首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In early tailbud embryos of the axolotl (Ambystoma mexicanum), cells of the anterior myotomes begin to elongate and align along the longitudinal axis of the animal. Soon thereafter, gap junctions appear between the differentiating myotubes. These junctions occur between adjacent cells within a myotome (intramyotomal) and between the cells of adjacent myotomes which are separated from one another by narrow connective tissue septa (intermyotomal). The latter are found at the ends of the elongating cells where muscle-tendon insertion will occur and nerve-muscle synapses will form. The gap junctions are transient: They appear with the onset of myofibrillar formation at the time that nerve fibers enter the intermyotomal septa. The junctions last until the cells have differentiated into mature striated muscle cells and neuromuscular synapses are fully developed.These gap junctions may provide a means for the direct intercellular spread of electrical excitation between the differentiating muscle cells and so account for the observed myogenic contraction of myotomes. We also suggest that these junctions may form a means for cellular communication and interaction during the development of the axial musculature.  相似文献   

2.
S Lee  N B Gilula  A E Warner 《Cell》1987,51(5):851-860
The ability of gap junction antibodies to block dye transfer and electrical coupling was examined in the compacted 8-cell mouse zygote. In control zygotes, Lucifer yellow injected into 1 cell transferred to the rest of the embryo. When antibodies raised against the major protein extracted from gap junctions were co-injected with Lucifer yellow, dye transfer failed in 86% of the zygotes tested and electrical coupling was almost completely inhibited. Subsequently, the antibody-containing cells were extruded. When the antibodies were injected into 1 cell at the 2-cell stage, 82% of the zygotes divided normally to the 8-cell stage. Cells containing gap junction antibodies were uncompacted, but continued to divide. We conclude that these antibodies inhibit gap junctional communication in the early mouse zygote and that communication through gap junctions may be involved in the maintenance of compaction.  相似文献   

3.
The role of gap junctions in patterning of the chick limb bud   总被引:3,自引:0,他引:3  
The role of gap junctional communication during patterning of the chick limb has been investigated. Affinity-purified antibodies raised against rat liver gap junctional proteins were used to block communication between limb mesenchyme cells. Co-injection of the antibodies and Lucifer yellow into mesenchyme cultures demonstrated that communication was inhibited almost immediately. When antibodies were loaded into mesenchyme tissue by DMSO permeabilization, [3H]nucleotide transfer was prevented for at least 16 h. Polarizing region tissue from the posterior limb bud margin causes digit duplications when grafted to the anterior margin. Quail polarizing region cells were loaded with gap junction antibody and grafted into chick wing buds. The antibody had no effect on growth or survival of the grafted cells. As very few polarizing region cells are required to initiate duplications, the number of polarizing region cells in the grafts was reduced by diluting 1:9 with anterior mesenchyme tissue. When either polarizing region or anterior mesenchyme tissue in the graft was loaded separately with antibody, there was little effect on respecification of the digit pattern. However, loading both tissues in the graft caused a significant decrease in duplications. This indicates that a major role of gap junctions in limb patterning may be to enable polarizing region cells to communicate directly with adjacent anterior mesenchyme. A role for gap junctional communication between anterior mesenchyme cells cannot be excluded. The results are discussed in relation to the role of retinoic acid as a putative morphogen.  相似文献   

4.
We examined the roles of the extracellular domains of a gap junction protein and a cell adhesion molecule in gap junction and adherens junction formation by altering cell interactions with antibody Fab fragments. Using immunoblotting and immunocytochemistry we demonstrated that Novikoff cells contained the gap junction protein, connexin43 (Cx43), and the cell adhesion molecule, A-CAM (N-cadherin). Cells were dissociated in EDTA, allowed to recover, and reaggregated for 60 min in media containing Fab fragments prepared from a number of antibodies. We observed no cell-cell dye transfer 4 min after microinjection in 90% of the cell pairs treated with Fab fragments of antibodies for the first or second extracellular domain of Cx43, the second extracellular domain of connexin32 (Cx32) or A-CAM. Cell-cell dye transfer was detected within 30 s in cell pairs treated with control Fab fragments (pre-immune serum, antibodies to the rat major histocompatibility complex or the amino or carboxyl termii of Cx43). We observed no gap junctions by freeze-fracture EM and no adherens junctions by thin section EM between cells treated with the Fab fragments that blocked cell-cell dye transfer. Gap junctions were found on approximately 50% of the cells in control samples using freeze-fracture EM. We demonstrated with reaggregated Novikoff cells that: (a) functional interactions of the extracellular domains of the connexins were necessary for the formation of gap junction channels; (b) cell interactions mediated by A-CAM were required for gap junction assembly; and (c) Fab fragments of antibodies for A-CAM or connexin extracellular domains blocked adherens junction formation.  相似文献   

5.
Skeletal myoblasts form grafts of mature muscle in injured hearts, and these grafts contract when exogenously stimulated. It is not known, however, whether cardiac muscle can form electromechanical junctions with skeletal muscle and induce its synchronous contraction. Here, we report that undifferentiated rat skeletal myoblasts expressed N-cadherin and connexin43, major adhesion and gap junction proteins of the intercalated disk, yet both proteins were markedly downregulated after differentiation into myo-tubes. Similarly, differentiated skeletal muscle grafts in injured hearts had no detectable N-cadherin or connexin43; hence, electromechanical coupling did not occur after in vivo grafting. In contrast, when neonatal or adult cardiomyocytes were cocultured with skeletal muscle, approximately 10% of the skeletal myotubes contracted in synchrony with adjacent cardiomyocytes. Isoproterenol increased myotube contraction rates by 25% in coculture without affecting myotubes in monoculture, indicating the cardiomyocytes were the pacemakers. The gap junction inhibitor heptanol aborted myotube contractions but left spontaneous contractions of individual cardiomyocytes intact, suggesting myotubes were activated via gap junctions. Confocal microscopy revealed the expression of cadherin and connexin43 at junctions between myotubes and neonatal or adult cardiomyocytes in vitro. After microinjection, myotubes transferred dye to neonatal cardiomyocytes via gap junctions. Calcium imaging revealed synchronous calcium transients in cardiomyocytes and myotubes. Thus, cardiomyocytes can form electromechanical junctions with some skeletal myotubes in coculture and induce their synchronous contraction via gap junctions. Although the mechanism remains to be determined, if similar junctions could be induced in vivo, they might be sufficient to make skeletal muscle grafts beat synchronously with host myocardium.  相似文献   

6.
In the heart, individual cardiac muscle cells are linked by gap junctions. These junctions form low resistance pathways along which the electrical impulse flows rapidly and repeatedly between all the cells of the myocardium, ensuring their synchronous contraction. To obtain probes for mapping the distribution of gap junctions in cardiac tissue, polyclonal antisera were raised to three synthetic peptides, each matching different cytoplasmically exposed portions of the sequence of connexin43, the major gap-junctional protein reported in the heart. The specificity of each antiserum for the peptide to which it was raised was established by dot blotting. New methods were developed for isolating enriched fractions of gap junctions from whole heart and from dissociated adult myocytes, in which detergent-treatment and raising the temperature (potentially damaging steps in previously described techniques) are avoided. Analysis of these fractions by SDS-polyacrylamide gel electrophoresis revealed major bands at 43 kDa (matching the molecular mass of connexin43) and at 70 kDa. Western blot experiments using our antisera indicated that both the 43-kDa and the 70-kDa bands represent cardiac gap-junctional proteins. Pre-embedding immunogold labelling of isolated gap junctions and post-embedding immunogold labelling of Lowicryl-embedded whole tissue demonstrated the specific binding of the antibodies to ultrastructurally defined gap junctions. One antiserum (raised to residues 131–142) was found to be particularly effective for cytochemical labelling. Using this antiserum for immunofluorescence labelling in combination with confocal scanning laser microscopy enabled highly sensitive detection and three-dimensional mapping of gap junctions through thick slices of cardiac tissue. By means of the serial optical sectioning ability of the confocal microscope, images of the entire gap junction population of complete en face-viewed disks were reconstructed. These reconstructions reveal the presence of large junctions arranged as a peripheral ring around the disk, with smaller junctions in an interior zone: an arrangement that may facilitate efficient intercellular transfer of current. By applying our immunolabelling techniques to tissue from hearts removed from transplant patients with advanced ischaemic heart disease, we have demonstrated that gap junction distribution between myocytes at the border zone of healed infarcts is markedly disordered. This abnormality may contribute to the genesis of reentrant arrhythmias in ischaemic heart disease.  相似文献   

7.
The smooth muscle cell is the predominant cell type of the arterial media. In the adult vascular system, smooth muscle cells are found primarily in the contractile phenotype, but following injury or during atherosclerotic plaque formation the secretory synthetic phenotype is expressed. Recently it has been shown that gap junction connexin43 messenger RNA levels are six times higher in cultured smooth muscle cells in the synthetic phenotype than in intact aorta. We have modulated rabbit aortic smooth muscle cells in culture between the synthetic phenotype and one resembling the contractile phenotype, and correlated gap junction expression with phenotype. A dual labelling technique with antibodies against smooth muscle myosin and a synthetic peptide constructed to match a portion of the connexin43 gap junction protein was used for these experiments. Gap junctions are numerous between synthetic phenotype cells but few are observed between contractile cells. Rat aortic smooth muscle cells were also cultured and the growth and structure of gap junctions followed in the synthetic phenotype by use of freeze-fracture electron microscopy and immunohistochemical techniques. Junctional plaques are similar in structure to those observed in cardiac muscle, their size and number increasing with time in culture. The increased numbers of gap junctions between synthetic phenotype smooth muscle cells may be important during vessel development, following injury, or in atherosclerotic plaque formation.  相似文献   

8.
《The Journal of cell biology》1994,127(6):1895-1905
The effect of 12-O-tetradeconylphorbol-13-acetate (TPA) on gap junction assembly between Novikoff hepatoma cells was examined. Cells were dissociated with EDTA to single cells and then reaggregated to form new junctions. When TPA (25 nM) was added to the cells at the onset of the 60-min reaggregation, dye transfer was detected at only 0.6% of the cell-cell interfaces compared to 72% for the untreated control and 74% for 4-alpha TPA, an inactive isomer of TPA. Freeze-fracture electron microscopy of reaggregated control cells showed interfaces containing an average of more than 600 aggregated intramembranous gap junction particles, while TPA-treated cells had no gap junctions. However, Lucifer yellow dye transfer between nondissociated cells via gap junctions was unaffected by 60 min of TPA treatment. Therefore, TPA dramatically inhibited gap junction assembly but did not alter channel gating nor enhance disassembly of preexisting gap junction structures. Short term TPA treatment (< 30 min) increased phosphorylation of the gap junction protein molecular weight of 43,000 (Cx43), but did not change the cellular level of Cx43. Cell surface biotinylation experiments suggested that TPA did not substantially reduce the plasma membrane concentration of Cx43. Therefore, the simple presence of Cx43 in the plasma membrane is not sufficient for gap junction assembly, and protein kinase C probably exerts an effect on assembly of gap junctions at the plasma membrane level.  相似文献   

9.
10.
Gap junction number and size vary widely in cardiac tissues with disparate conduction properties. Little is known about how tissue-specific patterns of intercellular junctions are established and regulated. To elucidate the relationship between gap junction channel protein expression and the structure of gap junctions, we analyzed Cx43 +/- mice, which have a genetic deficiency in expression of the major ventricular gap junction protein, connexin43 (Cx43). Quantitative confocal immunofluorescence microscopy revealed that diminished Cx43 signal in Cx43 +/- mice was due almost entirely to a reduction in the number of individual gap junctions (226 +/- 52 vs. 150 +/- 32 individual gap junctions/field in Cx43 +/+ and +/- ventricles, respectively; P < 0.05). The mean size of an individual gap junction was the same in both groups. Immunofluorescence results were confirmed with electron microscopic morphometry. Thus when connexin expression is diminished, ventricular myocytes become interconnected by a reduced number of large, normally sized gap junctions, rather than a normal number of smaller junctions. Maintenance of large gap junctions may be an adaptive response supporting safe ventricular conduction.  相似文献   

11.
Varicosities of nitrergic and other nerves end on deep muscular plexus interstitial cells of Cajal or on CD34-positive, c-kit-negative fibroblast-like cells. Both cell types connect to outer circular muscle by gap junctions, which may transmit nerve messages to muscle. We tested the hypotheses that gap junctions transmit pacing messages from interstitial cells of Cajal of the myenteric plexus. Effects of inhibitors of gap junction conductance were studied on paced contractions and nerve transmissions in small segments of circular muscle of mouse intestine. Using electrical field stimulation parameters (50 V/cm, 5 pps, and 0.5 ms) which evoke near maximal responses to nitrergic, cholinergic, and apamin-sensitive nerve stimulation, we isolated inhibitory responses to nitrergic nerves, inhibitory responses to apamin-sensitive nerves and excitatory responses to cholinergic nerves. 18beta-Glycyrrhetinic acid (10, 30, and 100 microM), octanol (0.1, 0.3, and 1 mM) and gap peptides (300 microM of (40)Gap27, (43)Gap26, (37,43)Gap27) all failed to abolish neurotransmission. 18beta-Glycyrrhetinic acid inhibited frequencies of paced contractions, likely owing to inhibition of l-type Ca(2+) channels in smooth muscle, but octanol or gap peptides did not. 18beta-Glycyrrhetinic acid and octanol, but not gap peptides, reduced the amplitudes of spontaneous and nerve-induced contractions. These reductions paralleled reductions in contractions to exogenous carbachol. Additional experiments with gap peptides in both longitudinal and circular muscle segments after N(G)-nitro-l-arginine and TTX revealed no effects on pacing frequencies. We conclude that gap junction coupling may not be necessary for pacing or nerve transmission to the circular muscle of the mouse intestine.  相似文献   

12.
In comparison to the cellular basis of pacemaking, the electrical interactions mediating synchronization and conduction in the sinoatrial node are poorly understood. Therefore, we have taken a combined immunohistochemical and electrophysiological approach to characterize gap junctions in the nodal area. We report that the pacemaker myocytes in the center of the rabbit sinoatrial node express the gap junction proteins connexin (Cx)40 and Cx46. In the periphery of the node, strands of pacemaker myocytes expressing Cx43 intermingle with strands expressing Cx40 and Cx46. Biophysical properties of gap junctions in isolated pairs of pacemaker myocytes were recorded under dual voltage clamp with the use of the perforated-patch method. Macroscopic junctional conductance ranged between 0.6 and 25 nS with a mean value of 7.5 nS. The junctional conductance did not show a pronounced sensitivity to the transjunctional potential difference. Single-channel recordings from pairs of pacemaker myocytes revealed populations of single-channel conductances at 133, 202, and 241 pS. With these single-channel conductances, the observed average macroscopic junctional conductance, 7.5 nS, would require only 30-60 open gap junction channels.  相似文献   

13.
Blanco RE 《Tissue & cell》1988,20(5):771-782
The ultrastructural organization and the junctional complexes of peripheral nerves have been investigated in the cockroach Periplaneta americana. Nerve 5 is surrounded by a layer of connective tissue, the neural lamella, beneath which is a layer of perineurial glial cells wrapping the axons. Adjacent perineurial cells are joined to one another by septate, gap and tight junctions. Septate and gap junctions were observed in freeze-fracture replicas of main trunk nerve 5. Septate junctions were found as rows of PF particles mainly in perineurial cell membranes. Gap junctions exhibited EF macular aggregates in perineurial and subperineurial glial cells. During incubations in vivo with extracellularly applied ionic lanthanum, the lanthanum did not penetrate beyond the perineurium. Where nerve 5 branches and contacts the muscle, lanthanum penetrated freely between the muscle fibres and the nerve branches. In small peripheral branches where the axons are surrounded by single a glial layer, lanthanum is unable to penetrate to the axolemma.  相似文献   

14.
In addition to chemical synaptic transmission, neurons that are connected by gap junctions can also communicate rapidly via electrical synaptic transmission. Increasing evidence indicates that gap junctions not only permit electrical current flow and synchronous activity between interconnected or coupled cells, but that the strength or effectiveness of electrical communication between coupled cells can be modulated to a great extent1,2. In addition, the large internal diameter (~1.2 nm) of many gap junction channels permits not only electric current flow, but also the diffusion of intracellular signaling molecules and small metabolites between interconnected cells, so that gap junctions may also mediate metabolic and chemical communication. The strength of gap junctional communication between neurons and its modulation by neurotransmitters and other factors can be studied by simultaneously electrically recording from coupled cells and by determining the extent of diffusion of tracer molecules, which are gap junction permeable, but not membrane permeable, following iontophoretic injection into single cells. However, these procedures can be extremely difficult to perform on neurons with small somata in intact neural tissue.Numerous studies on electrical synapses and the modulation of electrical communication have been conducted in the vertebrate retina, since each of the five retinal neuron types is electrically connected by gap junctions3,4. Increasing evidence has shown that the circadian (24-hour) clock in the retina and changes in light stimulation regulate gap junction coupling3-8. For example, recent work has demonstrated that the retinal circadian clock decreases gap junction coupling between rod and cone photoreceptor cells during the day by increasing dopamine D2 receptor activation, and dramatically increases rod-cone coupling at night by reducing D2 receptor activation7,8. However, not only are these studies extremely difficult to perform on neurons with small somata in intact neural retinal tissue, but it can be difficult to adequately control the illumination conditions during the electrophysiological study of single retinal neurons to avoid light-induced changes in gap junction conductance.Here, we present a straightforward method of determining the extent of gap junction tracer coupling between retinal neurons under different illumination conditions and at different times of the day and night. This cut-loading technique is a modification of scrape loading9-12, which is based on dye loading and diffusion through open gap junction channels. Scrape loading works well in cultured cells, but not in thick slices such as intact retinas. The cut-loading technique has been used to study photoreceptor coupling in intact fish and mammalian retinas7, 8,13, and can be used to study coupling between other retinal neurons, as described here.  相似文献   

15.
Cytotactin is an extracellular glycoprotein found in a highly specialized distribution during embryonic development. In the brain, it is synthesized by glia, not neurons. It is involved in neuron-glia adhesion in vitro and affects neuronal migration in the developing cerebellum. In an attempt to extend these observations to the peripheral nervous system, we have examined the distribution and localization of cytotactin in different parts of the normal and regenerating neuromuscular system. In the normal neuromuscular system, cytotactin accumulated at critical sites of cell-cell interactions, specifically at the neuromuscular junction and the myotendinous junction, as well at the node of Ranvier (Rieger, F., J. K. Daniloff, M. Pincon-Raymond, K. L. Crossin, M. Grumet, and G. M. Edelman. 1986. J. Cell Biol. 103:379-391). At the neuromuscular junction, cytotactin was located in terminal nonmyelinating Schwann cells. Cytotactin was also detected near the insertion points of the muscle fibers to tendinous structures in both the proximal and distal endomysial regions of the myotendinous junctions. This was in striking contrast to staining for the neural cell adhesion molecule, N-CAM, which was accumulated near the extreme ends of the muscle fiber. Peripheral nerve damage resulted in modulation of expression of cytotactin in both nerve and muscle, particularly among the interacting tissues during regeneration and reinnervation. In denervated muscle, cytotactin accumulated in interstitial spaces and near the previous synaptic sites. Cytotactin levels were elevated and remained high along the endoneurial tubes and in the perineurium as long as muscle remained denervated. Reinnervation led to a return to normal levels of cytotactin both in inner surfaces of the nerve fascicles and in the perineurium. In dorsal root ganglia, the processes surrounding ganglionic neurons became intensely stained by anticytotactin antibodies after the nerve was cut, and returned to normal by 30 d after injury. These data suggest that local signals between neurons, glia, and supporting cells may regulate cytotactin expression in the neuromuscular system in a fashion coordinate with other cell adhesion molecules. Moreover, innervation may regulate the relative amount and distribution of cytotactin both in muscle and in Schwann cells.  相似文献   

16.
Cumulus cells are metabolically coupled to the mammalian oocyte via heterologous gap junctions. One function attributed to the gap junctional communications is the transfer of regulatory signals that direct the meiotic state of the oocyte. However, the precise role of these junctions in meiotic maturation is still unclear. The aim of this study was to test the hypothesis that meiotic resumption is induced by the transfer of a stimulatory signal(s) from the cumulus cells to the oocyte through the gap junctional coupling pathway. We have previously shown that the mitogenic lectin concanavalin A (Con A) induces oocyte maturation in isolated cumulus cell-enclosed oocytes (CEO) when meiotic arrest is maintained with a number of different inhibitory agents [Biol Reprod 1990; 42:413-423]. In the present study, Con A stimulated maturation in dibutyryl cAMP (dbcAMP)-arrested CEO but not in denuded oocytes cocultured with cumulus cells. Heptanol, a known gap junction uncoupler, effectively prevented Con A- and FSH-induced maturation of intact CEO and dramatically reduced metabolic coupling between cumulus cells and the oocyte. However, this alcohol had no effect on denuded oocytes (DO) or on dbcAMP-arrested CEO in the absence of stimulating ligand. Con A and FSH produced only a minimal loss of coupling. When the effects of heptanol were compared with those of the n-alkanols hexanol and decanol, the efficacies of these agents as suppressors of Con A-stimulated oocyte maturation was directly related to their relative abilities to suppress metabolic coupling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Electrical synapses formed by gap junctions between neurons create networks of electrically coupled neurons in the mammalian brain, where these networks have been found to play important functional roles. In most cases, interneuronal gap junctions occur at remote dendro-dendritic contacts, making difficult accurate characterization of their physiological properties and correlation of these properties with their anatomical and morphological features of the gap junctions. In the mesencephalic trigeminal (MesV) nucleus where neurons are readily accessible for paired electrophysiological recordings in brain stem slices, our recent data indicate that electrical transmission between MesV neurons is mediated by connexin36 (Cx36)-containing gap junctions located at somato-somatic contacts. We here review evidence indicating that electrical transmission between these neurons is supported by a very small fraction of the gap junction channels present at cell-cell contacts. Acquisition of this evidence was enabled by the unprecedented experimental access of electrical synapses between MesV neurons, which allowed estimation of the average number of open channels mediating electrical coupling in relation to the average number of gap junction channels present at these contacts. Our results indicate that only a small proportion of channels (~0.1?%) appear to be conductive. On the basis of similarities with other preparations, we postulate that this phenomenon might constitute a general property of vertebrate electrical synapses, reflecting essential aspects of gap junction function and maintenance.  相似文献   

18.
Myotonic dystrophy (DM) is one of the most prevalent muscular diseases in adults. The molecular basis of this autosomal disorder has been identified as the expansion of a CTG repeat in the 3' untranslated region of a gene encoding a protein kinase (DMPK). The pathophysiology of the disease and the role of DMPK are still obscure. It has been previously demonstrated that DMPK is localized at neuromuscular junctions, myotendinous junctions, and terminal cisternae of the sarcoplasmic reticulum (SR), in the skeletal muscle, and at intercalated discs in the cardiac muscle. We report here new findings about specific localization of DMPK in the heart. Polyclonal antibodies raised against a peptide sequence of the human DMPK were used to analyze the subcellular distribution of the protein in rat papillary muscles. Confocal laser microscopy revealed a strong although discontinuous reactivity at intercalated discs, together with transverse banding on the sarcoplasm. At higher resolution with immunogold electron microscopy, we observed that DMPK is localized at the cytoplasmic surface of junctional and extended junctional sarcoplasmic reticulum, suggesting that DMPK is involved in the regulation of excitation-contraction coupling. Along the intercalated disc, DMPK was found associated with gap junctions, whereas it was absent in the two other kinds of junctional complexes (fasciae adherentes and desmosomes). Immunogold labeling of gap junction purified fractions showed that DMPK co-localized with connexin 43, the major component of this type of intercellular junctions, suggesting that DMPK plays a regulatory role in the transmission of signals between myocytes.  相似文献   

19.
Connexins (Cx), the protein subunits assembled into gap junction intercellular communication channels, are expressed in primary lymphoid organs and by circulating leukocytes. Human tonsil-derived T and B lymphocytes express Cx40 and 43; circulating human T, B, and NK lymphocytes express Cx43 and directly transfer between each other a low molecular dye indicative that functional gap junctions exist. We now identify specific properties in the immune system underwritten by gap junctions. Mixed lymphocytes cultured in the presence of two reagents with independent inhibitory action on gap junction communication, a connexin mimetic peptide and 18-alpha-glycyrrhetinic acid, markedly reduced the secretion of IgM, IgG, and IgA. The secretion of these immunoglobulins by purified B cells was also reduced by the two classes of gap junction inhibitors. Complex temporal inhibitory effects on the expression of mRNA encoding interleukins, especially IL-10, were also observed. The results indicate that intercellular signaling across gap junctions is an important component of the mechanisms underlying metabolic cooperation in the immune system.  相似文献   

20.
Gap junctions in the neural retinae of newly hatched chickens were examined in thin section and by freeze cleaving. Unusual gap junctions containing linear arrays of intramembrane particles are found between principal and accessory cones which form a double cone at the region of the outer limiting membrane. These unusual gap junctions are often continuous with macular aggregates of hexagonally packed intramembrane particles which are characteristic of a typical gap junction. Typical gap junctions are also found in both the outer and the inner plexiform layers and in the outer nuclear layer, but are not so abundant as in the outer limiting membrane region. The sizes of intramembrane particles and their centre-to-centre spacing within the macular aggregate of a gap junction in differentiated neural retinae are slightly larger than those in undifferentiated neural retinae. Tight junctions are not found in differentiated neural retinae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号