首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelin-1 (ET-1) is the most potent vasoconstrictor peptide found in nature. Its production is stimulated by thrombin. By inhibiting thrombin we have previously shown that heparin, a highly negatively-charged glycosaminoglycan (GAG), suppresses the production of ET-1 by cultured human umbilical vein endothelial cells (HUVEC). The purpose of our study is to determine the effect of other GAGs and related compounds on ET-1 production. The GAGs and related compounds used in the study were: chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, fucoidin, low molecular weight dextran sulfate, high molecular weight dextran sulfate, and hyaluronan. HUVEC were incubated for 48 hr with media containing these GAGs and related compounds and with media without GAG as control. ET-1 levels were measured by radioimmunoassay. GAGs and related molecules with higher sulfate content, heparin, chondroitin sulfate B, low and high molecular weight dextran sulfates significantly suppressed ET-1 production by HUVEC. Fucoidin also suppressed ET-1 production despite its lower sulfate content, probably because of its structural similarity to heparin. These compounds may be useful for future in vivo studies.  相似文献   

2.
The binding of dextran sulfate to phospholipid liposomes was investigated by microelectrophoresis experiments. The polyanion binds to neutral phospholipid liposomes (DMPC and PE) only in the presence of Ca2+. If positively charged stearylamine is incorporated in the vesicles dextran sulfate is bound without Ca2+. Negatively charged phospholipids as PS do not bind dextran sulfate, even in the presence of millimolar concentrations of Ca2+. The adsorption of dextran sulfate results in an aggregation of vesicles due to a bridging mechanism. In all cases the aggregation is followed by a disaggregation toward higher dextran sulfate concentrations. The disaggregation process starts at polymer concentrations smaller than the concentration of the onset of saturation of the adsorption. By use of the probe dilution method a fusion of small DMPC and DMPC/PE vesicles in the presence of Ca2+ and dextran sulfate was found.  相似文献   

3.
Neoplastic rat liver epithelial (261B) cells made permeable by electroporation released 0.2-0.3 microM Ca2+ from intracellular stores in response to 0.5 microM Ins(1,4,5)P3 stimulation. This Ca2+ release response was found to be inhibited by heparin in a dose-dependent manner (Ki of 15 micrograms/ml). Two other glycosaminoglycans, chondroitin sulfate and hyaluronic acid, showed no inhibitory effect at doses as high as 0.2 mg/ml. Passive Ca2+ release, and sequestration of Ca2+ into intracellular storage sites by the action of Ca2+-ATPase were unaffected by heparin treatment. We conclude that the inhibitory action of heparin treatment on Ca2+ mobilization in permeabilized 261B cells is mediated through its interaction at the Ins(1,4,5)P3 receptor binding site.  相似文献   

4.
Purification of the mineralcorticoid receptor is a particularly challenging problem. This receptor is present in target tissues at concentrations lower and is less stable than any other steroid receptor. Addition of molybdate ions (20 mM) to rat kidney cytosol enhances stability of mineralcorticoid-specific binding sites: the inactivation rate at 0 degrees C decreases from 7.2 to 1.7% per hour in the absence of aldosterone, and from 1.8 to 0.3% per hour in the presence of hormone. Rates of inactivation in the presence of molybdate are thus compatible with purification procedures. Also, the corticosteroid-binding globulin (CBG) is an important contaminating component of kidney cytosol because it cannot be specifically blocked preliminarily to affinity chromatography. We show that when kidney cytosol is incubated with heparin covalently linked to Sepharose (Sepharose-heparin), after 30 min at 0 degrees C more than 80% of the mineralcorticoid-specific binding sites interact strongly with Sepharose-heparin while CBG is not bound at all. The mineralcorticoid-specific binding sites can be recovered from Sepharose-heparin by washing with heparin (2 mg/ml; recovery up to 90%), KCl (0.3 M; recovery up to 90%); and, less efficiently, with total liver RNA (2 mg/ml; recovery up to 55%) and dextran sulfate (2 mg/ml; recovery up to 40%); little or no recovery is achieved with chondroitin sulfate, sonicated DNA, pyridoxal-5-phosphate, dextran, d-glucosamine and d-glucuronic acid. With demonstration that also the mineral-corticoid receptor binds to heparin, this property has become a general hallmark of steroid receptors. If the "heparin" binding site of steroid receptors is of physiological significance it remains to be established. By application of the newly found property of the mineralcorticoid receptor, an overall 10-fold purified, CBG-free preparation of this receptor can be obtained from kidney cytosol with a single chromatography on Sepharose-heparin.  相似文献   

5.
Glycosaminoglycan side chains of membrane proteoglycans have been claimed to be located at the outermost layer of the glycocalyx surrounding the cell. In this study measurements by surface plasmon resonance and solid-phase assay have shown that both chondroitin sulfate and keratan sulfate but not heparin associate with phosphatidylcholine under physiological conditions. Spectrophotometric measurements also showed that chondroitin sulfate restricts the lateral diffusion of phosphatidylcholine in liposomes. These findings indicate that chondroitin sulfate and/or keratan sulfate chains of membrane proteoglycans crouch on the surface of the membrane while heparan sulfate chains stretch outward from the membrane surface as postulated traditionally.  相似文献   

6.
The majority of published studies have reported the use of commercial heparin to capacitate bovine sperm. However, heparin is not present in the female genital tract fluids. In this study, we purified large amounts of glycosaminoglycans (GAGs) from bovine follicular fluid (FF), characterized them and determined their potential to capacitate sperm. FF-GAGs were isolated by protease digestion, lipid extraction, and by different precipitation conditions and then purified by ion exchange chromatography. Two GAGs, heparan sulfate and chondroitin sulfate B, were present in FF. To determine the capacitation potential of FF-GAGs, bovine ejaculated sperm were incubated 5 hr with or without 12 or 24 microg/ml of each of the FF-GAG fractions or with heparin (12 microg/ml). The purified FF-GAGs and heparin did not stimulate sperm acrosome reaction (AR), but stimulated sperm capacitation. Fractions 1 and 2 (heparan sulfate) were more active to promote capacitation (stimulated up to 3.2-fold) than fractions 3 and 4 (mostly chondroitin sulfate B). Fractions 3 and 4 stimulated capacitation two times more than the control (without FF-GAGs or heparin). When the heparan sulfate impurity was removed from fractions 3 and 4 by acid hydrolysis, the capacitation-promoting activity associated with these fractions did not change significantly. When 24 microg/ml of fraction 1 or 2 were used, the percentage of sperm capacitation observed was similar to the capacitation with 12 microg/ml of heparin. Our results also indicated that the FF-GAGs interact strongly with the BSP proteins. Therefore, it is concluded that heparan sulfate is the GAG that is the most potent capacitating factor present in bovine FF.  相似文献   

7.
In this work, we studied whether chondroitin sulfates and dextran sulfates (DXSs) can influence hypochlorite-induced peroxidation of phosphatidylcholine (PC) liposomes. Multilamellar liposomes (2 mg lipid/ml) were prepared in phosphate buffer, pH 7.4, with NaCl or not and exposed to reagent HOCl/ClO (1 mM) at 37 °C in the presence of different concentrations of chondroitin 6-sulfate (C6S), chondroitin 4-sulfate (C4S), DXS 8000, DXS 40,000, and DXS 500,000. Lipid peroxidation was assessed by thiobarbituric acid-reactive substance (TBARS) production. DXSs and C6S enhanced TBARS production in a dose-dependent manner. The decline in TBARS production at the relatively high C6S concentrations may be attributed to C4S present in C6S, since in contrast to C6S, C4S is known to react with hypochlorite. Dextrans, nonsulfated analogues of DXS, failed to modulate TBARS production. This fact indicates the important role of negatively charged sulfate groups for DXS to facilitate hypochlorite-induced peroxidation of PC liposomes. The electrostatic nature of the mechanism providing for the pro-oxidative effect of DXS was also supported by the influence of liposome surface charge and solution ionic strength on the extent of liposome peroxidation. The addition of calcium ions to the incubation mixture did not prevent the pro-oxidative action of DXS. The relevance of the results to atherogenesis is discussed.  相似文献   

8.
We report the purification of betaglycan, a low-abundance membrane proteoglycan with high affinity for transforming growth factor-beta (TGF-beta). Betaglycan solubilized from rat embryo membrane preparations was purified to near-homogeneity by sequential chromatography through DEAE-Trisacryl, wheat germ lectin-Sepharose, and TGF-beta 1-agarose. Purified betaglycan has properties similar to betaglycan affinity-labeled in intact cells: it binds TGF-beta 1 and TGF-beta 2 with KD approximately 0.2 nM, contains heparan sulfate and chondroitin sulfate glycosaminoglycan (GAG) chains and N-linked glycans attached to a 110-kDa core protein, and can spontaneously associate with phosphatidylcholine liposomes. The betaglycan core obtained by enzymatic removal of the GAG chains has high affinity for TGF-beta and associates with artificial liposomes, indicating that the core protein binds TGF-beta and anchors to membranes independently of the GAG chains present on the native protein or of any ancillary protein.  相似文献   

9.
The effects of added soluble glycosaminoglycans (GAGs) on adhesion and neurite formation by cultured PC12 pheochromocytoma cells on several substrates were tested. PC12 cells adhere more rapidly to Petri plastic coated with fibronectin, laminin, poly-L-lysine, or conA, than to either uncoated Petri plastic or tissue culture plastic. Adhesion to poly-L-lysine, fibronectin- and laminin-coated dishes was significantly inhibited by added dextran sulfate and to a lesser extent heparin--but not by chondroitin sulfate. PC12 adhesion to fibronectin could also be totally inhibited by the putative fibronectin cell binding tetrapeptide L-arginyl-glycyl-L-aspartyl-L-serine (Pierschbacher, MD & Ruoslahti, E, Nature 309 (1984) 30). The inhibitory effects of combinations of this tetrapeptide and heparin or dextran sulfate (but not chondroitin sulfate or hyaluronic acid) were additive. Nerve growth factor (NGF) pretreatment increased the percentage of PC12 cells adherent to all substrates and reduced the GAG inhibition of adhesion. PC12 cells previously treated with NGF to induce morphologic differentiation will rapidly re-extend neurites when plated on all four substrates. On fibronectin and poly-L-lysine-coated dishes this neurite growth is inhibited by added heparin and dextran sulfate, while on laminin it is not. Neurite formation on fibronectin-coated dishes was also inhibited by low concentrations of fibronectin tetrapeptide. In summary, PC12 adhesion and neurite formation can be inhibited by sulfated GAGs on some substrates, including fibronectin, but not other substrates, suggesting that these cells have at least two independent molecular adhesion mechanisms.  相似文献   

10.
When rat liver cytosol containing [3H]dexamethasone-glucocorticoid receptor complex is exposed to immobilized heparin (Sepharose-heparin; Seph-hep) the steroid receptor complex binds to the substituted Sepharose avidly [Kd = 3.5 (+/- 1.7) X 10(-10) M], and 80-90% of the receptor present is adsorbed to the solid phase after 40 min at 0 degree C. The binding is enhanced by Mn2+ (10 mM) and Mg2+, whereas Ca2+ and Sr2+ are ineffective. Sodium molybdate (10 mM) does not influence the reaction but enhances receptor stability. Moreover, binding of the receptor to Seph-hep is dependent on the ionic strength of the medium, because binding is totally reversed by 300 mM KCl. The bound [3H]dexamethasone-receptor complex can be recovered from Seph-hep with solutions (4 mg/mL) of heparin (95% release), dextran sulfate (88%), and chondroitin sulfate (63%); total calf liver RNA is less effective (9%), whereas dextran, D-glucosamine, N-acetyl-D-glucosamine, D-glucuronic acid, and sheared calf thymus DNA are totally ineffective (less than 3%). Both "native" and temperature "transformed" forms of the glucocorticoid receptor interact with immobilized heparin. These results strongly suggest that the receptor site that binds heparin is distinct from that binding DNA. An immediate application of this newly found ability of the glucocorticoid receptor to interact with heparin is the use of Seph-hep for affinity chromatography purification of the glucocorticoid receptor. A purification of 10-fold, with a recovery of 55-65%, can be achieved by using either 4 mg/mL heparin or 300 mM KCl to elute [3H]dexamethasone-receptor bound to the resin.  相似文献   

11.
Soluble complex formation between LDL and heparin (HEP) and chondroitin sulfate (CS) has been studied by 2H- and 31P-NMR and light scattering. The 2H-NMR linewidths of [2H]HEP and [2H]C4S increase substantially upon binding to LDL, with the [2H]HEP linewidths broader at low glycosaminoglycan (GAG)/low density lipoprotein (LDL) ratios. Preliminary analysis of the bound C2H3 group correlation times suggests that the observed linewidths are determined by the complex size, and that both [2H]GAGs have similar motions when bound to LDL. The 31P-NMR data demonstrate that large LDL-HEP complexes (diameter approx. 50 nm) are formed only over a narrow range of HEP concentrations, whereas the size of LDL-CS complexes increases continuously over the range of CS concentrations studied, reaching values of 32-35 nm for both C4S and C6S. At the lower protein concentrations studied by light scattering (less than or equal to 1 mg/ml), the same trends are observed, although the mean diameters are less than those estimated by 31P-NMR. Soluble complex formation was unaffected by the presence of 2 mM Ca2+. Dilution studies demonstrate that complex size varies with protein concentration. The binding of GAGs to LDL was also examined by HEP-CS competition studies. HEP has the higher affinity while no differences in binding could be detected between C4S and C6S.  相似文献   

12.
Heparin-binding properties of lactoferrin and lysozyme.   总被引:3,自引:0,他引:3  
1. Binding of biotin-heparin to immobilized lactoferrin and lysozyme was optimum at pH 6.0, 100 mM NaCl. Complex interactions between NaCl and CaCl2 concentrations were observed for heparin binding to both proteins. 2. The metal ions Cu2+, Zn2+, Fe2+ and Fe3+ inhibited heparin binding, with half-maximal inhibition of binding to lactoferrin occurring between 600 microM and 1 mM and for lysozyme between 500 and 800 microM. 3. Binding of biotin-heparin to both proteins was inhibited to varying degrees by heparin, heparan sulfate, chondroitin sulfate A, dextran sulfate and DNA.  相似文献   

13.
Characterization of sugar binding by osteoclast inhibitory lectin   总被引:1,自引:0,他引:1  
Osteoclast inhibitory lectin (OCIL) is a membrane-bound C-type lectin that blocks osteoclast differentiation and, via binding to its cognate receptor NKRP1D, inhibits natural killer cell-mediated cytotoxicity. OCIL is a member of the natural killer cell receptor C-type lectin group that includes CD69 and NKRP1D. We investigated carbohydrate binding of soluble recombinant human and mouse OCIL in enzyme-linked immunosorbent assay-based assays. OCIL bound immobilized high molecular weight sulfated glycosaminoglycans, including fucoidan, lambda-carrageenan, and dextran sulfate, but not unsulfated dextran or sialated hyaluronic acid. Carbohydrate binding was Ca(2+)-independent. Binding of immobilized low molecular weight glycosaminoglycans, including chondroitin sulfate (A, B, and C forms) and heparin, was not observed. However, the soluble forms of these low molecular weight glycosaminoglycans competed for OCIL binding of immobilized fucoidan (as did soluble fucoidan, dextran sulfate, and lambda-carrageenan), indicating that OCIL does recognize these carbohydrates. Inhibition constants for chondroitin sulfate A and heparin binding were 380 and 5 nm, respectively. Immobilized and soluble monosaccharides did not bind OCIL. The presence of saturating levels of fucoidan, dextran sulfate, and lambda-carrageenan did not affect OCIL inhibition of osteoclast formation. The fucoidan-binding lectins Ulex europaeus agglutinin I and Anguilla anguilla agglutinin did not block osteoclast formation or affect the inhibitory action of OCIL. Although the osteoclast inhibitory action of OCIL is independent of sugar recognition, we have found that OCIL, a lectin widely distributed, but notably localized in bone, skin, and other connective tissues, binds a range of physiologically important glycosaminoglycans, and this property may modulate OCIL actions upon other cells.  相似文献   

14.
Sclerostin (SOST) is a glycoprotein having many important functions in the regulation of bone formation as a key negative regulator of Wnt signaling in bone. Surface plasmon resonance (SPR), which allows for a direct quantitative analysis of the label-free molecular interactions in real-time, has been widely used for the biophysical characterization of glycosaminoglycan (GAG)-protein interactions. In the present study, we report kinetics, structural analysis and the effects of physiological conditions (e.g., salt concentrations, Ca2+ and Zn2+concentrations) on the interactions between GAGs and recombinant human (rh) and recombinant mouse (rm) SOST using SPR. SPR results revealed that both SOSTs bind heparin with high affinity (rhSOST-heparin, KD~36 nM and rmSOST-heparin, KD~77 nM) and the shortest oligosaccharide of heparin that effectively competes with full size heparin for SOST binding is octadecasaccharide (18mer). This heparin binding protein also interacts with other highly sulfated GAGs including, disulfated-dermatan sulfate and chondroitin sulfate E. In addition, liquid chromatography-mass spectrometry was used to characterize the structure of sulfated GAGs that bound to SOST.  相似文献   

15.
Recent studies have demonstrated that murine lymphocytes express specific cell-surface receptors for a range of sulfated polysaccharides. In order to determine whether polysaccharide binding induces transmembrane signaling, the effects of sulfated polysaccharides on the free intracellular calcium ion concentration [( Ca2+]i) of mouse thymocytes and spleen cells were determined. Cells were loaded with Indo-I, a fluorescent indicator of calcium ion concentration. The validity and limitations in the use of this indicator in the determination of [Ca2+]i are documented. Dextran sulfate (Mn = 500,000), iota-carrageenan, lambda-carrageenan and kappa-carrageenan all cause relatively large changes in the [Ca2+]i of thymocytes (change in [Ca2+]i greater than 50 nM). Of these, dextran sulfate (Mn = 500,000) always had the greatest effect on [Ca2+]i. Smaller responses were obtained with heparin and dextran sulfate (Mn = 5000), while no response was obtained with chondroitin 4-sulfate, chondroitin 6-sulfate, pentosan sulfate or fucoidin. This response pattern (with the exception of fucoidin and pentosan sulfate) corresponds with the expression of thymocyte receptors for these polysaccharides. The increase in [Ca2+]i caused by the sulfated polysaccharides requires extracellular Ca2+ ions however, it is unlikely that voltage-dependent ion channels are involved in these responses. In contrast to thymocytes, although spleen cells express receptors for sulfated polysaccharides, they were unresponsive to all of the sulfated polysaccharides tested, suggesting a basic difference between thymocytes and peripheral T and B lymphocytes in their response to the binding of sulfated polysaccharides.  相似文献   

16.
A dot blot assay for detection of low amounts of heparin and sulfated glycosaminoglycans (GAGs) is described. The detection range is between 25 ng/ml and 1000 ng/ml of heparin. The assay is based on the interference of sulfated GAGs with the binding of a synthetic ligand (described in this paper) to defined receptors like collagen type V and histones. Ligand binding to type V collagen was suppressed specifically by heparin, but not by other sulfated GAGs like heparin sulfate and chondroitin sulfate. Ligand binding to histones was suppressed most strongly by heparin, but also by chondroitin sulfate. Hyaluronic acid did not interfere.  相似文献   

17.
Harris EN  Weigel PH 《Glycobiology》2008,18(8):638-648
The hyaluronic acid receptor for endocytosis (HARE)/ Stabilin-2 is the primary systemic scavenger receptor for hyaluronan (HA), the chondroitin sulfates (CS), dermatan sulfate (DS), and nonglycosaminoglycan (GAG) ligands such as acetylated low-density lipoprotein (AcLDL), pro-collagen propeptides, and advanced glycation end products. We recently discovered that HARE is also a systemic scavenger receptor for heparin (Hep) (Harris EN, Weigel JA, Weigel PH. 2008. The human hyaluronan receptor for endocytosis [HARE/Stabilin-2] is a systemic clearance receptor for heparin. J Biol Chem. 283:17341-17350). Our goal was to map the binding sites of eight different ligands within HARE. We used biotinylated GAGs and radio-iodinated streptavidin or AcLDL to assess the binding activities of ligands directly or indirectly (by competition with unlabeled ligands) in endocytosis assays using stable cell lines expressing the 315 or 190 kDa HA receptor for endocytosis (315- or 190-HARE) isoforms, and ELISA-like assays, with purified recombinant soluble 190-HARE ecto-domain. For example, Hep binding to HARE was competed by DS, CS-E, AcLDL, and dextran sulfate, but not by other CS types, HA, dextran, or heparosan. (125)I-AcLDL binding to HARE was partially competed by Hep and dextran sulfate, but not competed by HA. Two ligands, DS and CS-E, competed with both Hep and HA to some degree. Hep and HA binding or endocytosis is mutually inclusive; binding of these two GAGs occurs with functionally separate, noncompetitive, and apparently noninteracting domains. Thus, HARE binds to HA and Hep simultaneously. Although the domain(s) responsible for Hep binding remains unknown, the Link domain was required for HARE binding to HA, CS-A, CS-C, and CS-D. These results enable us to outline, for the first time, a binding activity map for multiple ligands of HARE.  相似文献   

18.
The calcium-dependent polymerization of human serum amyloid P component (SAP) was spectrophotometrically monitored in 0.15 M NaCl at pH 7.5. The rate of the polymerization depended on the concentrations of SAP and Ca2+. It was shown for the first time that the calcium-dependent polymerization of SAP was inhibited by some sulfated polysaccharides. Most potent inhibitors were heparin and high molecular weight dextran sulfate of Mr 1.0.10(6). The inhibitory activity of glycosaminoglycans is accordant to their binding affinity for SAP, which was reported previously (Hamazaki, H. (1987) J. Biol. Chem. 262, 1456-1460). The polymerized SAP was reversibly dissociated by heparin and high molecular weight dextran sulfate. The results suggest that heparin and high molecular weight dextran sulfate may be a useful dissociating agent of polymerized SAP in amyloid deposits.  相似文献   

19.
In Alzheimer's disease, the major pathological features are diffuse and senile plaques that are primarily composed of the amyloid-beta (A beta) peptide. It has been proposed that proteoglycans and glycosaminoglycans (GAG) facilitate amyloid fibril formation and/or stabilize the plaque aggregates. To develop effective therapeutics based on A beta-GAG interactions, understanding the A beta binding motif on the GAG chain is imperative. Using electron microscopy, fluorescence spectroscopy, and competitive inhibition ELISAs, we have evaluated the ability of chondroitin sulfate-derived monosaccharides and disaccharides to induce the structural changes in A beta that are associated with GAG interactions. Our results demonstrate that the disaccharides GalNAc-4-sulfate(4S), Delta UA-GalNAc-6-sulfate(6S), and Delta UA-GalNAc-4,6-sulfate(4S,6S), the iduronic acid-2-sulfate analogues, and the monosaccharides d-GalNAc-4S, d-GalNAc-6S, and d-GalNAc-4S,6S, but not d-GalNAc, d-GlcNAc, or Delta UA-GalNAc, induce the fibrillar features of A beta-GAG interactions. The binding affinities of all chondroitin sulfate-derived saccharides mimic those of the intact GAG chains. The sulfated monosaccharides and disaccharides compete with the intact chondroitin sulfate and heparin GAGs for A beta binding, as illustrated by competitive inhibition ELISAs. Therefore, the development of therapeutics based on the model of A beta-chondroitin sulfate binding may lead to effective inhibitors of the GAG-induced amyloid formation that is observed in vitro.  相似文献   

20.
The influence of dextran sulfate with molecular weights of 500,000 and 8000 on binding and fusion of influenza virus (X31 strain) and of cells expressing influenza hemagglutinin (GP4F) with red blood cells (RBC) was investigated by spectrofluorimetry using virus and RBC labeled with the fluorescent dye octadecyl rhodamine B (R18). There was no significant inhibition of binding of virus and GP4F cells to red blood cells by dextran sulfate, but the polymer strongly inhibited the low pH induced fusion. Virus-RBC fusion was completely blocked by the high molecular weight dextran sulfate at concentrations as low as 0.5 mg/ml. Inhibition of RBC-GP4F cell fusion by dextran sulfate in the same concentration range was not as pronounced but the effect was potentiated by Ca2+. The polymer was only inhibitory when added at early steps of the fusion reaction, but the pH-induced conformational change of the hemagglutinin was not affected by dextran sulfate as measured by its susceptibility to proteolytic digestion. Removal of dextran sulfate after low pH-requiring steps allowed the system to fuse at neutral pH indicating that the inhibitory effect requires the continuous presence of dextran sulfate during the fusion reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号