首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of reversible extraction of Mn on ESR signal II arising from the oxidized secondary electron donor (Z+) and the ESR doublet signal related to reduced spin-coupled pheophytin (pheo -) and "primary" electron acceptor (PA- -Fe (2+)) has been studied in oxygen evolving preparations of the photosystem 2. It is demonstrated that Mn extraction does not affect both dark and photoinduced ESR signal II and ESR doublet. A conclusion is made that Mn is not a component of the secondary electron donor Z of the Photosystem 2 and its complete removal has no effect on the exchange interaction of Pheo(-) and the PQ(-) -Fe(2+) complex.  相似文献   

2.
Pure and active oxygen-evolving PS II core particles containing 35 Chl per reaction center were isolated with 75% yield from spinach PS II membrane fragments by incubation with n-dodecyl--D-maltoside and a rapid one step anion-exchange separation. By Triton X-100 treatment on the column these particles could be converted with 55% yield to pure and active PS II reaction center particles, which contained 6 Chl per reaction center.Abbreviations Bis-Tris bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane - Chl chlorophyll - CP29 Chl a/b protein of 29 kDa - Cyt b 559 cytochrome b 559 - DCBQ 2,5-dichloro-p-benzo-quinone - LHC II light-harvesting complex II, predominant Chl a/b protein - MES 2-[N-Morpholino]ethanesulfonic acid - Pheo pheophytin - PS H photosystem II - QA bound plastoquinone, serving as the secondary electron acceptor in PS II (after Pheo) - SDS sodiumdodecylsulfate  相似文献   

3.
Pheophytin and chlorophyll extracted from oxygen-evolving photosystem II particles, chloroplast thylakoids and cyanobacterial cells were separated by column chromatography with DEAE-Toyopearl, and quantitatively determined by spectrophotometry. The molecular ratio of chlorophyll a+b to pheophytin a was about 100 in spinach photosystem II particles and about 140 in spinach thylakoids. Using flash spectrophotometry of P680 and measurement of flash-induced oxygen yield, the molecular ratio of the chlorophyll to the photochemical reaction center II was determined to be about 200 in the photosystem II particles. These findings suggest that the stoichiometry in photosystem II particles is one reaction center II and two pheophytin a molecules per about 200 chlorophyll molecules. The same stoichiometry for pheophytin to the reaction center II was obtained in the cyanobacteria, Anacystis nidulans and Synechocystis PCC 6714. A quantitative determination of pheophytin a and the electron donor P700 in stroma thylakoids from pokeweed suggests that photosystem I does not contain pheophytin.Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

4.
A wide range of values for the photosystem II to photosystem I stoichiometry have been reported. It is likely that some of this variation is due to measurement artifacts, which are discussed. Careful measurements of photosystem II reactions by absorption change at 325 nm, and flash yields of oxygen evolution, of protons from oxidation of water and of reduction of dichloroindophenol give equivalent results. Stoichiometries other than 1:1 are routinely found, and they vary with growth conditions as well as plant type. Two atrazine binding sites are found for every photosystem II reaction center that is active in oxygen evolution.  相似文献   

5.
Photoinactivation and photoprotection of photosystem II in nature   总被引:18,自引:0,他引:18  
Photosystem II plays a central role not only in energy transduction, but also in monitoring the molecular redox mechanisms involved in signal transduction for acclimation to environmental stresses. Central to the regulation of photosystem II (PSII) function as a light-driven molecular machine in higher plant leaves, is an inevitable photo-inactivation of one PSII after 106–107 photons have been delivered to the leaf, although the act of photoinactivation per se requires only one photon. PSII function in acclimated pea leaves shows a reciprocity between irradiance and the time of illumination, demonstrating that the photoinactivation of PSII is a light dosage effect, depending on the number of photons absorbed rather than the rate of photon absorption. Hence, PSII photoinactivation will occur at low as well as high irradiance. There is a heterogeneity of PSII functional stability, possibly with less stable PSII monomers being located in grana margins and more stable PSII dimers in appressed granal domains. Matching the inevitable photoinactivation of PSII, green plants have an intrinsic capacity for D1 protein synthesis to restore PSII function which is saturated at very low light. Photoinhibition of PSII in vivo is often a photoprotective strategy rather than a damaging process.  相似文献   

6.
The linear, four-step oxidation of water to molecular oxygen by photosystem II requires cooperation between redox reactions driven by light and a set of redox reactions involving the S-states within the oxygen-evolving complex. The oxygenevolving complex is a highly ordered structure in which a number of polypeptides interact with one another to provide the appropriate environment for productive binding of cofactors such as manganese, chloride and calcium, as well as for productive electron transfer within the photoact. A number of recent advances in the knowledge of the polypeptide structure of photosystem II has revealed a correlation between primary photochemical events and a core complex of five hydrophobic polypeptides which provide binding sites for chlorophyll a, pheophytin a, the reaction center chlorophyll (P680), and its immediate donor, denoted Z. Although the core complex of photosystem II is photochemically active, it does not possess the capacity to evolve oxygen. A second set of polypeptides, which are water-soluble, have been discovered to be associated with photosystem II; these polypeptides are now proposed to be the structural elements of a special domain which promotes the activities of the loosely-bound cofactors (manganese, chloride, calcium) that participate in oxygen evolution activity. Two of these proteins (whose molecular weights are 23 and 17 kDa) can be released from photosystem II without concurrent loss of functional manganese; studies on these proteins and on the membranes from which they have been removed indicate that the 23 and 17 kDa species from part of the structure which promotes retention of chloride and calcium within the oxygen-evolving complex. A third water-soluble polypeptide of molecular weight 33 kDa is held to the photosystem II core complex by a series of forces which in some circumstances may include ligation to manganese. The 33 kDa protein has been studied in some detail and appears to promote the formation of the environment which is required for optimal participation by manganese in the oxygen evolving reaction. This minireview describes the polypeptides of photosystem II, places an emphasis on the current state of knowledge concerning these species, and discusses current areas of uncertainty concerning these important polypeptides.Abbreviations A 23187 ionophore that exchanges divalent cations with H+ - Chl chlorophyll - cyt cytochrome - DCPIP dichlorophenolindophenol - DPC diphenylcarbazide - EGTA ethyleneglycoltetraacetic acid - P680 the chlorophyll a reaction center of photosystem II - pheo pheophytin - PQ plastoquinone - PS photosystem - QA and QB primary and secondary plastoquinone electron acceptors of photosystem II - Sn (n=0, 1, 2, 3, 4) charge accumulating state of the oxygen evolving system - Signals IIvf, IIf and IIs epr-detectable free radicals associated with the oxidizing side of photosystem II - Z primary electron donor to the photosystem II reaction center The survey of literature for this review ended in September, 1984.  相似文献   

7.
Reactivation of 02 evolution function has been studied in PS-2 particles after complete removal of Mn and water soluble 10, 17, 24, 33 kDa proteins, It has been shown that 02 evolution function in such particles can be reactivated by adding 5 μM Mn2 and 20 mM Ca2(+). Preliminary illumination of the sample is necessary to exhibit the reactivation effect of 02 evolution. The maximum value of the reactivation of 02 evolution rate is about 60% of the control. Upon illumination of the reactivated particles with flashes of 1s duration and at a frequency of 0,1 Hz, 02 evolution occurs according to the mechanism analogous to that in the initial parties of PS 2. Thus the reactivation of water oxidation and 02 evolution after complete removal of Mn and water soluble 10, 17, 24, 33 kDa proteins resulting in the suppression of 02 evolution function has been shown for the first time and it can serve as a basic approach for profound investigation of the mechanism of photosynthetic water oxidation.  相似文献   

8.
Extraction of PS II particles with 50 mM cholate and 1 M NaCl releases several proteins (33-, 23-, 17- and 13 kDa) and lipids from the thylakoid membrane which are essential for O2 evolution, dichlorophenolindophenol (DCIP) reduction and for stable charge separation between P680+ and QA -. This work correlates the results on the loss of steady-state rates for O2 evolution and PS II mediated DCIP photo-reduction with flash absorption changes directly monitoring the reaction center charge separation at 830 nm due to P680+, the chlorophyll a donor. Reconstitution of the extracted lipids to the depleted membrane restores the ability to photo-oxidize P680 reversibly and to reduce DCIP, while stimulating O2 evolution minimally. Addition of the extracted proteins of masses 33-, 23- and 17- kDa produces no further stimulation of DCIP reduction in the presence of an exogenous donor like DPC, but does enhance this rate in the absence of exogenous donors while also stimulating O2 evolution. The proteins alone in the absence of lipids have little influence on charge separation in the reaction center. Thus lipids are essential for stable charge separation within the reaction center, involving formation of P680+ and QA -.Abbreviations A830 Absorption change at 830 nm - Chl Chlorophyll - D1 primary electron donor to P680 - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - MOPS 3-(N-morpholino)propanesulfonic acid - P680 reaction center chlorophyll a molecule of photosystem II - PPBQ Phenyl-p-benzoquinone - PS II Photosystem II - QA, QB first and second quinone acceptors in PS II - V-DCIP rate of DCIP reduction - V-O2 rate of oxygen evolution - Y water-oxidizing enzyme system - CHAPS 3-Cyclohexylamino-propanesulfonic acid  相似文献   

9.
The CalEPR Center at UC-Davis (http://brittepr.ucdavis.edu) is equipped with five research grade electron paramagnetic resonance (EPR) instruments operating at various excitation frequencies between 8 and 130GHz. Of particular note for this RSC meeting are two pulsed EPR spectrometers working at the intermediate microwave frequencies of 31 and 35GHz. Previous lower frequency electron spin-echo envelope modulation (ESEEM) studies indicated that histidine nitrogen is electronically coupled to the Mn cluster in the S2 state of photosystem II (PSII). However, the amplitude and resolution of the spectra were relatively poor at these low frequencies, precluding any in-depth analysis of the electronic structure properties of this closely associated nitrogen nucleus. With the intermediate frequency instruments, we are much closer to the 'exact cancellation' limit, which optimizes ESEEM spectra for hyperfine-coupled nuclei such as 14N and 15N. Herein, we report the results from ESEEM studies of both 14N- and 15N-labelled PSII at these two frequencies. Spectral simulations were constrained by both isotope datasets at both frequencies, with a focus on high-resolution spectral examination of the histidine ligation to the Mn cluster in the S2 state.  相似文献   

10.
The shape of the EPR spectrum of the triplet state of photosystem II reaction centers with a singly reduced primary acceptor complex QAFe2+ was studied. It was shown that the spectroscopic properties do not significantly change when the relaxation of the primary acceptor is accelerated and when the magnetic interaction between the reduced quinone molecule QA and the nonheme iron ion Fe2+ is disrupted. This observation confirmed the earlier conclusion that the anisotropy of the quantum yield of the triplet state is the main cause of the anomalous shape of the EPR spectrum. A scheme of primary processes in photosystem II that is consistent with the observed properties of the EPR spectrum of the triplet state is discussed.  相似文献   

11.
Lee HY  Hong YN  Chow WS 《Planta》2001,212(3):332-342
Leaf segments from Capsicum annuum plants grown at 100 micromol photons m(-2) s(-1) (low light) or 500 micromol photons m(-2) s(-1) (high light) were illuminated at three irradiances and three temperatures for several hours. At various times, the remaining fraction (f) of functional photosystem II (PS II) complexes was measured by a chlorophyll fluorescence parameter (1/Fo -1/Fm, where Fo and Fm are the fluorescence yields corresponding to open and closed PS II traps, respectively), which was in turn calibrated by the oxygen yield per saturating single-turnover flash. During illumination of leaf segments in the presence of lincomycin, an inhibitor of chloroplast-encoded protein synthesis, the decline of f from 1.0 to about 0.3 was mono-exponential. Thereafter, f declined much more slowly, the remaining fraction (approximately equals 0.2) being able to survive prolonged illumination. The results can be interpreted as being in support of the hypothesis that photoinactivated PS II complexes photoprotect functional neighbours (G. Oquist et al. 1992, Planta 186: 450-460), provided it is assumed that a photoinactivated PS II is initially only a weak quencher of excitation energy, but becomes a much stronger quencher during prolonged illumination when a substantial fraction of PS II complexes has also been photoinactivated. In the absence of lincomycin, photoinactivation and repair of PS II occur in parallel, allowing f to reach a steady-state value that is determined by the treatment irradiance, temperature and growth irradiance. The results obtained in the presence and absence of lincomycin are analysed according to a simple kinetic model which formally incorporates a conversion from weak to strong quenchers, yielding the rate coefficients of photoinactivation and of repair for various conditions, as well as gaining an insight into the influence off on the rate coefficient of photoinactivation. They demonstrate that the method is a convenient alternative to the use of radiolabelled amino acids for quantifying photoinactivation and repair of PS II in leaves.  相似文献   

12.
M. Kitajima  W.L. Butler 《BBA》1973,325(3):558-564
The photoreactions mediated by Photosystem II at low temperatures were examined in subchloroplast particles enriched in Photosystem II to determine if the Photosystem II activity was independent of C-550 in such particle preparations. Two types of Photosystem II particle preparations were tested, one enriched in chlorophyll b and the other purified further to eliminate the chlorophyll b. The Photosystem II-mediated photoreactions at low temperature were the same in both of the Photosystem II particle preparations as they were in normal chloroplasts. C-550 acted as if it were the primary electron acceptor of Photosystem II in all of the experiments performed.  相似文献   

13.
Photosystem II (PSII) uses light energy to split water into protons, electrons and O2. In this reaction, nature has solved the difficult chemical problem of efficient four-electron oxidation of water to yield O2 without significant amounts of reactive intermediate species such as superoxide, hydrogen peroxide and hydroxyl radicals. In order to use nature's solution for the design of artificial catalysts that split water, it is important to understand the mechanism of the reaction. The recently published X-ray crystal structures of cyanobacterial PSII complexes provide information on the structure of the Mn and Ca ions, the redox-active tyrosine called YZ and the surrounding amino acids that comprise the O2-evolving complex (OEC). The emerging structure of the OEC provides constraints on the different hypothesized mechanisms for O2 evolution. The water oxidation mechanism of PSII is discussed in the light of biophysical and computational studies, inorganic chemistry and X-ray crystallographic information.  相似文献   

14.
Heat inactivation of diphenylcarbazide (DPC)-supported 2,6-dichloroindophenol (DCIP) photoreduction by photosystem II (PS II) particles and non-oxygen-evolving PS II core complex isolated from spinach ( Spinacia oleracea L. cv. Kyoho) was suppressed under annealing conditions, and accelerated in the presence of EDTA or high concentration of divalent cations. After heating at 45°C for 10 min, half-maximal annealing effects occurred at 35°C. Minimum acceleration was observed in the presence of 1 m M Mg2+, implying the existence of a cation-specific site in the vicinity of the PS II reaction center. The acceleration depended on the temperature at which EDTA was added to PS II particles. Half-acceleration by EDTA occurred at 35°C. Glutaraldehyde stabilized PS II particles against heat inactivation of PS II photochemical reactions.  相似文献   

15.
Photosystem II membranes (D-PSII) were isolated from dark-grown spruce seedlings. All major PSII proteins except the 17- and 23-kDa extrinsic proteins were present in D-PSII. O2 evolution and Mn content in D-PSII were negligible, while PSII-donor activity showed a value comparable to that of NH2OH-treated PSII membranes (NH2OH-L-PSII) from light-grown seedlings. Light incubation of D-PSII with 1 m M MnCl2, 50 m M CaCl2 and 100 μ M DCIP at pH 5.3 resulted in activation of the latent water-oxidizing complex. Accomplishment of photoactivation of PSII membranes from dark-grown spruce seedlings clearly indicates that only ligation of Mn2+ to the apo-water oxidizing complex is required for expression of O2 evolution, and that protein synthesis is not involved in the photoactivation process. There was no essential difference between 'photoactivation' of naturally Mn-free PSII membranes and 'photoreactivation' of artificially Mn-depleted PSII membranes on kinetics, pH dependence, Mn2+-concentration dependence. However, kinetics and pH dependence of photoactivation were appreciably different in spruce PSII membranes and in PSII membranes of angiosperms such as wheat and spinach.  相似文献   

16.
17.
Chen M  Bibby TS  Nield J  Larkum AW  Barber J 《FEBS letters》2005,579(5):1306-1310
Acaryochloris marina is a prochlorophyte-like cyanobacterium containing both phycobilins and chlorophyll d as light harvesting pigments. We show that the chlorophyll d light harvesting system, composed of Pcb proteins, functionally associates with the photosystem II (PSII) reaction center (RC) core to form a giant supercomplex. This supercomplex has a molecular mass of about 2300 kDa and dimensions of 385 A x 240 A. It is composed of two PSII-RC core dimers arranged end-to-end, flanked by eight symmetrically related Pcb proteins on each side. Thus each PSII-RC monomer has four Pcb subunits acting as a light harvesting system which increases the absorption cross section of the PSII-RC core by almost 200%.  相似文献   

18.
The effect of linolenic acid (18:3) on release of the 43 kDa polypeptide and manganese from photosystem II ( PS II ) membranes depleted of extrinsic polypeptides was studied. In both control and NaCl-washed particles which were depleted of the extrinsic 23 and 16 kDa polypeptides, the 18:3 treatment caused a 20% release of the 33 and 43 kDa polypeptides. In CaCl2, (or urea + NaCl)-washed particles, which were depleted of the 33 kDa polypeptide in addition to the 23 and 16 kDa polypeptides, the release of the 43 kDa polypeptide increased to 70%, whereas only 25% of the 47 kDa polypeptide was removed. These findings suggest (i) that the 33 and the 43 kDa polypeptides are neighbows in the photosynthetic membrane and (ii) that the 33 kDa polypeptide shields the 43 kDa polypeptide against the action of 18:3. Incubation of CaCl2, or (urea + NaCI)-treated PSII particles in the presence or absence of 18:3 resulted in the loss of only 2 of the 4 Mn atoms present per reaction center. this indicates that the 2 Mn atoms more firmly associated with PSII are not affected by the removal of the extrinsic 16, 23 and 33 kDa polypeptides, and the intrinsic 43 kDa polypeptide. nor by the treatment with linolenic acid.  相似文献   

19.
An Isolated photosystem (PS) II reaction center (RC) with altered pigment content was obtained by chemical exchange of native chlorophyll a (Chl) with externally added Cu-Chl a (Cu-Chl). Pigment composition and spectroscopic properties of the RC exchanged with Cu-Chl were compared with native RC and RC treated with Chl In the same way. High-performance liquid chromatography analysis showed approximately 0.5 Cu-Chl per two pheophytln in the Cu-Chl-reconstltuted RC preparation. Insertion of Cu-Chl resulted in a decrease In absorption at 670 nm and an Increase at 660 nm, suggesting that the peripheral Chl may have been displaced. Fluorescence emission spectra of the Cu-Chl-reconstituted RC displayed a marked decrease In fluorescence yield and a blue shift of the band maximum, accompanied by the appearance of a broad peak at a shorter wavelength, Indicating that energy transfer In the modified RC was disturbed by Cu-Chl, a quencher of the excited state. However, there were few differences in the circular dichrolsm (CD) spectra, suggesting that the arrangement of pigments and proteins responsible for the CD signal was not significantly affected. In addition, no obvious change In peptlde components was found after the exchange procedure.  相似文献   

20.
The precursor to the nuclear-coded 17 kDa early light-inducible protein (ELIP) of pea has been transported into isolated intact chloroplasts. The location of the mature protein in the thylakoid membranes was investigated after using cleavable crosslinkers such as DSP and SAND in conjunction with immuno-fractionation methods and by application of mild detergent fractionation. We show that ELIP is integrated into the membranes via the unstacked stroma thylakoids. After isolation of protein complexes by solubilization of membranes with Triton X-100 and sucrose density-gradient centrifugation the crosslinked ELIP comigrates with the PS II core complex. Using SAND we identified ELIP as a 41–51 kDa crosslinked product while with DSP four products of 80 kDa, 70 kDa, 50–42 kDa and 23–21 kDa were found. The immunoprecipitation data suggested that the D1-protein of the PS II complex is one of the ELIP partners in crosslinked products.Abbreviations chl chlorophyll - D1 herbicide-binding protein - DSP dithiobis-(succinimidylpropionate) - ELIP early light-inducible protein - LHC I and LHC II light-harvesting chlorophyll a/b complex associated with photosystem I or II - PAGE polyacrylamide gel electrophoresis - poly(A)-rich RNA polyadenyd mRNA - PS I and PS II photosystems I and II - SAND sulfosuccinimidyl 2-(m-azido-o-nitro-benzamido)-ethyl-1,3-dithiopropionate - Triton X-100 octylphenoxypolyethoxyethanol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号