首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
1. The metabolism of [1-(14)C]glyoxylate to carbon dioxide, glycine, oxalate, serine, formate and glycollate was investigated in hyperoxaluric and control subjects' kidney and liver tissue in vitro. 2. Only glycine and carbon dioxide became significantly labelled with (14)C, and this was less in the hyperoxaluric patients' kidney tissue than in the control tissue. 3. Liver did not show this difference. 4. The metabolism of [1-(14)C]glycollate was also studied in the liver tissue; glyoxylate formation was demonstrated and the formation of (14)CO(2) from this substrate was likewise unimpaired in the hyperoxaluric patients' liver tissue in these experiments. 5. Glycine was not metabolized by human kidney, liver or blood cells under the conditions used. 6. These observations show that glyoxylate metabolism by the kidney is impaired in primary hyperoxaluria.  相似文献   

4.
5.
6.
Addition of [1-14C]acetate or [1,2-14C]acetate to actively growing cultures of Fusarium roseum 'Gibbosum' on rice yielded zearalenone with a specific activity ranging between 1.63 and 46.5 microCi/mmol.  相似文献   

7.
8.
The production of 14CO2 from l-[1-14C]fucose and d-[1-14C]arabinose has been studied in five mammalian species.Cats, guinea pigs, mice, and rabbits respired about 22% of the label of l[1-14C]fucose or of d-[1-14C]arabinose within 6 h after intraperitoneal injection of the sugar. Rats respired only 1.5% of the l-fucose label and 5% of the d-arabinose label in the same time period.Liver homogenates from cat, guinea pig, and rabbit produced significantly more 14CO2 from l-[1-14C]fucose or d-[1-14C]arabinose than mouse or rat liver homogenates. Unlike those of the other species, guinea pig liver homogenates had very low l-fucose dehydrogenase activity.The results suggest that substantial catabolism of l-fucose and d-arabinose occurs in the tissues of some animal species. Investigators wishing to employ l-fucose as a tracer of glycoprotein metabolism must, therefore, ensure that the species that they employ does not metabolize l-fucose to products interfering with their studies.  相似文献   

9.
1. Lactating mammary glands of sheep were perfused for several hours in the presence of dl-[2-(14)C]ornithine or dl-[5-(14)C]arginine and received adequate quantities of acetate, glucose and amino acids. 2. In the [(14)C]ornithine experiment 1.4% of the casein and 1% of the expired carbon dioxide came from added ornithine; 96% of the total radioactivity in casein was recovered in proline; 13% of the proline of casein originated from plasma ornithine. 3. In this experiment the results of chemical degradation of proline of casein as well as relative specific activities in the isolated products are consistent with the view that ornithine is metabolized, by way of glutamic gamma-semialdehyde, to proline or glutamic acid. 4. In the [(14)C]arginine experiments 3% of the casein and 1% of the expired carbon dioxide came from arginine; 84% of the arginine and 9% of the proline of casein originated from plasma arginine. 5. In these experiments the relative specific activities of arginine, ornithine and proline in plasma are in agreement with the view that arginine is metabolized by way of ornithine to proline. The conversion of arginine into ornithine is probably catalysed by arginase, so that arginase in mammary tissue may be involved in the process of milk synthesis.  相似文献   

10.
11.
Slices of ripening seeds of the pea (Pisum sativum) were suppliedwith [1-14C] G and [6-14C] G, and the S.A. was determined ofthe respirod carbon dioxide, pyruvate, and the acids of theT.C.A.C. as well as that of the individual carbon atoms of citrateand malate. The possibility that there exist active and inactive pools ofthe T.C.A.C. acids in the pea is considered and, for most ofthe acids, rejected. The results cannot be explained on the bais of the T.C.A.C.because the S.A. of the carbon dioxide liberated was some tentimes higher than could have come from the malate via the T.C.A.C.,too much 14C accumulated in the cycle acids to have come frompyruvate by the operation of the T.C.A.C., and the patterrnof label in citrate and malate was different from that expected. An alternative explanation is put forward based on the oxidationof glucose by the P.P.P. and movement of 14C by a series ofrapid isotope exchange reactions.  相似文献   

12.
13.
Studies have been made on the intensity of oxidation of [U-14C]-palmitate, [1-14C]- and [6-14C]-glucose by slices of the liver and skeletal muscles of new-born, 1-day, 5-day and adult Wistar rats and domestic pigs. It was found that the level of 14CO2 production from these substrates is higher in tissues of rats than in those of pigs. At early stages of ontogenesis, in tissues of both species intensive oxidation of glucose is observed together with oxidation of fatty acids. In the course of ontogenetic development, the intensity of glucose utilization significantly decreases, whereas the level of fatty acid catabolism remains relatively unaffected.  相似文献   

14.
1. Chloroplasts prepared by the non-aqueous technique will, after fragmentation by ultrasonic treatment, incorporate [2-(14)C]mevalonic acid into phytoene, the first C(40) compound formed in the biosynthetic sequence to coloured carotenoids. 2. With suspensions containing 3.5mg. of chlorophyll, the optimum amounts of cofactor required were ATP (10mumoles), magnesium chloride (20mumoles) and glutathione (20mumoles); neither NAD(+) nor NADP(+) was required. 3. Very small amounts of squalene are also formed and synthesis is stimulated by addition of NADH or NADPH. Phytoene synthesis was not affected by the presence of these cofactors and no lycopersene (the C(40) homologue of squalene) was detected. 4. The phytol side chain of chlorophyll is also labelled under these conditions. 5. Preparations of developing chloroplasts are more active than preparations of mature chloroplasts.  相似文献   

15.
Subcellular fractions from germinated barley embryos, chloroplast preparations and whole germinating barley grains are able to carry out the conversions ent-kaurenol → ent-kaurenal → ent-kaurenoic acid → ent-hydroxykaurenoic acid, the initial steps of the biosynthetic pathway to gibberellins. Whole grains, and chloroplasts to a slight extent, incorporate radioactivity from ent-kaurenol-[17-14C] and ent-kaurenoic acid-[17-14C] into materials with similar but distinct properties from the gibberellins GA1, GA3, GA4 and GA7.  相似文献   

16.
The acute immobilized stress was studied for its effect on oxidation rate of [1-14C]palmitoyl-CoA, [1-14C]acetyl-CoA and [2-14C]pyruvate in mitochondria of the adrenals, liver and heart of rabbits. The stress effect on the energy metabolism of adrenals is associated with an increase of the rate of CO2 formation from pyruvate and with a decrease of the rate of CO2 formation from palmitoyl-CoA. Intensified oxidation of all substrates is observed in the heart mitochondria. The processes of beta-oxidation are more active in the liver. The data obtained evidence for differences in the mechanisms of energy metabolism reconstruction under acute stress in tissues with different functional specialization.  相似文献   

17.
18.
This study describes the content, fatty acid composition and [2-3H]glycerol metabolism of phosphatidic acid of rod outer segment membranes from vertebrate retinas. A relatively high content of phosphatidic acid was observed in rod outer segment membranes isolated from rat, toad and bovine retinas. In bovine retinas, about 65% of the acyl groups of phosphatidic acid were composed of docosahexaenoate. Arachidonate and docosapentaenoate represented about 4 and 5%, respectively, of the total, whereas stearate was the most common saturated acyl chain. An active [2-3H]glycerol metabolism in the phosphatidic acid of these membranes was found when whole retinas were incubated with the precursor for short periods prior to subcellular fractionation. Our results suggested that the pool of phosphatidic acid enriched in docosahexaenoate may arise from de novo biosynthesis or from phospholipid degradation by a phospholipase D enzyme, and that it is not metabolically related, in any major fashion, to the diacylglycerols of rod outer segment membranes.  相似文献   

19.
We studied the synthesis of disaturated phosphatidylcholines in rat alveolar macrophages and, in some cases, compared it with that which occurs in isolated alveolar type II cells. Alveolar macrophages suspended in phosphate-buffered medium incorporate palmitate, choline and glycerol into disaturated phosphatidylcholines. The time-course for incorporation of palmitate into disaturated phosphatidylcholines is linear for 20-30 min and reaches a maximum in 2-3 h. Incorporation is dependent on extracellular palmitate with a Vmax (at 1 mM) of 1.53 nmol palmitate incorporated into disaturated phosphatidylcholines per 5 X 10(5) cells per 2 h and a K 1/2 of 0.19 mM palmitate. Exposure of the cells to zymosan particles increases incorporation of palmitate disaturated phosphatidylcholines by almost 2-fold, while cholinergic and beta-adrenergic agonists have no effect. On a per cell basis, alveolar macrophages incorporate only one-third to one-half as much palmitate into disaturated phosphatidylcholines as do type II cells isolated by centrifugal elutriation. The following results suggest there is extensive remodeling of disaturated phosphatidylcholines in alveolar macrophages: (1) palmitate- and choline-labeled disaturated phosphatidylcholines are catabolized by the cells; (2) the products of catabolism are palmitate and water-soluble choline products; (3) addition of unlabeled palmitate and choline to the medium enhances catabolism of the labeled phospholipid. Addition of oleate also enhances catabolism, suggesting that modification of phospholipids is not specific for the saturated variety. Some of the recently labeled disaturated phosphatidylcholines is released from alveolar macrophages into the extracellular space. Several possible functions of alveolar macrophage disaturated phosphatidylcholines are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号