/Glu ion pair, charge-dipole interactions) contribute to the stability of the helical structure in this peptide. DSC profiles show that the melting of MEARA(6) helix is accompanied by positive change in the enthalpy. To determine thermodynamic parameters of helix-coil transition from DSC profiles for this peptide, we developed a new, semiempirical procedure based on the calculated function for the heat capacity of the coiled state for a broad temperature range. The application of this approach to the partial molar heat capacity function for MEARA(6) provides the enthalpy change for helix formation calculated per amino acid residue as 3.5 kJ/mol.  相似文献   

18.
The yeast TRP4 mRNA 3' end formation element is a bidirectional element which functions in both orien-tations in an artificial in vivo test system. In this study, the role of 3' end formation was analysed in the context of the entire TRP4 gene. The 3' untranslated region (3'UTR) of TRP4 was altered and changes were analysed for their influence on TRP4 gene expression. The 3'UTR in reverse orientation was fully functional and did not affect TRP4 gene expression. Exchanging the TRP4 3'UTR by the bidirectional ARO4 or the unidirectional GCN4 3' end formation element allowed efficient gene expression. Deletion of the entire TRP4 3'UTR resulted in 70% reduction of TRP4 mRNA and 50% reduced specific Trp4 enzyme activity in comparison to wild-type. A single point mutation within the TRP4 3'UTR caused the same effect on gene expression. This point mutation did not only affect the efficiency of 3' end formation, but also produced new poly(A) sites which were situated upstream of the wild-type poly(A) sites. Therefore this sequence motif in the TRP4 3'UTR acts simultaneously as both an efficiency and positioning element.  相似文献   

19.
20.
Recognition of cleavage site A(2) in the yeast pre-rRNA.   总被引:4,自引:2,他引:4       下载免费PDF全文
Processing of the yeast pre-rRNA at site A(2) internal transcribed spacer 1(ITS1) has been shown to require several small nucleolar ribonucleoprotein particles (snoRNPs) as trans-acting factors. Here we report a detailed mutational analysis of the cid-acting signals required to specify the site of A(2) lie in the 3'-flanking sequence; deletion or substitution of nucleotides in this region strongly inhibits processing, and residual cleavage is inaccurate at the nucleotide level. In contrast, the deletion of the 5'- flanking nucleotides has no detectable effect on processing. An evolutionarily conserved sequence, ACAC, is located at the site of cleavage. Substitution of the 3' AC leads to heterogeneous cleavage, with activation of cleavage at an upstream ACAC sequence, In all mutants that retain an ACAC element, a site of cleavage is detected immediately 5' to this sequence, showing that this element is recognized. An ACAC sequence is, however, not essential for accurate cleavage of site A(2). An additional signal is also present 3' to A(2), in a region that has the potential to form a stem-loop structure that is evolutionarily conserved, but of low stability. As has been found for site A(1) (the 5' end of the yeast 18S rRNA), the identification of the site of processing at A(2) relies on multiple recognition elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号