首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Cooper  L H Johnston    J D Beggs 《The EMBO journal》1995,14(9):2066-2075
The SDB23 gene of Saccharomyces cerevisiae was isolated in a search for high copy-number suppressors of mutations in a cell cycle gene, DBF2, SDB23 encodes a 21,276 Da protein with significant sequence similarity to characterized mammalian snRNP core proteins. Examination of multiple sequence alignments of snRNP core proteins with Sdb23p indicates that all of these proteins share a number of highly conserved residues, and identifies a novel motif for snRNP core proteins. Sdb23p is essential for cell viability and is required for nuclear pre-mRNA splicing both in vivo and in vitro. Extracts prepared from Sdb23p-depleted cells are unable to support splicing and have vastly reduced levels of U6 snRNA. The stability of U1, U2, U4 and U5 spliceosomal snRNAs is not affected by the loss of Sdb23p. Antibodies raised against Sdb23p strongly coimmunoprecipitate free U6 snRNA and U4/U6 base-paired snRNAs. These results establish that SDB23 encodes a novel U6 snRNA-associated protein that is essential for the stability of U6 snRNA. We therefore propose the more logical name USS1 (U-Six SnRNP) for this gene.  相似文献   

2.
Binding of U2 small nuclear ribonucleoprotein (snRNP) to the pre-mRNA is an early and important step in spliceosome assembly. We searched for evidence of cooperative function between yeast U2 small nuclear RNA (snRNA) and several genetically identified splicing (Prp) proteins required for the first chemical step of splicing, using the phenotype of synthetic lethality. We constructed yeast strains with pairwise combinations of 28 different U2 alleles with 10 prp mutations and found lethal double-mutant combinations with prp5, -9, -11, and -21 but not with prp3, -4, -8, or -19. Many U2 mutations in highly conserved or invariant RNA structures show no phenotype in a wild-type PRP background but render mutant prp strains inviable, suggesting that the conserved but dispensable U2 elements are essential for efficient cooperative function with specific Prp proteins. Mutant U2 snRNA fails to accumulate in synthetic lethal strains, demonstrating that interaction between U2 RNA and these four Prp proteins contributes to U2 snRNP assembly or stability. Three of the proteins (Prp9p, Prp11p, and Prp21p) are associated with each other and pre-mRNA in U2-dependent splicing complexes in vitro and bind specifically to synthetic U2 snRNA added to crude splicing extracts depleted of endogenous U2 snRNPs. Taken together, the results suggest that Prp9p, -11p, and -21p are U2 snRNP proteins that interact with a structured region including U2 stem loop IIa and mediate the association of the U2 snRNP with pre-mRNA.  相似文献   

3.
Molecular comparison of monocot and dicot U1 and U2 snRNAs   总被引:2,自引:0,他引:2  
To elucidate differences between the pre-mRNA splicing components in monocots and dicots, we have cloned and characterized several U1 and U2 snRNA sequence variants expressed in wheat seedling nuclei. Primer extension sequencing on wheat and pea snRNA populations has demonstrated that two 5'-terminal nucleotides found in most other U1 snRNAs are missing/modified in many plant U1 snRNAs. Comparison of the wheat U1 and U2 snRNA variants with their counterparts expressed in pea nuclei has defined regions of structural divergence between monocot and dicot U1 and U2 snRNAs. The U1 and U2 snRNA sequences involved in RNA:RNA interaction with pre-mRNAs are absolutely conserved. Significant differences occur between wheat and pea U1 snRNAs in stem I and II structures implicated in the binding of U1-specific proteins suggesting that the monocot and dicot U1-specific snRNP proteins differ in their binding specificities. Stem III structures, which are required in mammalian systems for splicing complex formation but not for U1-specific protein binding, differ more extensively than stems I, II, or IV. In U2 snRNAs, the sequence differences between these two species are primarily localized in stem III and in stem IV which has been implicated in snRNP protein binding. These differences suggest that monocot and dicot U1 and U2 snRNPs represent distinct entities that may have monocot- and dicot-specific snRNP protein variants associated with each snRNA.  相似文献   

4.
The binding of the U1 small nuclear ribonucleoprotein (snRNP)-specific proteins C, A, and 70K to U1 small nuclear RNA (snRNA) was analyzed. Assembly of U1 snRNAs from bean and soybean and a set of mutant Xenopus U1 snRNAs into U1 snRNPs in Xenopus egg extracts was studied. The ability to bind proteins was analyzed by immunoprecipitation with monospecific antibodies and by a protein-sequestering assay. The only sequence essential for binding of the U1-specific proteins was the conserved loop sequence in the 5' hairpin of U1. Further analysis suggested that protein C binds directly to the loop and that the assembly of proteins A and 70K into the RNP requires mainly protein-protein interactions. Protein C apparently recognizes a specific RNA sequence rather than a secondary structural element in the RNA.  相似文献   

5.
The U1 small nuclear (sn)RNA participates in splicing of pre-mRNAs by recognizing and binding to 5′ splice sites at exon/intron boundaries. U1 snRNAs associate with 5′ splice sites in the form of ribonucleoprotein particles (snRNPs) that are comprised of the U1 snRNA and 10 core components, including U1A, U1-70K, U1C and the ‘Smith antigen’, or Sm, heptamer. The U1 snRNA is highly conserved across a wide range of taxa; however, a number of reports have identified the presence of expressed U1-like snRNAs in multiple species, including humans. While numerous U1-like molecules have been shown to be expressed, it is unclear whether these variant snRNAs have the capacity to form snRNPs and participate in splicing. The purpose of the present study was to further characterize biochemically the ability of previously identified human U1-like variants to form snRNPs and bind to U1 snRNP proteins. A bioinformatics analysis provided support for the existence of multiple expressed variants. In vitro gel shift assays, competition assays, and immunoprecipitations (IPs) revealed that the variants formed high molecular weight assemblies to varying degrees and associated with core U1 snRNP proteins to a lesser extent than the canonical U1 snRNA. Together, these data suggest that the human U1 snRNA variants analyzed here are unable to efficiently bind U1 snRNP proteins. The current work provides additional biochemical insights into the ability of the variants to assemble into snRNPs.  相似文献   

6.
The function of conserved regions of the metazoan U5 snRNA was investigated by reconstituting U5 small nuclear ribonucleoprotein particles (snRNPs) from purified snRNP proteins and HeLa or Xenopus U5 snRNA mutants and testing their ability to restore splicing to U5-depleted nuclear extracts. Substitution of conserved nucleotides comprising internal loop 2 or deletion of internal loop 1 had no significant effect on the ability of reconstituted U5 snRNPs to complement splicing. However, deletion of internal loop 2 abolished U5 activity in splicing and spliceosome formation. Surprisingly, substitution of the invariant loop 1 nucleotides with a GAGA tetraloop had no effect on U5 activity. Furthermore, U5 snRNPs reconstituted from an RNA formed by annealing the 5' and 3' halves of the U5 snRNA, which lacked all loop 1 nucleotides, complemented both steps of splicing. Thus, in contrast to yeast, loop 1 of the human U5 snRNA is dispensable for both steps of splicing in HeLa nuclear extracts. This suggests that its function can be compensated for in vitro by other spliceosomal components: for example, by proteins associated with the U5 snRNP. Consistent with this idea, immunoprecipitation studies indicated that several functionally important U5 proteins associate stably with U5 snRNPs containing a GAGA loop 1 substitution.  相似文献   

7.
The PRP18 gene, which had been identified in a screen for pre-mRNA splicing mutants in Saccharomyces cerevisiae, has been cloned and sequenced. Yeast strains bearing only a disrupted copy of PRP18 are temperature sensitive for growth; even at a low temperature, they grow extremely slowly and do not splice pre-mRNA efficiently. This unusual temperature sensitivity can be reproduced in vitro; extracts immunodepleted of PRP18 are temperature sensitive for the second step of splicing. The PRP18 protein has been overexpressed in active form in Escherichia coli and has been purified to near homogeneity. Antibodies directed against PRP18 precipitate the U4/U5/U6 small nuclear ribonucleoprotein particle (snRNP) from yeast extracts. From extracts depleted of the U6 small nuclear RNA (snRNA), the U4 and U5 snRNAs can be immunoprecipitated, while no snRNAs can be precipitated from extracts depleted of the U5 snRNA. PRP18 therefore appears to be primarily associated with the U5 snRNP. The antibodies against PRP18 inhibit the second step of pre-mRNA splicing in vitro. Together, these results imply that the U5 snRNP plays a role in the second step of splicing and suggest a model for the action of PRP18.  相似文献   

8.
A common core structure for U3 small nucleolar RNAs.   总被引:7,自引:1,他引:6       下载免费PDF全文
  相似文献   

9.
10.
Differences observed between plant and animal pre-mRNA splicing may be the result of primary or secondary structure differences in small nuclear RNAs (snRNAs). A cDNA library of pea snRNAs was constructed from anti-trimethylguanosine (m3(2,2,7)G immunoprecipitated pea nuclear RNA. The cDNA library was screened using oligo-deoxyribonucleotide probes specific for the U1, U2, U4 and U5 snRNAs. cDNA clones representing U1, U2, U4 and U5 snRNAs expressed in seedling tissue have been isolated and sequenced. Comparison of the pea snRNA variants with other organisms suggest that functionally important primary sequences are conserved phylogenetically even though the overall sequences have diverged substantially. Structural variations in U1 snRNA occur in regions required for U1-specific protein binding. In light of this sequence analysis, it is clear that the dicot snRNA variants do not differ in sequences implicated in RNA:RNA interactions with pre-mRNA. Instead, sequence differences occur in regions implicated in the binding of small ribonucleoproteins (snRNPs) to snRNAs and may result in the formation of unique snRNP particles.  相似文献   

11.
Control of RNA processing plays a central role in regulating the replication of HIV-1, in particular the 3′ polyadenylation of viral RNA. Based on the demonstration that polyadenylation of mRNAs can be disrupted by the targeted binding of modified U1 snRNA, we examined whether binding of U1 snRNAs to conserved 10 nt regions within the terminal exon of HIV-1 was able to inhibit viral structural protein expression. In this report, we demonstrate that U1 snRNAs complementary to 5 of the 15 regions targeted result in significant suppression of HIV-1 protein expression and viral replication coincident with loss of viral RNA. Suppression of viral gene expression is dependent upon appropriate assembly of a U1 snRNP particle as mutations of U1 snRNA that affect binding of U1 70K or Sm proteins significantly reduced efficacy. However, constructs lacking U1A binding sites retained significant anti-viral activity. This finding suggests a role for these mutants in situations where the wild-type constructs cause toxic effects. The conserved nature of the sequences targeted and the high efficacy of the constructs suggests that this strategy has significant potential as an HIV therapeutic.  相似文献   

12.
B Séraphin 《The EMBO journal》1995,14(9):2089-2098
Several small nuclear RNAs (snRNAs), including the spliceosomal U1, U2, U4 and U5 snRNAs, are associated with Sm proteins. These eight small proteins form a heteromeric complex that binds to snRNAs and plays a major role in small nuclear ribonucleoprotein (snRNP) biogenesis and transport. These proteins are also a major target for autoantibodies in the human disease systemic lupus erythematosus. By sequence comparison I have shown that all the known Sm proteins share a common structural motif which might explain their immunological cross-reactivity. Database searches using this motif uncovered a large number of Sm-like proteins from plants, animals and fungi. These proteins have been grouped in at least 13 different subfamilies. Genes encoding divergent yeast members were cloned and used to produce tagged fusion proteins. Some of these proteins are canonical Sm proteins as they associate with the yeast U1, U2, U4/U6 and U5 snRNAs. Surprisingly, one Sm-like protein was found to be a component of the U6 snRNP. These findings have implications for the structure of the Sm protein complex, spliceosomal snRNP evolution, snRNA transport and modification as well as the involvement of Sm proteins in systemic lupus erythematosus.  相似文献   

13.
The assembly pathway of spliceosomal snRNPs in yeast is poorly understood. We devised a screen to identify mutations blocking the assembly of newly synthesized U4 snRNA into a functional snRNP. Fifteen mutant strains failing either to accumulate the newly synthesized U4 snRNA or to assemble a U4/U6 particle were identified and categorized into 13 complementation groups. Thirteen previously identified splicing-defective prp mutants were also assayed for U4 snRNP assembly defects. Mutations in the U4/U6 snRNP components Prp3p, Prp4p, and Prp24p led to disassembly of the U4/U6 snRNP particle and degradation of the U6 snRNA, while prp17-1 and prp19-1 strains accumulated free U4 and U6 snRNA. A detailed analysis of a newly identified mutant, the sad1-1 mutant, is presented. In addition to having the snRNP assembly defect, the sad1-1 mutant is severely impaired in splicing at the restrictive temperature: the RP29 pre-mRNA strongly accumulates and splicing-dependent production of beta-galactosidase from reporter constructs is abolished, while extracts prepared from sad1-1 strains fail to splice pre-mRNA substrates in vitro. The sad1-1 mutant is the only splicing-defective mutant analyzed whose mutation preferentially affects assembly of newly synthesized U4 snRNA into the U4/U6 particle. SAD1 encodes a novel protein of 52 kDa which is essential for cell viability. Sad1p localizes to the nucleus and is not stably associated with any of the U snRNAs. Sad1p contains a putative zinc finger and is phylogenetically highly conserved, with homologues identified in human, Caenorhabditis elegans, Arabidospis, and Drosophila.  相似文献   

14.
15.
The yeast U1A protein is a U1 snRNP-specific protein. Like its human counterpart (hU1A), it has two conserved RNA binding domains (RBDs). The N-terminal RBD is quite different from the human protein, and a binding site on yeast U1 snRNA is not readily apparent. The C-terminal RBD is of unknown function. Using in vivo dimethyl sulfate (DMS) protection of mutant strains, we defined a region in yeast U1 snRNA as the likely U1A N-terminal RBD binding site. This was confirmed by direct in vitro binding assays. The site is very different from its vertebrate counterpart, but its location within yeast U1 snRNA suggests a conserved structural relationship to other U1 snRNP components. Genetic studies and sensitive in vivo splicing measurements indicate that the yeast U1A C-terminal RBD also functions in pre-mRNA splicing. We propose that the N-terminal RBD serves to tether the splicing-relevant C-terminal RBD to the snRNP.  相似文献   

16.
The ability of series of U1 snRNAs and U6 snRNAs to migrate into the nucleus of Xenopus oocytes after injection into the cytoplasm was analyzed. The U snRNAs were made either by injecting U snRNA genes into the nucleus of oocytes or, synthetically, by T7 RNA polymerase, incorporating a variety of cap structures. The results indicate that nuclear targeting of U1 snRNA requires both a trimethylguanosine cap structure and binding of at least one common U snRNP protein. Using synthetic U6 snRNAs, it is further demonstrated that the trimethylguanosine cap structure can act in nuclear targeting in the absence of the common U snRNP proteins. These results imply that U snRNP nuclear targeting signals are of a modular nature.  相似文献   

17.
The U5 small nuclear ribonucleoprotein particle (snRNP) forms the heart of the spliceosome which is required for intron removal from pre‐mRNA. The proteins Prp8, Snu114 and Brr2 all assemble with the U5 small nuclear RNA (snRNA) to produce the U5 snRNP. Successful assembly of the U5 snRNP, then incorporation of this snRNP into the U4/U6.U5 tri‐snRNP and the spliceosome, is essential for producing an active spliceosome. We have investigated the requirements for Prp8, Snu114 and Brr2 association with the U5 snRNA to form the U5 snRNP in yeast. Mutations were constructed in the highly conserved loop 1 and internal loop 1 (IL1) of the U5 snRNA and their function assessed in vivo. The influence of these U5 mutations on association of Prp8, Snu114 and Brr2 with the U5 snRNA were then determined. U5 snRNA loop 1 and both sides of IL1 in U5 were important for association of Prp8, Snu114 and Brr2 with the U5 snRNA. Mutations in the 3′ side of U5 IL1 resulted in the greatest reduction of Prp8, Snu114 and Brr2 association with the U5 snRNA. Genetic screening of brr2 and U5 snRNA mutants revealed synthetic lethal interactions between alleles in Brr2 and the 3′ side of U5 snRNA IL1 which reflects reduced association between Brr2 and U5 IL1. We propose that the U5 snRNA IL1 is a platform for protein binding and is required for Prp8, Brr2 and Snu114 association with the U5 snRNA to form the U5 snRNP. J. Cell. Biochem. 114: 2770–2784, 2013. © 2013 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.  相似文献   

18.
Spliceosomal U6 small nuclear RNA (snRNA) plays a central role in the pre-mRNA splicing mechanism and is highly conserved throughout evolution. Previously, a sequence element essential for both capping and cytoplasmic-nuclear transport of U6 snRNA was mapped in the 5'-terminal domain of U6 snRNA. We have identified a protein in cytoplasmic extracts of mammalian and Trypanosoma brucei cells that binds specifically to this U6 snRNA element. Competition studies with mutant and heterologous RNAs demonstrated the conserved binding specificity of the mammalian and trypanosomal proteins. The in vitro capping analysis of mutant U6 snRNAs indicated that protein binding is required but not sufficient for capping of U6 snRNA by a gamma-monomethyl phosphate. Through RNA affinity purification of mammalian small nuclear ribonucleoproteins (snRNPs), we detected this protein also in nuclear extract as a new specific component of the U6 snRNP but surprisingly not of the U4/U6 or the U4/U5/U6 multi-snRNP. These results suggest that the U6-specific protein is involved in U6 snRNA maturation and transport and may therefore be functionally related to the Sm proteins of the other spliceosomal snRNPs.  相似文献   

19.
R Parker  P G Siliciano  C Guthrie 《Cell》1987,49(2):229-239
The U2 snRNP binds to the site of branch formation during splicing of mammalian pre-mRNA in vitro. In Saccharomyces cerevisiae the branch site is within the so-called TACTAAC box (UACUAAC box), an absolutely conserved intron sequence required for splicing. Based on the identification and sequence of a U2 analogue in yeast, a specific base pairing interaction between the UACUAAC box and a highly conserved region of this snRNA can be proposed. To test this hypothesis, we have taken advantage of two mutations constructed previously in the UACUAAC box of an actin-HIS4 fusion. These mutant strains were transformed with stable plasmids bearing U2-like snRNAs into which changes predicted to restore base pairing had been introduced. Allele-specific suppression of biological and biochemical phenotypes was observed in both cases. Recognition of the UACUAAC box thus relies, at least in part, on Watson-Crick base pairing with the yeast U2 analogue.  相似文献   

20.
Nuclear segregation of U2 snRNA requires binding of specific snRNP proteins   总被引:90,自引:0,他引:90  
I W Mattaj  E M De Robertis 《Cell》1985,40(1):111-118
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号