首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper describes proteoglycan catabolism by adult bovine articular cartilage treated with retinoic acid as a means of stimulating the loss of this macromolecule from the extracellular matrix of cartilage. Addition of retinoic acid (10(-12)-10(-6) M) to adult bovine articular cartilage which had been labeled with [35S]sulfate for 6 h after 5 days in culture, resulted in a dose-dependent increase in the rate of loss of 35S-labeled proteoglycans from the matrix of the tissue. Concomitant with this loss was a decrease in the proteoglycan content of the tissue. Incubation of cultures treated with 1 microM retinoic acid, at 4 degrees C, or with 0.5 mM cycloheximide, resulted in a significant decrease in the rate of retinoic acid-induced loss of proteoglycans and demonstrated cellular involvement in this process. Analysis of the 35S-labeled proteoglycans remaining in the matrix showed that the percentage of radioactivity associated with the small proteoglycan species extracted from the matrix of articular cartilage explants labeled with [35S]sulfate after 5 days in culture was 15% and this increased to 22% in tissue maintained in medium alone. In tissue treated with 1 microM retinoic acid for 6 days, the percentage of radioactivity associated with the small proteoglycan was 58%. Approximately 93% of the 35S-labeled proteoglycans released into the medium of control and retinoic acid-treated cultures was recovered in high density fractions after CsCl gradient centrifugation and eluted on Sepharose CL-2B as a broad peak with a Kav of 0.30-0.37. Less than 17% of these proteoglycans was capable of aggregating with hyaluronate. These results indicate that in both control and retinoic acid-treated cultures the larger proteoglycan species is lost to the medium at a greater rate than the small proteoglycan species. The effect of retinoic acid on proteoglycan turnover was shown to be reversible. Cartilage cultures maintained with retinoic acid for 1 day then switched to medium with 20% (v/v) fetal calf serum for the remainder of the culture period exhibited decreased rates of loss of 35S-labeled proteoglycans from the matrix and increased tissue hexuronate contents to levels near those observed in tissue maintained in medium with 20% (v/v) fetal calf serum throughout. Furthermore, following switching to 20% (v/v) fetal calf serum, the relative proportions of the 35S-labeled proteoglycan species remaining in the matrix of these cultures were similar to those of control cultures.  相似文献   

2.
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity.  相似文献   

3.
Turnover of proteoglycans in cultures of bovine articular cartilage   总被引:8,自引:0,他引:8  
Proteoglycans in cultures of adult bovine articular cartilage labeled with [35S]sulfate after 5 days in culture and maintained in medium containing 20% fetal calf X serum had longer half-lives (average 11 days) compared with those of the same tissue maintained in medium alone (average 6 days). The half-lives of proteoglycans in cultures of calf cartilage labeled after 5 days in culture and maintained in medium with serum were considerably longer (average 21 days) compared to adult cartilage. If 0.5 mM cycloheximide was added to the medium of cultures of adult cartilage, or the tissue was maintained at 4 degrees C after labeling, the half-lives of the proteoglycans were greater, 24 and greater than 300 days, respectively. Analyses of the radiolabeled proteoglycans remaining in the matrix of the tissue immediately after labeling the tissue and at various times in culture revealed two main populations of proteoglycans; a large species eluting with Kav of 0.21-0.24 on Sepharose CL-2B, of high bouyant density and able to form aggregates with hyaluronate, and a small species eluting with a Kav of 0.63-0.70 on Sepharose CL-2B, of low buoyant density, containing only chondroitin sulfate chains, and unable to form aggregates with hyaluronate. The larger proteoglycan had shorter half-lives than the smaller proteoglycan; in cartilage maintained with serum, the half-lives were 9.8 and 14.5 days, respectively. Labeling cartilage with both [3H]leucine and [35S]sulfate showed the small proteoglycan to be a separate synthetic product. The size distribution of 35S-labeled proteoglycans lost into the medium was shown to be polydisperse on Sepharose CL-2B, the majority eluting with a Kav of 0.27 to 0.35, of high buoyant density, and unable to aggregate with hyaluronate. The size distribution of glycosaminoglycans from 35S-labeled proteoglycans appearing in the medium did not differ from that associated with labeled proteoglycans remaining in the matrix.  相似文献   

4.
Costal cartilage from experimentally diabetic rats, labeled in vivo or in vitro with [35S]sulfate, was shown to incorporate less label into proteoglycans than cartilage from nondiabetic rats. Analyses of guanidine HCl cartilage extracts by gel chromatography on Sepharose CL-2B showed two major peaks at Kav approximately 0.4 and 0.8 (peaks I and II, respectively). Cartilage extracts from the diabetic rats contained predominantly peak II proteoglycans, while 60 and 55%, respectively, of the total 35S-labeled proteoglycans extracted from control cartilage labeled in vivo and in vitro with [35S]sulfate were present in peak I. After insulin treatment of the diabetic rats, the relative amount of peak I 35S-labeled proteoglycans synthesized in vivo was increased to 70%. The overall in vivo incorporation of [35S]sulfate into proteoglycans was also stimulated in diabetic rats treated with insulin to levels above those found for control rats. Thus, diabetes-induced changes in the biosynthesis of rat costal cartilage proteoglycans may be alleviated by normalization of the diabetic state by insulin treatment. However, addition of insulin (10(-5)-10(-9) M) to the culture medium did not affect the amount of 35S-labeled proteoglycans synthesized in vitro or the relative amounts of peak I proteoglycans produced by control or diabetic cartilage, suggesting that insulin does not have a direct effect on proteoglycan production. Moreover, no decrease in the amount of 35S-labeled proteoglycans produced was found when glucose at high concentrations was present in the culture medium. However, the presence of rat serum resulted in an increase in the amount of 35S-labeled proteoglycans produced by both control and diabetic cartilage, demonstrating that the cartilage explants were metabolically responsive to stimulatory factors.  相似文献   

5.
When normal adult dog articular cartilage was cultured in the presence of dibutyryl cyclic AMP a higher proportion than normal of newly synthesized 35S-labeled glycosaminoglycans was released from the tissue into the culture medium, although their net synthesis was not affected. In conjunction with this release of sulfated glycosaminoglycans, 24 times more [3H]glucosamine-labeled hyaluronic acid was released from the cartilage into the medium, and net hyaluronate synthesis was enhanced 3-fold. Virtually all of the newly synthesized hyaluronic acid in the medium was associated with proteoglycans. The proteoglycans in the medium of the dibutyryl cyclic AMP treated cultures were normal in hydrodynamic size and interacted normally with hyaluronic acid to form large aggregates. These results suggest that the increase in hyaluronate synthesis caused by dibutyryl cyclic AMP mayt have destabilized the interaction of proteoglycans with the collagen meshwork of the cartilage. The changes seen in normal adult articular cartilage after incubation with dibutyryl cyclic AMP, therefore, are similar to those which are observed in cartilage of osteoarthritic joints.  相似文献   

6.
Newly synthesized porcine tubular epithelial cell proteoglycans were labeled in vitro with Na2[35S]SO4. At the beginning of the labeling period (24 h) [35S] sulfate incorporated into macromolecules was measured following PD-10 chromatography. There was a significant reduction in the amount of 35S-labeled macromolecules isolated from polycystic cells compared to that from normal cells. The distribution of recovered radiolabeled material among the medium, cell surface, and intracellular fractions was similar for both normal and polycystic cells. Analysis of the proteoglycans in polycystic cells demonstrated that 86 and 73% of 35S-labeled macromolecules were of the heparan sulfate type in polycystic and normal cells, respectively. The remainder was chondroitin sulfate. Proteoglycans were characterized using DEAE-Sephacel ion-exchange chromatography, chondroitinase ABC, heparitinase, and nitrous acid digestion followed by Sepharose CL-4B gel permeation chromatography. The majority of radiolabeled material in the medium, cell surface, and intracellular fractions eluted between 0.35 and 0.39 M NaCl. However, a second peak (peak II) that eluted at 0.25 M NaCl was found in the medium from polycystic cells. This peak accounted for 27% of the total macromolecules secreted into the medium. Proteoglycans in the major peak were susceptible to nitrous acid and chondroitinase ABC digestion. A similar proportion of peak II was degraded by chondroitinase ABC. However, the remainder was only slightly susceptible to treatment with nitrous acid or heparitase. In normal cells a small amount of material eluted at a similar low charge; the proteoglycans were the same as those found in the major peak and appeared as a shoulder on this peak.  相似文献   

7.
The regulation of proteoglycan synthesis in a fibrocartilaginous tissue by mechanical loading was assessed in vitro. Discs of bovine tendon fibrocartilage were loaded daily with unconfined, cyclic, uniaxial compression (5 s/min, 20 min/day) and the synthesis of large and small proteoglycans was measured by incorporation of [35S]sulfate. All discs synthesized predominantly large proteoglycan when first placed in culture. After 2 weeks in culture nonloaded discs synthesized predominantly small proteoglycans whereas loaded discs continued to produce predominantly large proteoglycan. The turnover of 35S-labeled proteoglycan was not significantly altered by the compression regime. Increased synthesis of large proteoglycans was induced by a 4-day compression regime following 21 days of culture without compression. Inclusion of cytochalasin B during compression mimicked this induction. Autoradiography demonstrated that cell proliferation was minimal and confined to the disc edges whereas 35S-labeled proteoglycan synthesis occurred throughout the discs. These experiments demonstrate that mechanical compression can regulate synthesis of distinct proteoglycan types in fibrocartilage.  相似文献   

8.
The role of cyclic AMP in the regulation of cartilage macromolecule synthesis in vitro was studied in pelvic cartilage from 10-12 day chick embryos. Incubation of cartilages in medium containing 0.5 mM cyclic AMP resulted in a 30% inhibition of 35SO4-2, [3H]leucine and [3H]uridine incorporation into proteoglycan, total protein and RNA, respectively. Higher concentrations of cyclic AMP had no greater effects. In contrast, butyrylated cyclic AMP derivatives (0.5-5.0 mM) added to the incubation medium stimulated (50-100%) the incorporation of these radiolabeled precursors into cartilage macromolecules. Theophylline, in concentrations (0.1-0.5 mM) which raise intracellular cyclic AMP, also increases the incorporation of radiolabeled precursors into macromolecules. The data indicate that exogenous cyclic AMP and butyrylated cyclic AMP derivatives have paradoxical effects on cartilage macromolecule synthesis. Butyrylated cyclic AMP derivatives, not exogenous cyclic AMP, mimic the effects of intracellular cyclic AMP. Incubation of embryonic chicken cartilage with exogenous cyclic AMP results in the extracellular degradation of the cyclic AMP to adenosine. Adenosine (0.125 mM) inhibits precursor incorporation into cartilage macromolecules. The metabolism of exogenous cyclic AMP generates sufficient adenosine to account for the observed inhibitory effects of exogenous cyclic AMP on cartilage macromolecule synthesis. Butyrylated cyclic AMP derivatives are not degraded during incubation with cartilage. The data indicate that cartilage is a tissue in which the effect of cyclic AMP is to stimulate anabolic processes.  相似文献   

9.
The effects of tissue compression on the hyaluronate-binding properties of newly synthesized proteoglycans in calf cartilage explants were examined. Pulse-chase experiments showed that conversion of low-affinity monomers to the high-affinity form (that is, to a form capable of forming aggregates with 1.6% hyaluronate on Sephacryl S-1000) occurred with a t1/2 of about 5.7 h in free-swelling discs at pH 7.45. Static compression during chase (in pH 7.45 medium) slowed the conversion, as did incubation in acidic medium (without compression). Both effects were dose-dependent. For example, the t1/2 for conversion was increased to about 11 h by either (1) compression from a thickness of 1.25 mm to 0.5 mm or (2) medium acidification from pH 7.45 to 6.99. Oscillatory compression of 2% amplitude at 0.001, 0.01, or 0.1 cycles/s during chase did not, however, affect the conversion. Changes in the hyaluronate-binding affinity of [35S]proteoglycans in these experiments were accompanied by no marked change in the high percentage (approximately 80%) of monomers which could form aggregates with excess hyaluronate and link protein. Since static tissue compression would result in an increased matrix proteoglycan concentration and thereby a lower intra-tissue pH [Gray, Pizzanelli, Grodzinsky & Lee (1988) J. Orthop. Res. 6, 777-792], it seems likely that matrix pH may influence proteoglycan aggregate assembly by an effect on the hyaluronate-binding affinity of proteoglycan monomer. Such a pH mechanism might have a physiological role, promoting proteoglycan deposition in regions of low proteoglycan concentration.  相似文献   

10.
Previous studies have used [35S]-sulfate as a specific marker to autoradiographically localize sulfated glycosaminoglycans, proteoglycans, and glycoproteins. Embryonic chicks were labeled with [35S]-sulfate, followed by previously reported routine fixation and processing techniques. Subsequent processing revealed loss of radiolabeled macromolecules and retention of unincorporated label in the tissue, using these procedures. Biochemical analysis after various fixation and processing procedures demonstrated that an additional agent, such as cetylpyridinium chloride, was necessary in the fixative to retain the highly aqueous soluble sulfated macromolecular components. Molecular sieve chromatography was used to monitor digestate solutions for the identity of glycosaminoglycans and proteoglycans as indicated by selective enzymatic removal. Retained unincorporated [35S]-sulfate could be completely removed by rinsing the tissue in dehydration solutions containing exogenous sodium sulfate. This new procedure ensures the quantitative retention of sulfate labeled macromolecules in fixed tissue with the complete removal of unincorporated radiotracer, both of which are necessary for meaningful autoradiography.  相似文献   

11.
Human eosinophils were cultured for up to 7 days in enriched medium in the absence or presence of recombinant human interleukin (IL) 3, mouse IL 5, or recombinant human granulocyte/macrophage colony stimulating factor (GM-CSF) and then were radiolabeled with [35S]sulfate to characterize their cell-associated proteoglycans. Freshly isolated eosinophils that were not exposed to any of these cytokines synthesized Mr approximately 80,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 80,000 glycosaminoglycans. RNA blot analysis of total eosinophil RNA, probed with a cDNA that encodes a proteoglycan peptide core of the promyelocytic leukemia HL-60 cell, revealed that the mRNA which encodes the analogous molecule in eosinophils was approximately 1.3 kilobases, like that in HL-60 cells. When eosinophils were cultured for 1 day or longer in the presence of 10 pM IL 3, 1 pM IL 5, or 10 pM GM-CSF, the rates of [35S]sulfate incorporation were increased approximately 2-fold, and the cells synthesized Mr approximately 300,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 30,000 35S-labeled glycosaminoglycans. Approximately 93% of the 35S-labeled glycosaminoglycans bound to the proteoglycans synthesized by noncytokine- and cytokine-treated eosinophils were susceptible to degradation by chondroitinase ABC. As assessed by high performance liquid chromatography, 6-16% of these chondroitinase ABC-generated 35S-labeled disaccharides were disulfated disaccharides derived from chondroitin sulfate E; the remainder were monosulfated disaccharides derived from chondroitin sulfate A. Utilizing GM-CSF as a model of the cytokines, it was demonstrated that the GM-CSF-treated cells synthesized larger glycosaminoglycans onto beta-D-xyloside than the noncytokine-treated cells. Thus, IL 3, IL 5, and GM-CSF induce human eosinophils to augment proteoglycan biosynthesis by increasing the size of the newly synthesized proteoglycans and their individual chondroitin sulfate chains.  相似文献   

12.
We studied the metabolism of sulfated cell-surface macromolecules in dog tracheal epithelial cells in primary culture. To examine the time-course and rate of appearance of sulfated macromolecules at the cell surface, the cells were pulsed with 35SO4 for short periods (5-15 min), and the incubation medium was sampled for spontaneously released macromolecules (basal secretions) and for release induced by trypsin (trypsin-accessible secretions). Trypsin-accessible 35S-labeled macromolecules appeared on the cell surface within 5-10 min, increased linearly, and plateaued by 40 min; the median transit time for 35S-labeled macromolecules to reach the cell surface was 21 min. 35S-labeled macromolecules in basal secretions increased with a similar time-course, reaching a plateau by 40 min. Incorporation of [3H]serine into the protein moiety of trypsin-accessible macromolecules occurred more slowly; trypsin-accessible 3H-labeled macromolecules were barely detectable at 1 h and increased to a maximum after 2 h, suggesting the presence of a preformed pool of nonsulfated core protein. Pretreatment with cycloheximide, an inhibitor of protein synthesis, decreased trypsin-accessible 35S-labeled macromolecules log-linearly depending on the duration of pretreatment providing an estimate of the rate of depletion of the core protein pool (t1/2 = 32 min). During continuous exposure to 35SO4, 35S-labeled macromolecules accumulated on the cell surface (trypsin-accessible compartment) for 16 h, at which point the cell-surface pool was saturated (t1/2 = 7.5 h). After pulse-labeling the cells with 35SO4 for 15 min, the 35S-labeled macromolecules disappeared continuously from the cell surface (t1/2 = 4.6 h), and 79% of the radioactivity was recovered in the medium as nondialyzable macromolecules. Release of the 35S-labeled macromolecules from the cell surface was abolished at 4 degrees C, indicative of an energy-dependent process, but multiple proteinase inhibitors did not affect the release. We conclude that sulfate is metabolized rapidly into epithelial cell-surface macromolecules, which accumulate continuously into a relatively large cell-surface pool, before they are released by an undefined energy-dependent mechanism.  相似文献   

13.
The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium [35S]sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently at defined times (0-163 h) the kidneys were perfused in situ with 0.01% cetylpyridinium chloride in phosphate-buffered saline to maximize the recovery of 35S-proteoglycans. Glomeruli were isolated from the renal cortex and analyzed for 35S-proteoglycans by autoradiographic, biochemical, and immunochemical methods. Grain counting of autoradiographs revealed a complex turnover pattern of 35S-labeled macromolecules, commencing with a rapid phase followed by a slower phase. Biochemical analysis confirmed the biphasic pattern and showed that the total population of [35S]heparan sulfate proteoglycans had a metabolic half-life (t1/2) of 20 and 60 h in the early and late phases, respectively. Heparan sulfate proteoglycans accounted for 80% of total 35S-proteoglycans, the remainder being chondroitin/dermatan sulfate proteoglycans. Whole glomeruli were extracted with 4% 3-[(cholamidopropyl)dimethy-lammonio]-1-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane of rat glomeruli. Autoradiographic analysis showed that 18% of total radioactivity present at the end of the labeling period was associated with the glomerular basement membrane. The glomerular basement membrane [35S]heparan sulfate proteoglycans, identified by immunoprecipitation, have a very rapid turnover with an initial phase, t1/2 = 5 h, and a later phase t1/2 = 20 h.  相似文献   

14.
Characteristics of human chondrocyte cultures in completely defined medium   总被引:1,自引:0,他引:1  
Summary Chondrocytes derived from normal human adult articular cartilage were established and maintained for over 5 months in a completely defined medium without the addition of serum or any other growth factors. At the end of 5 months, these cells were still metabolically active. The cells incorporated [3H]thymidine into DNA, incorporated [35S]sulfate into proteoglycans, and exhibited lysosomal enzyme activities. The35S-labeled proteoglycans isolated from the culture medium had elution profiles on high pressure liquid chromatography (HPCL) similar to those observed from proteoglycans from other mammalian sources. This self-contained growth competence may reflect a need produced by the unusual avascular and alymphatic character of articular cartilage. This research was supported, in part, by Grant AM22057 from the National Institutes of Health, Bethesda, MD.  相似文献   

15.
The ovine endometrium is subjected to cyclic oscillations of estrogen and progesterone in preparation for implantation. One response to fluctuating hormonal levels is the degree of hydration of the tissue, suggesting cyclical alterations in glycosaminoglycan/proteoglycan content. The aim of the present study was to quantitate and characterize glycosaminoglycans in the ovine endometrium during estrogen and progesterone dominant stages. Endogenous endometrial glycosaminoglycan content was determined by chemical analysis and characterized by enzyme specific or chemical degradation. [(35)S]-sulphate and [(3)H]-glucosamine labeled proteoglycans/glycosaminoglycans were extracted by cell lysis or with 4M guanidine-HCl. Extracts were purified by anion exchange and gel chromatography and characterized as above. Estrogen and progesterone dominant endometrium contained 3.2 +/- 0.1 and 2.1 +/- 0.1 mg endogenous glycosaminoglycan/g dehydrated tissue, respectively. Characterization of endogenous glycosaminoglycan showed chondroitin sulphate and hyaluronan contributing over 80%. The major difference between hormonal dominant tissue was a higher estrogenic hyaluronan percentage and a higher progestational keratan sulphate percentage (p < 0.001). Estrogen dominant tissue incorporated 1.6-1.9 fold more radiolabeled proteoglycans/glycosaminoglycans (p < 0.001). Analysis of newly synthesized proteoglycans/glycosaminoglycans revealed a heparan/chondroitin sulphate ratio of 1:2.2-2.5. Keratan sulphate was not detected. Estrogenic hyaluronan was 1.6 fold greater in [(3)H]-labeled tissue. Analysis of labeled proteoglycans/glycosaminoglycans revealed two size classes with apparent molecular weights >2.0 x 10(6) and 0.8-1.1 x 10(5) and a charge class eluting between 0.1-0.5 M NaCl. The greater glycosaminoglycan content (particularly hyaluronan) and synthesis in estrogen dominant tissue supports a role for steroid hormones in endometrial glycosaminoglycan/proteoglycan regulation and consequent tissue hydration. It also suggests a role for these macromolecules in endometrial function and possibly the implantation process.  相似文献   

16.
We studied the effect of the depletion of glutathione on the synthesis of proteoglycan and collagen in cultured chick chondrocytes. When the cultured chondrocytes were incubated with 1 mM buthionine sulfoximine (BSO), a specific inhibitor of gamma-glutamyl-cysteine synthetase, the intracellular glutathione level markedly dropped within 12 h with no loss of cell viability. Incorporation of 35SO2-4 into proteoglycan was lowered in the presence of BSO. When the 35S-labeled proteoglycans were separated into two fractions by glycerol density gradient centrifugation, the inhibitory effect of BSO on the synthesis of proteoglycan was greater in the fast-sedimenting proteoglycan fraction, which consisted mainly of cartilage specific large proteoglycan (PG-H), than in the slowly sedimenting proteoglycan fraction. The inhibition by BSO of the synthesis of core protein-free glycosaminoglycan chains primed by p-nitrophenyl-beta-D-xyloside was smaller than the inhibition of the synthesis of proteoglycan. Analysis of glycosaminoglycans labeled with [3H]glucosamine indicated that the treatment of chondrocytes with BSO resulted in a small increase in the proportion of synthesis of hyaluronic acid to the synthesis of total glycosaminoglycan. The incorporation of [3H]proline into collagen was also inhibited by BSO. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the 3H-labeled collagen showed that, in the presence of BSO, processing of Type II collagen appeared to slow down and the proportion of Type X collagen synthesis was reduced.  相似文献   

17.
Rat large granular lymphocyte (LGL) tumor cell lines were analyzed for the presence of proteoglycans and glycosaminoglycans in their cytolytic secretory granules. When isolated rat LGL tumor cells were incubated in vitro for 1 to 3 hr with [35S]sulfate, and the 35S-labeled macromolecules were purified by density-gradient centrifugation, they filtered on Sepharose CL-4B columns predominantly as approximately 500,000 m.w. macromolecules. After 19 hr of incubation with [35S]sulfate, however, an 85,000 m.w. species predominated. Pulse-chase experiments revealed that the larger macromolecules were proteoglycans that with time were processed to glycosaminoglycan-sized macromolecules. As assessed by their susceptibility to chemical and enzymatic degradation and by high pressure liquid chromatography of the chondroitinase ABC-generated unsaturated disaccharides, the cell-associated rat LGL tumor cell proteoglycans bore almost exclusively chondroitin sulfate A glycosaminoglycans. Northern blot analysis using a gene-specific probe revealed that both normal peripheral blood and transformed rat LGL expressed the same approximately 1.3-kb mRNA that encodes the peptide core of the proteoglycans in the secretory granules of rat and mouse mast cells. In vivo radiolabeling of rat LGL tumor cells and isolation of their intact granules after nitrogen cavitation and density sedimentation established that glycosaminoglycans compartmentalized with cytolytic activity. Thus these negatively charged macromolecules may play a role in the regulation of the packaging and delivery of the cytolysins and basically charged serine proteases that have been identified in the cytolytic secretory granules of LGL.  相似文献   

18.
Basophilic leukocytes from two patients with myelogenous leukemia were enriched to a purity of 10 to 45% by density gradient centrifugation. Ultrastructurally, these basophilic leukocytes contained segmented nuclei and granules with reticular patterns resembling those of normal basophils, and other granules with scroll and grating patterns resembling those of normal connective tissue mast cells. The 35S-labeled macromolecules isolated from these cells were approximately 140,000 m.w. Pronase-resistant proteoglycans bearing approximately 15,000 m.w. glycosaminoglycans. On incubation with chondroitinase ABC, nitrous acid, and heparinase, the 35S-labeled proteoglycans were degraded 50 to 84%, 16 to 43%, and 8 to 37%, respectively, indicating the presence of both chondroitin sulfate and heparin. As assessed by high performance liquid chromatography, the 35S-labeled chondroitin sulfate disaccharides liberated by chondroitinase ABC treatment were approximately 95% monosulfated chondroitin sulfate A and approximately 5% disulfated chondroitin sulfate E. The presence of heparin was confirmed by two-dimensional cellulose acetate electrophoresis of the 35S-labeled glycosaminoglycans. Cell preparations, enriched to 75% basophilic leukocytes by sorting for IgE+ cells, also synthesized 35S-labeled proteoglycans containing chondroitin sulfate and heparin. In one experiment, treatment of the cells with 1 microM calcium ionophore A23187 resulted in a 12% net release of both chondroitin sulfate and heparin containing 35S-labeled proteoglycans, a 57% net release of histamine, and the de novo generation of 8, 8, and 0.16 ng of immunoreactive equivalents of prostaglandin D2, leukotriene C4, and leukotriene B4, respectively, per 10(6) cells. Because only mast cells have been found to contain Pronase-resistant heparin proteoglycans, to generate PGD2 on cell activation, and to contain granules with scroll and grating patterns, these findings indicate that in some patients with myelogenous leukemia there are basophilic cells that possess properties of tissue mast cells.  相似文献   

19.
UDP-glucose:glycoprotein glucose-1-phosphotransferase (Glc-phosphotransferase) catalyzes the transfer of alpha Glc-1-P from UDP-Glc to mannose residues on acceptor glycoproteins. The predominant acceptor for this transfer in rat liver is a glycoprotein of 62 kDa. This acceptor was labeled in liver homogenates through incubation with the 35S-labeled phosphorothioate analogue of UDP-Glc, and its distribution following differential centrifugation was compared to that of the glycoproteins labeled by CMP-[3H]N-acetylneuraminic acid. Whereas 94% of the 3H-labeled macromolecules fractionated to the microsomal pellet, 85% of the 35S-labeled 62-kDa glycoprotein was found in the high-speed supernatant. The distribution of the Glc-phosphotransferase was also examined following differential centrifugation, and the bulk of the activity was found in the 100,000 x g pellet. In contrast to results obtained with the lumenal microsomal markers 4 beta-galactosyltransferase and mannose-6-phosphatase, however, optimal activity of the Glc-phosphotransferase was not dependent on the disruption of microsomal vesicles by detergent. In addition, Glc-phosphotransferase was degraded by exogenous proteases in the absence of detergent, whereas the lumenal markers were not. We conclude, therefore, that the 62-kDa acceptor glycoprotein is cytoplasmic and is glycosylated by the Glc-phosphotransferase at a site accessible to the cytoplasm. This may prove to be a model for the topography of glycosylation of other cytoplasmic glycoproteins as well.  相似文献   

20.
Loading of articular cartilage during weight bearing is essential for the maintenance of cartilage function. Although certain cyclic loading protocols stimulate extracellular matrix synthesis, constant or static compression decreases proteoglycan and collagen synthesis in cartilage explants. The goal of this study was to determine whether the compression-induced decrease in proteoglycan synthesis involves an interleukin-1 (IL-1) signaling pathway. Cartilage explants were compressed 50% in the presence of IL-1 receptor antagonist (IL-1ra), and the incorporation of [35S]sulfate into macromolecules was measured. IL-1ra increased sulfate incorporation in compressed cartilage but not in cartilage maintained at the in situ thickness (0% compression). IL-1alpha and IL-1beta mRNAs were detected in cartilage compressed 50% for at least 3h, while nitric oxide synthase II mRNA was only detected in cartilage compressed 50% for 6h. The data support a role for the IL-1 receptor in the pathway linking static compression to reduced proteoglycan synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号