首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ceramide-1-phosphate is a sphingolipid metabolite that has been implicated in membrane fusion of brain synaptic vesicles and neutrophil phagolysosome formation. Ceramide-1-phosphate can be produced by ATP-dependent ceramide kinase activity, although little is known of this enzyme because it has not yet been highly purified or cloned. Based on sequence homology to sphingosine kinase type 1, we have now cloned a related lipid kinase, human ceramide kinase (hCERK). hCERK encodes a protein of 537 amino acids that has a catalytic region with a high degree of similarity to the diacylglycerol kinase catalytic domain. hCERK also has a putative N-myristoylation site on its NH(2) terminus followed by a pleckstrin homology domain. Membrane but not cytosolic fractions from HEK293 cells transiently transfected with a hCERK expression vector readily phosphorylated ceramide but not sphingosine or other sphingoid bases, diacylglycerol or phosphatidylinositol. This activity was clearly distinguished from those of bacterial or human diacylglycerol kinases. With natural ceramide as a substrate, the enzyme had a pH optimum of 6.0-7.5 and showed Michaelis-Menten kinetics, with K(m) values of 187 and 32 microm for ceramide and ATP, respectively. Northern blot analysis revealed that hCERK mRNA expression was high in the brain, heart, skeletal muscle, kidney, and liver. A BLAST search analysis using the hCERK sequence revealed that putative ceramide kinases (CERKs) exist widely in diverse multicellular organisms including plants, nematodes, insects, and vertebrates. Phylogenetic analysis revealed that CERKs are a new class of lipid kinases that are clearly distinct from sphingosine and diacylglycerol kinases. Cloning of CERK should provide new molecular tools to investigate the physiological functions of ceramide-1-phosphate.  相似文献   

3.
Previous studies have shown that exposure to broad-spectrum protein kinase inhibitors results in parthenogenetic activation of metaphase II arrested porcine oocytes. The objective of this study was to determine the effect of inhibitors of myosin light chain kinase and other protein kinases on pronuclear development, dephosphorylation of a 25-kDa protein, and cortical granule exocytosis. Metaphase II arrested oocytes were obtained by in vitro maturation. Cumulus-free oocytes were cultured with specific inhibitors in modified Whitten's medium for 24 h. Treatment with inhibitors that should inhibit myosin light chain kinase--HA100 (250 microM), Wortmannin (1 microM), and a combination of Wortmannin (1 microM), KT5720 (75 nM), and Iso-H7 (50 microM)--resulted in significantly higher pronuclear development (74.0%, 18.0%, and 35.0%, respectively) than in the negative control, H7 (10 microM; 2.0-12.4% depending upon the replication). Treatment with HA100 (250 microM) resulted in the dephosphorylation of the 25-kDa protein to a 22-kDa protein in 80.0% (n = 10) of oocytes exposed. However, Wortmannin (1 microM; n = 17), KT5720 (75 nM; n = 16), and Iso-H7 (50 microM; n = 19) treatment individually and in combination (n = 19) did not result in significant (p < 0.05; n = 19) dephosphorylation over the negative control, H7 (10 microM; n = 19). HA100 treatment resulted in significant cortical granule exocytosis when evaluated by laser confocal microscopy. In addition, protein kinase assays revealed lower myosin light chain kinase activity in electroactivated oocytes (p < 0.05) and protein kinase inhibitor-treated oocytes (p < 0.05) than in negative controls, nonelectroactivated oocytes, and H7 (10 microM)-treated oocytes. Treatment with HA100 (250 microM) resulted in pronuclear formation, dephosphorylation of the 25-kDa protein, and some release of cortical granules. These observations suggest that inhibition of myosin light chain kinase, protein kinase A, and protein kinase C results in activation of porcine oocytes.  相似文献   

4.
RIP3 is a novel gene product containing a N-terminal kinase domain that shares extensive homology with the corresponding domain in RIP (receptor-interacting protein) and RIP2. Unlike RIP, which has a C-terminal death domain, and RIP2, which has a C-terminal caspase activation and recruitment domain, RIP3 has a unique C terminus. RIP3 binds RIP through its unique C-terminal segment and by virtue of this interaction is recruited to the tumor necrosis factor (TNF) receptor-1 signaling complex. Previous studies have shown that RIP mediates TNF-induced activation of the anti-apoptotic NF-kappaB pathway. RIP3, however, attenuates both RIP and TNF receptor-1-induced NF-kappaB activation. Overexpression studies revealed RIP3 to be a potent inducer of apoptosis, capable of selectively binding to large prodomain initiator caspases.  相似文献   

5.
Choline kinase and ethanolamine kinase are located in the cytosol from rat liver and have been copurified more than 500-fold by affinity chromatography [P. J. Brophy and D. E. Vance (1976) FEBS Lett. 62, 123-125]. Kinetic properties of the two activities were determined. Choline kinase had a Km for choline of 0.033 mM and ethanolamine was a competitive inhibitor (Ki = 6.2 mM). Ethanolamine kinase had a Km for ethanolamine of 7.7 mM and choline was a 'mixed' type of inhibitor with a Ki of 0.037 mM. Both enzymes activities responded in a similar fashion to the adenylate energy charge. Betaine and choline phosphate partially inhibited both kinases with a 93% inhibition of the ethanolamine kinase by 5 mM choline phosphate. CTP and ethanolaminephosphate partially inhibited the ethanolamine kinase, but not the choline kinase. Other metabolites tested had negliglible effects on both kinases. The affinity-column-purified enzyme was analyzed by disc gel electrophoresis which resolved the two activities. Hence, although many of the properties of the two activities are similar, choline kinase and ethanolamine kinase must be separate enzymes. Analysis of rat liver cytosol by disc gel electrophoresis indicated four isoenzymes for choline kinase and ethanolamine kinase.  相似文献   

6.
PRAK, a novel protein kinase regulated by the p38 MAP kinase.   总被引:22,自引:2,他引:20       下载免费PDF全文
L New  Y Jiang  M Zhao  K Liu  W Zhu  L J Flood  Y Kato  G C Parry    J Han 《The EMBO journal》1998,17(12):3372-3384
We have identified and cloned a novel serine/ threonine kinase, p38-regulated/activated protein kinase (PRAK). PRAK is a 471 amino acid protein with 20-30% sequence identity to the known MAP kinase-regulated protein kinases RSK1/2/3, MNK1/2 and MAPKAP-K2/3. PRAK was found to be expressed in all human tissues and cell lines examined. In HeLa cells, PRAK was activated in response to cellular stress and proinflammatory cytokines. PRAK activity was regulated by p38alpha and p38beta both in vitro and in vivo and Thr182 was shown to be the regulatory phosphorylation site. Activated PRAK in turn phosphorylated small heat shock protein 27 (HSP27) at the physiologically relevant sites. An in-gel kinase assay demonstrated that PRAK is a major stress-activated kinase that can phosphorylate small heat shock protein, suggesting a potential role for PRAK in mediating stress-induced HSP27 phosphorylation in vivo.  相似文献   

7.
8.
Thymidylate kinase derived from the blast cells of human chronic myelocytic leukemia was purified 2186-fold to near homogeneity by means of alcohol precipitation, alumina-Cgamma gel fractionation, calcium phosphate gel fraction, ultrafiltration, and affinity column chromatography. The molecular weight was estimated by glycerol gradient centrifugation to be 50,000. This enzyme had an optimal activity at pH 7.1 and required a divalent cation in order to catalyze the reaction. Mg2+ and Mn2+ were found to be the preferential divalent cations. The activation energy was estimated to be 19.1 kcal/mol at pH 7.2. Initial velocity study suggested that the reaction followed a sequential mechanism. Mg2+ ATP had a Km of 0.25 mM and dTMP had a Km of 40 micrometer. The enzyme was unstable even at 4 degrees. In the presence of ATP or dTMP the enzyme maintained its activity. Purine triphosphate nucleosides were found to be better phosphate donors than the pyrimidine triphosphate nucleosides. ATP and dATP had a lower Km and a higher Vmax than GTP and dGTP. dTMP was the only preferred phosphate receptor among all the monophosphate nucleotides tested dTTP and IdUTP competed with both substrates and inhibited the reaction with a Ki of 0.75 mM and 1.1 mM, respectively.  相似文献   

9.
The Tpl-2 protein serine/threonine kinase was originally identified, in a C-terminally deleted form, as the product of an oncogene associated with the progression of Moloney murine leukemia virus-induced T cell lymphomas in rats. The kinase domain of Tpl-2 is homologous to the Saccharomyces cerevisiae gene product, STE11, which encodes a MAP kinase kinase kinase. This suggested that Tpl-2 might have a similar activity. Consistent with this hypothesis, immunoprecipitated Tpl-2 and Tpl-2deltaC (a C-terminally truncated mutant) phosphorylated and activated recombinant fusion proteins of the mammalian MAP kinase kinases, MEK-1 and SEK-1, in vitro. Furthermore, transfection of Tpl-2 into COS-1 cells or Jurkat T cells. markedly activated the MAP kinases, ERK-1 and SAP kinase (JNK), which are substrates for MEK-1 and SEK-1, respectively. Tpl-2, therefore, is a MAP kinase kinase kinase which can activate two MAP kinase pathways. After Raf and Mos, Tpl-2 is the third serine/threonine oncoprotein kinase that has been shown to function as a direct activator of MEK-1.  相似文献   

10.
Manduca sexta juvenile hormone diol kinase (JHDK) catalyzes the conversion of juvenile hormone (JH) diol to JH diol phosphate. JHDK may be the first example of a phosphotransferase directly involved in the catabolism and inactivation of a lipid-soluble hormone. JHDK is an enzyme crucial for secondary metabolism of JH and possesses high specificity and catalytic efficiency for JH diol. In this study, the purification and characterization of native JHDK are described; its enzymatic properties are examined; and its role in cellular JH metabolism is explored. Using a variety of potential substrates, we show that JHDK has a preference for ATP, but will catalyze the formation of JH diol phosphate with GTP as the phosphate donor. JHDK has a nanomolar K(m) for JH I diol and a low micromolar value for MgATP. JH II and III diols also serve as phosphate acceptors with low micromolar K(m), whereas other diol derivatives of terpenoid esters structurally similar to JH metabolites are not phosphorylated. The reaction proceeds via a sequential Bi Bi mechanism. JHDK is active as a homodimer with a subunit molecular mass of 20 kDa. JHDK binds 5'-p-fluorosulfonylbenzoyladenosine and is inhibited by micromolar levels of Ca2+.  相似文献   

11.
12.
13.
Activities of enzymes in the de novo pathway, aspartate carbamyl transferase, and salvage pathway, thymidine and uridine kinases, for nucleotide precursor synthesis were examined under conditions of innervation and denervation in the amputated newt forelimb. It was found that ACTase and uridine kinase were active throughout regeneration (Days 0–26) of innervated limbs, and that thymidine kinase became active only at the nerve independent stage. Denervation slightly reduced the levels of activity but did not alter the pattern of activity for any of these enzymes for up to 26 days after simultaneous amputation and denervation. Reduction in levels of activity in denervated limbs became more prominent as the innervated control limbs entered the nerve independent stage, but at no time throughout the 26-day period did levels of activity in denervates fall to baseline values. Nerves apparently have little effect on the underlying metabolic pathways which produce precursors for DNA synthesis.  相似文献   

14.
Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases activated by dual phosphorylation on threonine and tyrosine residues. A MAP kinase kinase (MKK1 or MEK1) has been identified as a dual-specificity protein kinase that is sufficient to phosphorylate MAP kinases p42mapk and p44mapk on the regulatory threonine and tyrosine residues. Because of the multiplicity of MAP kinase isoforms and the diverse circumstances and agonists leading to their activation, we thought it unlikely that a single MKK could accommodate this complexity. Indeed, two protein bands with MKK activity have previously been identified after renaturation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We now report the molecular cloning and characterization of a second rat MAP kinase kinase cDNA, MKK2. MKK2 cDNA contains an open reading frame encoding a protein of 400 amino acids, 7 residues longer than MKK1 (MEK1). The amino acid sequence of MKK2 is 81% identical to that of MKK1, but nucleotide sequence differences occur throughout the aligned MKK2 and MKK1 cDNAs, indicating that MKK2 is the product of a distinct gene. MKK1 and MKK2 mRNAs are expressed differently in rat tissues. Both cDNAs when expressed in COS cells displayed the ability to phosphorylate and activate p42mapk and p44mapk, both MKK1 and MKK2 were activated in vivo in response to serum, and both could be phosphorylated and activated by the v-Raf protein in vitro. However, differences between MKK1 and MKK2 in sites of phosphorylation by proline-directed protein kinases predict differences in feedback regulation.  相似文献   

15.
Protein kinase C, calcium and phospholipid degradation.   总被引:17,自引:0,他引:17  
In most cells, calcium signals are transient, while the resulting physiological responses often persist longer. The sustained activation of protein kinase C has been postulated to be essential for maintaining such cellular responses. It is becoming clear that an elaborate network involving protein kinase C, calcium and degradation of membrane phospholipids may generate several molecules that are necessary for sustaining the activation of protein kinase C itself. Multiple members of the protein kinase C family show distinct responses to calcium and the phospholipid degradation products, suggesting their unique functions in cell signalling.  相似文献   

16.
The gene sequence of Manduca sexta juvenile hormone diol kinase (JHDK) codes for an enzyme that has 59% sequence identity to Drosophila melanogaster sarcoplasmic calcium-binding protein-2 (dSCP2). JHDK and dSCP2 are similar to G-proteins with three conserved sequence elements involved in purine nucleotide binding. Both proteins contain two pairs of EF-hand motifs. Characterization and partial purification of the D. melanogaster homolog of M. sexta JHDK from adult D. melanogaster gave material with JHDK activity. This activity has an experimental pI and molecular mass that are nearly identical to those of dSCP2. Moreover, D. melanogaster phosphotransferase activity has very similar chromatographic retention in three systems compared with M. sexta JHDK. Substrate docking to three-dimensional models of JHDK has shown that the three conserved nucleotide-binding elements surround the putative substrate-binding site and align with conserved sequence elements of p21(Ras) and adenylate kinase. D. melanogaster dSCP2 is a homolog of M. sexta JHDK, and these proteins constitute a novel kinase family that binds nucleotides using the scaffold of an SCP (Protein Data Bank code ).  相似文献   

17.
Keratins, constituent proteins of intermediate filaments of epithelial cells, are phosphoproteins containing phosphoserine and phosphothreonine. We examined the in vitro phosphorylation of keratin filaments by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. When rat liver keratin filaments reconstituted by type I keratin 18 (molecular mass 47 kDa; acidic type) and type II keratin 8 (molecular mass 55 kDa; basic type) in a 1:1 ratio were used as substrates, all the protein kinases phosphorylated both of the constituent proteins to a significant rate and extent, and disassembly of the keratin filament structure occurred. Kinetic analysis suggested that all these protein kinases preferentially phosphorylate keratin 8, compared to keratin 18. The amino acid residues of keratins 8 and 18 phosphorylated by cAMP-dependent protein kinase or protein kinase C were almost exclusively serine, while those phosphorylated by Ca2+/calmodulin-dependent protein kinase II were serine and threonine. Peptide mapping analysis indicated that these protein kinases phosphorylate keratins 8 and 18 in a different manner. These observations gave the way for in vivo studies of the role of phosphorylation in the reorganization of keratin filaments.  相似文献   

18.
In C. elegans, a Wnt/WG-like signaling pathway down-regulates the TCF/LEF-related protein, POP-1, to specify posterior cell fates. Effectors of this signaling pathway include a beta-catenin homolog, WRM-1, and a conserved protein kinase, LIT-1. WRM-1 and LIT-1 form a kinase complex that can directly phosphorylate POP-1, but how signaling activates WRM-1/LIT-1 kinase is not yet known. Here we show that mom-4, a genetically defined effector of polarity signaling, encodes a MAP kinase kinase kinase-related protein that stimulates the WRM-1/LIT-1-dependent phosphorylation of POP-1. LIT-1 kinase activity requires a conserved residue analogous to an activating phosphorylation site in other kinases, including MAP kinases. These findings suggest that anterior/posterior polarity signaling in C. elegans may involve a MAP kinase-like signaling mechanism.  相似文献   

19.
20.
BACKGROUND: All three major members of the MAPK family (i.e., p38 MAPK, p42/p44 MAPK, and c-Jun N terminal kinase (JNK)) have been shown to control cellular responses to inflammation in vitro. Therefore these kinases have been designated suitable targets for anti-inflammatory therapy. However, the extent to which these kinases are actually activated during inflammation in humans in vivo has not been investigated. We employed experimental human endotoxemia, a model of systemic inflammation, to address this question. MATERIALS AND METHODS: Male volunteers were intravenously infused with 4 ng/kg bw lipopolysaccharide (LPS). Directly before LPS infusion and up to 24 h thereafter, activation of p38 MAPK, p42/p44 MAPK and JNK was assessed in peripheral blood, using Western blot and in vitro kinase assays. RESULTS: We observed that LPS induced a strong but transient phosphorylation and activation of p38 MAPK and p42/p44 MAPK, maximal activity being reached after 1 hr of LPS infusion. Strikingly, no JNK phosphorylation or activation was detected under these circumstances. CONCLUSIONS: These results suggest that both inhibitors of p38 MAPK and p42/p44 MAPK but not JNK are potentially useful for anti-inflammatory therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号