首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli O26:H11 strains were able to outgrow O157:H7 companion strains in planktonic and biofilm phases and also to effectively compete with precolonized O157:H7 cells to establish themselves in mixed biofilms. E. coli O157:H7 strains were unable to displace preformed O26:H11 biofilms. Therefore, E. coli O26:H11 remains a potential risk in food safety.  相似文献   

2.
To identify Shiga toxin-producing Escherichia coli genes associated with severe human disease, a genomic subtraction technique was used with hemolytic-uremic syndrome-associated O91:H21 strain CH014 and O6:H10 bovine strains. The method was adapted to the Shiga toxin-producing E. coli genome: three rounds of subtraction were used to isolate DNA fragments specific to strain CH014. The fragments were characterized by genetic support analysis, sequencing, and hybridization to the genome of a collection of Shiga toxin-producing E. coli strains. A total of 42 fragments were found, 19 of which correspond to previously identified unique DNA sequences in the enterohemorrhagic E. coli EDL933 reference strain, including 7 fragments corresponding to prophage sequences and others encoding candidate virulence factors, such a SepA homolog protein and a fimbrial usher protein. In addition, the subtraction procedure yielded plasmid-related sequences from Shigella flexneri and enteropathogenic and Shiga toxin-producing E. coli virulence plasmids. We found that lateral gene transfer is extensive in strain CH014, and we discuss the role of genomic mobile elements, especially bacteriophages, in the evolution and possible transfer of virulence determinants.  相似文献   

3.
The main pathogenic enterohemorrhagic Escherichia coli (EHEC) strains are defined as Shiga toxin (Stx)-producing E. coli (STEC) belonging to one of the following serotypes: O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28. Each of these five serotypes is known to be associated with a specific subtype of the intimin-encoding gene (eae). The objective of this study was to evaluate the prevalence of bovine carriers of these “top five” STEC in the four adult cattle categories slaughtered in France. Fecal samples were collected from 1,318 cattle, including 291 young dairy bulls, 296 young beef bulls, 337 dairy cows, and 394 beef cows. A total of 96 E. coli isolates, including 33 top five STEC and 63 atypical enteropathogenic E. coli (aEPEC) isolates, with the same genetic characteristics as the top five STEC strains except that they lacked an stx gene, were recovered from these samples. O157:H7 was the most frequently isolated STEC serotype. The prevalence of top five STEC (all serotypes included) was 4.5% in young dairy bulls, 2.4% in young beef bulls, 1.8% in dairy cows, and 1.0% in beef cows. It was significantly higher in young dairy bulls (P < 0.05) than in the other 3 categories. The basis for these differences between categories remains to be elucidated. Moreover, simultaneous carriage of STEC O26:H11 and STEC O103:H2 was detected in one young dairy bull. Lastly, the prevalence of bovine carriers of the top five STEC, evaluated through a weighted arithmetic mean of the prevalence by categories, was estimated to 1.8% in slaughtered adult cattle in France.  相似文献   

4.
Shiga toxin-producing Escherichia coli (STEC) O111:NM is an important serotype that has been incriminated in disease outbreaks in the United States. This study characterized cattle STEC O111:NM for virulence factors and markers by PCR. Major conclusions are that STEC O111:NM characterized in this study lacks stx2 and the full spectrum of nle gene markers, and it has an incomplete OI-122.  相似文献   

5.
Variations in time and space of a clonal group of Escherichia coli O165:H25 on a cattle farm were monitored. The virulence marker pattern (stx genes, eae gene, hlyEHEC gene, katP gene, espP gene, efa gene) suggests that E. coli O165:H25 of bovine origin may represent a risk for human infection.  相似文献   

6.
Shiga toxin-producing Escherichia coli (STEC) strains possessing genes for enterohemolysin (ehxA) and/or intimin (eae), referred to here as complex STEC (cSTEC), are more commonly recovered from the feces of humans with hemolytic uremic syndrome and hemorrhagic colitis than STEC strains that do not possess these accessory virulence genes. Ruminants, particularly cattle and sheep, are recognized reservoirs of STEC populations that may contaminate foods destined for human consumption. We isolated cSTEC strains from the feces of longitudinally sampled pasture-fed sheep, lot-fed sheep maintained on diets comprising various combinations of silage and grain, and sheep simultaneously grazing pastures with cattle to explore the diversity of cSTEC serotypes capable of colonizing healthy sheep. A total of 67 cSTEC serotypes were isolated, of which 21 (31.3%), mainly isolated from lambs, have not been reported. Of the total isolations, 58 (86.6%) were different from cSTEC serotypes isolated from a recent study of longitudinally sampled healthy Australian cattle (M. Hornitzky, B. A. Vanselow, K. Walker, K. A. Bettelheim, B. Corney, P. Gill, G. Bailey, and S. P. Djordjevic, Appl. Environ. Microbiol. 68:6439-6445, 2002). Our data suggest that cSTEC serotypes O5:H, O75:H8, O91:H, O123:H, and O128:H2 are well adapted to colonizing the ovine gastrointestinal tract, since they were the most prevalent serotypes isolated from both pasture-fed and lot-fed sheep. Collectively, our data show that Australian sheep are colonized by diverse cSTEC serotypes that are rarely isolated from healthy Australian cattle.  相似文献   

7.
A large outbreak of gastrointestinal disease occurred in 2011 in Germany which resulted in almost 4000 patients with acute gastroenteritis or hemorrhagic colitis, 855 cases of a hemolytic uremic syndrome and 53 deaths. The pathogen was an uncommon, multiresistant Escherichia coli strain of serotype O104:H4 which expressed a Shiga toxin characteristic of enterohemorrhagic E. coli and in addition virulence factors common to enteroaggregative E. coli. During post-epidemic surveillance of Shiga toxin-producing E. coli (STEC) all but two of O104:H4 isolates were indistinguishable from the epidemic strain. Here we describe two novel STEC O104:H4 strains isolated in close spatiotemporal proximity to the outbreak which show a virulence gene panel, a Shiga toxin-mediated cytotoxicity towards Vero cells and aggregative adherence to Hep-2 cells comparable to the outbreak strain. They differ however both from the epidemic strain and from each other, by their antibiotic resistance phenotypes and some other features as determined by routine epidemiological subtyping methods. Whole genome sequencing of these two strains, of ten outbreak strain isolates originating from different time points of the outbreak and of one historical sporadic EHEC O104:H4 isolate was performed. Sequence analysis revealed a clear phylogenetic distance between the two variant strains and the outbreak strain finally identifying them as epidemiologically unrelated isolates from sporadic cases. These findings add to the knowledge about this emerging pathogen, illustrating a certain diversity within the bacterial core genome as well as loss and gain of accessory elements. Our results do also support the view that distinct new variants of STEC O104:H4 repeatedly might originate from yet unknown reservoirs, rather than that there would be a continuous diversification of a single epidemic strain established and circulating in Germany after the large outbreak in 2011.  相似文献   

8.
Cattle are an important reservoir of Shiga toxin-producing Escherichia coli (STEC) O26, O111, and O157. The fate of these pathogens in bovine feces at 5, 15, and 25°C was examined. The feces of a cow naturally infected with STEC O26:H11 and two STEC-free cows were studied. STEC O26, O111, and O157 were inoculated into bovine feces at 101, 103, and 105 CFU/g. All three pathogens survived at 5 and 25°C for 1 to 4 weeks and at 15°C for 1 to 8 weeks when inoculated at the low concentration. On samples inoculated with the middle and high concentrations, O26, O111, and O157 survived at 25°C for 3 to 12 weeks, at 15°C for 1 to 18 weeks, and at 5°C for 2 to 14 weeks, respectively. Therefore, these pathogens can survive in feces for a long time, especially at 15°C. The surprising long-term survival of STEC O26, O111, and O157 in bovine feces shows that such feces are a potential vehicle for transmitting not only O157 but also O26 and O111 to cattle, food, and the environment. Appropriate handling of bovine feces is emphasized.  相似文献   

9.
Shiga toxin-producing Escherichia coli (STEC) strains belonging to serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 are known to be associated with particular subtypes of the intimin gene (eae), namely, γ1, β1, ε, θ, and γ1, respectively. This study aimed at evaluating the usefulness of their detection for the specific detection of these five main pathogenic STEC serotypes in cattle feces. Using real-time PCR assays, 58.7% of 150 fecal samples were found positive for at least one of the four targeted eae subtypes. The simultaneous presence of stx, eae, and one of the five O group markers was found in 58.0% of the samples, and the five targeted stx plus eae plus O genetic combinations were detected 143 times. However, taking into consideration the association between eae subtypes and O group markers, the resulting stx plus eae subtype plus O combinations were detected only 46 times. The 46 isolation assays performed allowed recovery of 22 E. coli strains belonging to one of the five targeted STEC serogroups. In contrast, only 2 of 39 isolation assays performed on samples that were positive for stx, eae and an O group marker, but that were negative for the corresponding eae subtype, were successful. Characterization of the 24 E. coli isolates showed that 6 were STEC, including 1 O157:H7, 3 O26:H11, and 2 O145:H28. The remaining 18 strains corresponded to atypical enteropathogenic E. coli (aEPEC). Finally, the more discriminating eae subtype-based PCR strategy described here may be helpful for the specific screening of the five major STEC in cattle feces.  相似文献   

10.

Background

Shiga toxin-producing Escherichia coli (STEC) O157:H7 is the causal agent for more than 96,000 cases of diarrheal illness and 3,200 infection-attributable hospitalizations annually in the United States.

Materials and Methods

We defined a confirmed case as a compatible illness in a person with the outbreak strain during 10/07/2011-11/30/2011. Investigation included hypothesis generation, a case-control study utilizing geographically-matched controls, and a case series investigation. Environmental inspections and tracebacks were conducted.

Results

We identified 58 cases in 10 states; 67% were hospitalized and 6.4% developed hemolytic uremic syndrome. Any romaine consumption was significantly associated with illness (matched Odds Ratio (mOR) = 10.0, 95% Confidence Interval (CI) = 2.1–97.0). Grocery Store Chain A salad bar was significantly associated with illness (mOR = 18.9, 95% CI = 4.5–176.8). Two separate traceback investigations for romaine lettuce converged on Farm A. Case series results indicate that cases (64.9%) were more likely than the FoodNet population (47%) to eat romaine lettuce (p-value = 0.013); 61.3% of cases reported consuming romaine lettuce from the Grocery Store Chain A salad bar.

Conclusions

This multistate outbreak of STEC O157:H7 infections was associated with consumption of romaine lettuce. Traceback analysis determined that a single common lot of romaine lettuce harvested from Farm A was used to supply Grocery Store Chain A and a university campus linked to a case with the outbreak strain. An investigation at Farm A did not identify the source of contamination. Improved ability to trace produce from the growing fields to the point of consumption will allow more timely prevention and control measures to be implemented.  相似文献   

11.
12.
Escherichia coli O111 is an emerging non-O157:H7 serotype of Shiga toxin-producing E. coli (STEC). We previously reported that outbreak and environmental, but not sporadic-case, strains of STEC O111 share a distinct aggregation phenotype (M. E. Diodati, A. H. Bates, M. B. Cooley, S. Walker, R. E. Mandrell, and M. T. Brandl, Foodborne Pathog Dis 12:235−243, 2015, http://dx.doi.org/10.1089/fpd.2014.1887). We show here the natural occurrence of nonaggregative variants in single STEC O111 strains. These variants do not produce curli fimbriae and lack RpoS function but synthesize cellulose. The deletion of csgBAC or rpoS in an aggregative outbreak strain abolished aggregate formation, which was rescued when curli biogenesis or RpoS function, respectively, was restored. Complementation of a nonaggregative variant with RpoS also conferred curli production and aggregation. These observations were supported by Western blotting with an anti-CsgA antibody. Immunomicroscopy revealed that curli were undetectable on the cells of the nonaggregative variant and the RpoS mutant but were present in large quantities in the intercellular matrix of the assemblages formed by aggregative strains. Sequence analysis of rpoS in the aggregative strain and its variant showed a single substitution of threonine for asparagine at amino acid 124. Our results indicate that the multicellular behavior of STEC O111 is RpoS dependent via positive regulation of curli production. Aggregation may confer a fitness advantage in O111 outbreak strains under stressful conditions in hydrodynamic environments along the food production chain and in the host, while the occurrence of nonaggregative variants may allow the cell population to adapt to conditions benefiting a planktonic lifestyle.  相似文献   

13.
There is considerable diversity among Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria, and only a subset of these organisms are thought to be human pathogens. The characteristics that distinguish STEC bacteria that give rise to human disease are not well understood. Stxs, the principal virulence determinants of STEC, are thought to account for hemolytic-uremic syndrome (HUS), a severe clinical consequence of STEC infection. Stxs are typically bacteriophage encoded, and their production has been shown to be enhanced by prophage-inducing agents such as mitomycin C in a limited number of clinical STEC isolates. Low iron concentrations also enhance Stx production by some clinical isolates; however, little is known regarding whether and to what extent these stimuli regulate Stx production by STEC associated with cattle, the principal environmental reservoir of STEC. In this study, we investigated whether toxin production differed between HUS- and bovine-associated STEC strains. Basal production of Stx by HUS-associated STEC exceeded that of bovine-associated STEC. In addition, following mitomycin C treatment, Stx2 production by HUS-associated STEC was significantly greater than that by bovine-associated STEC. Unexpectedly, mitomycin C treatment had a minimal effect on Stx1 production by both HUS- and bovine-associated STEC. However, Stx1 production was induced by growth in low-iron medium, and induction was more marked for HUS-associated STEC than for bovine-associated STEC. These observations reveal that disease-associated and bovine-associated STEC bacteria differ in their basal and inducible Stx production characteristics.  相似文献   

14.

Background

In 2008, children playing on a soccer field in Colorado were sickened with a strain of Shiga toxin-producing Escherichia coli (STEC) O157:H7, which was ultimately linked to feces from wild Rocky Mountain elk. We addressed whether wild cervids were a potential source of STEC infections in humans and whether STEC was ubiquitous throughout wild cervid populations in Colorado.

Methodology/Principal Findings

We collected 483 fecal samples from Rocky Mountain elk and mule deer in urban and non-urban areas. Samples testing positive for STEC were higher in urban (11.0%) than non-urban (1.6%) areas. Elk fecal samples in urban areas had a much higher probability of containing STEC, which increased in both urban and non-urban areas as maximum daily temperature increased. Of the STEC-positive samples, 25% contained stx1 strains, 34.3% contained stx2, and 13% contained both stx1 and stx2. Additionally, eaeA genes were detected in 54.1% of the positive samples. Serotypes O103, and O146 were found in elk and deer feces, which also have the potential to cause human illness.

Conclusions/Significance

The high incidence of stx2 strains combined with eaeA and E-hyl genes that we found in wild cervid feces is associated with severe human disease, such as hemolytic uremic syndrome. This is of concern because there is a very close physical interface between elk and humans in urban areas that we sampled. In addition, we found a strong relationship between ambient temperature and incidence of STEC in elk feces, suggesting a higher incidence of STEC in elk feces in public areas on warmer days, which in turn may increase the likelihood that people will come in contact with infected feces. These concerns also have implications to other urban areas where high densities of coexisting wild cervids and humans interact on a regular basis.  相似文献   

15.

Background

In May 2011 an outbreak of Shiga toxin-producing enterohaemorrhagic E. coli (STEC) O104:H4 in Northern Germany led to a high number of in-patients, suffering from post-enteritis haemolytic-uraemic syndrome (HUS) and often severe affection of the central nervous system. To our knowledge so far only neurological manifestations have been described systematically in literature.

Aim

To examine psychiatric symptoms over time and search for specific symptom clusters in affected patients.

Methods

31 in-patients suffering from E. coli O104:H4 associated HUS, were examined and followed up a week during the acute hospital stay. Psychopathology was assessed by clinical interview based on the AMDP Scale, the Brief Symptom Inventory and the Clinical Global Impressions Scale.

Results

At baseline mental disorder due to known physiological condition (ICD-10 F06.8) was present in 58% of the examined patients. Patients suffered from various manifestations of cognitive impairment (n = 27) and hallucinations (n = 4). Disturbances of affect (n = 28) included severe panic attacks (n = 9). Psychiatric disorder was significantly associated with higher age (p<0.0001), higher levels of C-reactive protein (p<0.05), and positive family history of heart disease (p<0.05). Even within the acute hospital stay with a median follow up of 7 days, symptoms improved markedly over time (p <0.0001).

Conclusions

Aside from severe neurological symptoms the pathology in E.coli O104:H4 associated HUS frequently includes particular psychiatric disturbances. Long term follow up has to clarify whether or not these symptoms subside.  相似文献   

16.
Pathogenic strains of Escherichia coli, such as E. coli O157:H7, have a low infectious dose and an ability to survive in acidic foods. These bacteria have evolved at least three distinct mechanisms of acid resistance (AR), including two amino acid decarboxylase-dependent systems (arginine and glutamate) and a glucose catabolite-repressed system. We quantified the survival rates for each AR mechanism separately in clinical isolates representing three groups of Shiga toxin-producing E. coli (STEC) clones (O157:H7, O26:H11/O111:H8, and O121:H19) and six commensal strains from ECOR group A. Members of the STEC clones were not significantly more acid resistant than the commensal strains when analyzed using any individual AR mechanism. The glutamate system provided the best protection in a highly acidic environment for all groups of isolates (<0.1 log reduction in CFU/ml per hour at pH 2.0). Under these conditions, there was notable variation in survival rates among the 30 O157:H7 strains, which depended in part on Mg2+ concentration. The arginine system provided better protection at pH 2.5, with a range of 0.03 to 0.41 log reduction per hour, compared to the oxidative system, with a range of 0.13 to 0.64 log reduction per hour. The average survival rate for the O157:H7 clonal group was significantly less than that of the other STEC clones in the glutamate and arginine systems and significantly less than that of the O26/O111 clone in the oxidative system, indicating that this clonal group is not exceptionally acid resistant with these specific mechanisms.  相似文献   

17.
In Mellassine (a major city in the state of Tunis) and Ben Arous state (south east of Tunis), a total of 212 stool samples were collected from children and adults (symptomatic and asymptomatic groups) between November 2001 and November 2004. Three hundred and twenty-seven E. coli strains were isolated and studied, to look for shiga toxin-producing Escherichia coli (STEC) strains, which were further analysed to investigate and determine clonal relationship among Tunisian STEC strains isolated from different sources (diarrheal cases and food products). They were analysed to characterize their serotypes, virulence genes by PCR, cytotoxic effect on Vero cell, plasmid profiles, and pulsed-field gel electrophoresis (PFGE) patterns. Eleven isolates (10 nontypeable, one O157:H7) carried stx gene and shared Stx restriction fragment length polymorphism (RFLP) patterns (stx1 ( + ), stx2 ( + )). Seven of these strains were isolated from acute diarrheal cases, and four were isolated from a control group (among which the only isolated STEC O157:H7). Two of the STEC strains harboured both eae and ehxA genes. Analysis of the cytotoxic effect on Vero cells showed that a correlation exists between carrying stx1 ( + ), stx2 ( + ) genes and cytotoxicity. Also a correlation was noticed between STEC strains recovered from different sources regarding plasmid profiles and PFGE patterns. All stool samples positive for STEC were nonbloody. None of the STEC-positive patients developed severe diseases. These data demonstrate that although STEC is not a major cause of acute diarrhea in Tunis, it should not be overlooked. Measures should be taken to improve the detection and isolation of STEC from acute diarrheal cases as well as carriers.  相似文献   

18.
Forming biofilms may be a survival strategy of Shiga toxin-producing Escherichia coli to enable it to persist in the environment and the food industry. Here, we evaluate and characterize the biofilm-forming ability of 39 isolates of Shiga toxin-producing Escherichia coli isolates recovered from human infection and belonging to seropathotypes A, B, or C. The presence and/or production of biofilm factors such as curli, cellulose, autotransporter, and fimbriae were investigated. The polymeric matrix of these biofilms was analyzed by confocal microscopy and by enzymatic digestion. Cell viability and matrix integrity were examined after sanitizer treatments. Isolates of the seropathotype A (O157:H7 and O157:NM), which have the highest relative incidence of human infection, had a greater ability to form biofilms than isolates of seropathotype B or C. Seropathotype A isolates were unique in their ability to produce cellulose and poly-N-acetylglucosamine. The integrity of the biofilms was dependent on proteins. Two autotransporter genes, ehaB and espP, and two fimbrial genes, z1538 and lpf2, were identified as potential genetic determinants for biofilm formation. Interestingly, the ability of several isolates from seropathotype A to form biofilms was associated with their ability to agglutinate yeast in a mannose-independent manner. We consider this an unidentified biofilm-associated factor produced by those isolates. Treatment with sanitizers reduced the viability of Shiga toxin-producing Escherichia coli but did not completely remove the biofilm matrix. Overall, our data indicate that biofilm formation could contribute to the persistence of Shiga toxin-producing Escherichia coli and specifically seropathotype A isolates in the environment.  相似文献   

19.
Shiga toxin-producing Escherichia coli (STEC) infections are a critical public health concern because they can cause severe clinical outcomes, such as hemolytic uremic syndrome, in humans. Determining the presence or absence of virulence genes is essential in assessing the potential pathogenicity of STEC strains. Currently, there is limited information about the virulence genes carried by swine STEC strains; therefore, this study was conducted to examine the presence and absence of 69 virulence genes in STEC strains recovered previously from finishing swine in a longitudinal study. A subset of STEC strains was analyzed by pulsed-field gel electrophoresis (PFGE) to examine their genetic relatedness. Swine STEC strains (n = 150) were analyzed by the use of a high-throughput real-time PCR array system, which included 69 virulence gene targets. Three major pathotypes consisted of 16 different combinations of virulence gene profiles, and serotypes were determined in the swine STEC strains. The majority of the swine STEC strains (n = 120) belonged to serotype O59:H21 and carried the same virulence gene profile, which consisted of 9 virulence genes: stx2e, iha, ecs1763, lpfAO113, estIa (STa), ehaA, paa, terE, and ureD. The eae, nleF, and nleH1-2 genes were detected in one swine STEC strain (O49:H21). Other genes encoding adhesins, including iha, were identified (n = 149). The PFGE results demonstrated that swine STEC strains from pigs raised in the same finishing barn were closely related. Our results revealed diverse virulence gene contents among the members of the swine STEC population and enhance understanding of the dynamics of transmission of STEC strains among pigs housed in the same barn.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号