首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To construct a threonine-hyperproducing strain of Serratia marcescens Sr41, the six regulatory mutations for three aspartokinases and two homoserine dehydrogenases were combined in a single strain by three transductional crosses. The constructed strain, T-1026, carried the lysC1 mutation leading to lack of feedback inhibition and repression of aspartokinase III, the thrA1(1) mutation desensitizing aspartokinase I to feedback inhibition, the thrA2(1) mutation releasing feedback inhibition of homoserine dehydrogenase I, the two hnr mutations derepressing aspartokinase I and homoserine dehydrogenase I, and the etr-1 mutation derepressing aspartokinase II and homoserine dehydrogenase II. The strain produced ca. 40 mg of threonine per ml of medium containing sucrose and urea. Furthermore, the productivity of strain T-1026 was compared with those of strains devoid of more than one of the six regulatory mutations.  相似文献   

3.
To construct a threonine-hyperproducing strain of Serratia marcescens Sr41, the six regulatory mutations for three aspartokinases and two homoserine dehydrogenases were combined in a single strain by three transductional crosses. The constructed strain, T-1026, carried the lysC1 mutation leading to lack of feedback inhibition and repression of aspartokinase III, the thrA1(1) mutation desensitizing aspartokinase I to feedback inhibition, the thrA2(1) mutation releasing feedback inhibition of homoserine dehydrogenase I, the two hnr mutations derepressing aspartokinase I and homoserine dehydrogenase I, and the etr-1 mutation derepressing aspartokinase II and homoserine dehydrogenase II. The strain produced ca. 40 mg of threonine per ml of medium containing sucrose and urea. Furthermore, the productivity of strain T-1026 was compared with those of strains devoid of more than one of the six regulatory mutations.  相似文献   

4.
Mutants containing fusions of the lac gene to the lysC gene were isolated. In these, the expression of beta-galactosidase was regulated by lysine (and arginine), as previously described for aspartokinase III.  相似文献   

5.
The lysC/asd gene cluster of Corynebacterium glutamicum ATCC 13032 was cloned and sequenced. The lysC locus coding for aspartokinase consists of two in-frame overlapping genes, lysC alpha encoding a protein of 421 amino acids (Mr 44,300) and lysC beta encoding a protein of 172 amino acids (Mr 18,600). The C. glutamicum aspartokinase was purified and found to contain two proteins of Mr 47,000 and Mr 18,000. A C. glutamicum mutant expressing a feedback-resistant aspartokinase was shown to be changed in a single base pair of the lysC beta gene, leading to an amino acid exchange in the beta-subunit of the aspartokinase. In addition, the identified mutation was found to be responsible for the enhanced expression of the asd gene located downstream of lysC.  相似文献   

6.
S-2-Aminoethyl cysteine (AEC) reduced both growth rate and final growth level of Serratia marcescens Sr41. The growth inhibition was completely reversed by lysine. AEC inhibited the activity of lysine-sensitive aspartokinase to a lesser extent than lysine. The AEC addition to the medium lowered not only the level of lysine-sensite aspartokinase but also those of homoserine dehydrogenase and threonine deaminase, whereas lysine repressed the aspartokinase alone. To select mutations releasing lysine-sensitive aspartokinase from feedback controls, AEC-resistant colonies were isolated from strains HNr31 and HNr53, both of which were previously found to excrete threonine on the minimal plates but not on the plates containing excess lysine. Two of 280 resistant colonies excreted large amounts of threonine. Strains AECr174 and AECr301, derived from strains HNr31 and HNr53, respectively, lacked both feedback inhibition and repression of lysine-sensitive aspartokinase. These strains produced about 7 mg of threonine per ml in the medium containing glucose and urea.  相似文献   

7.
S-2-Aminoethyl cysteine (AEC) reduced both growth rate and final growth level of Serratia marcescens Sr41. The growth inhibition was completely reversed by lysine. AEC inhibited the activity of lysine-sensitive aspartokinase to a lesser extent than lysine. The AEC addition to the medium lowered not only the level of lysine-sensite aspartokinase but also those of homoserine dehydrogenase and threonine deaminase, whereas lysine repressed the aspartokinase alone. To select mutations releasing lysine-sensitive aspartokinase from feedback controls, AEC-resistant colonies were isolated from strains HNr31 and HNr53, both of which were previously found to excrete threonine on the minimal plates but not on the plates containing excess lysine. Two of 280 resistant colonies excreted large amounts of threonine. Strains AECr174 and AECr301, derived from strains HNr31 and HNr53, respectively, lacked both feedback inhibition and repression of lysine-sensitive aspartokinase. These strains produced about 7 mg of threonine per ml in the medium containing glucose and urea.  相似文献   

8.
Deregulation of allosteric inhibition of enzymes is a challenge for strain engineering and has been achieved so far primarily by random mutation and trial-and-error. In this work, we used aspartokinase, an important allosteric enzyme for industrial amino acids production, to demonstrate a predictive approach that combines protein dynamics and evolution for a rational reengineering of enzyme allostery. Molecular dynamic simulation of aspartokinase III (AK3) from Escherichia coli and statistical coupling analysis of protein sequences of the aspartokinase family allowed to identify a cluster of residues which are correlated during protein motion and coupled during the evolution. This cluster of residues forms an interconnected network mediating the allosteric regulation, including most of the previously reported positions mutated in feedback insensitive AK3 mutants. Beyond these mutation positions, we have successfully constructed another twelve targeted mutations of AK3 desensitized toward lysine inhibition. Six threonine-insensitive mutants of aspartokinase I-homoserine dehydrogenase I (AK1-HD1) were also created based on the predictions. The proposed approach can be widely applied for the deregulation of other allosteric enzymes.  相似文献   

9.
This work describes isolation and characterization of Streptomyces clavuligerus mutants resistant to the lysine analogue S-(2-aminoethyl)-L-cysteine (AEC). The mutation to AEC resistance was shown to affect the feedback regulation of aspartokinase; 70% of the mutants isolated had aspartokinase activity insensitive to concerted feedback inhibition by lysine plus threonine. Among these mutants, 70% (about 50% of the total AEC-resistant strains isolated) showed significant overproduction of beta-lactam antibiotics.  相似文献   

10.
Summary TheCorynebacterium glutamicum/Escherichia coli shuttle vector plasmid pZ1 was used to clone the S-(2-aminoethyl)-d,l-cysteine (AEC)-resistance gene from a lysine-excreting, AEC-resistant strain ofC. glutamicum, the aspartokinase activity of which was released from feedback inhibition by mixtures of lysine and threonine or AEC and threonine respectively. A recombinant plasmid designated pCS2 carrying a 9.9-kb chromosomal insert that conferred AEC resistance and the ability to excrete lysine to its host was isolated. The aspartokinase activity of the pCS2-carrying strain was resistant towards inhibition by mixtures of lysine and threonine or AEC and threonine respectively. By deletion analysis the DNA region conferring AEC resistance to the host and feedback resistance to its aspartokinase activity could be confined to a 1.2-kb DNA fragment.  相似文献   

11.
Strains of Bacillus subtilis deficient in aspartokinases II and III are unable to grow in the absence of lysine, methionine, and threonine, although they have normal levels of aspartokinase I (J.J. Zhang, F.M. Hu, N.Y. Chen, and H. Paulus, J. Bacteriol. 172:701-708, 1990). Revertants with the ability to grow in the absence of lysine and methionine had an altered aspartokinase I, which was insensitive to feedback inhibition by meso-diaminopimelate. This suggests that inhibition by meso-diaminopimelate limits the ability of aspartokinase I to function in amino acid biosynthesis.  相似文献   

12.
The presence of a single aspartokinase was demonstrated in Rhodospirillum tenue. The enzyme has been purified about 60-fold. No physical association exists in this species between aspartokinase and homoserine dehydrogenase. The general properties of the enzyme are described. Inhibition by l-lysine, by l-threonine, and concerted inhibition by these two end products are regulatory characters which have also been found in many other species. In R. tenue, aspartokinase is also subject to a hitherto not encountered type of concerted feedback inhibition, by l-threonine plus l-methionine. The inhibition caused by lysine can be reversed either by glycine, l-isoleucine, l-methionine, or l-phenylalanine. The concerted inhibition by lysine plus threonine is reversed by glycine, l-isoleucine, or l-phenylalanine, but not by l-methionine, which exerts in conjunction with threonine the independent concerted inhibition referred to above. Addition of single or several metabolites to cultures of R. tenue caused inhibition of growth and reversal of growth inhibition, compatible with the effects observed in vitro on aspartokinase activity. The regulation of this enzyme in relation to that of other bacterial aspartokinases is discussed.  相似文献   

13.
Aspartokinase III (AKIII), one of three isozymes of Escherichia coli K-12, is inhibited allosterically by L-lysine. This enzyme is encoded by the lysC gene and has 449 amino acid residues. We analyzed the feedback inhibition site of AKIII by generating various lysC mutants in a plasmid vector. These mutants conferred resistance to L-lysine and/or an L-lysine analogue on their host. The inhibitory effects of L-lysine on and heat tolerance of 14 mutant enzymes were examined and DNA sequencing showed that the types of mutants were 12. Two hot spots, amino acid residue positions 318-325 and 345-352, were detected in the C-terminal region of AKIII and these enzyme regions may be important in L-lysine-mediated feedback inhibition of AKIII. Feedback resistant lysC relieved on L-threonine hyper-producing strain, B-3996, from reduced L-threonine productivity by addition of L-lysine, and furthermore increased L-threonine productivity even when no addition of L-lysine. It suggested that the bottleneck of L-threonine production of B-3996 was AK and feedback resistant lysC was effective because of the strict inhibition by cytoplasmic L-lysine.  相似文献   

14.
Bradyrhizobium japonicum transports oligopeptides and the heme precursor delta-aminolevulinic acid (ALA) by a common mechanism. Two Tn5-induced mutants disrupted in the lysC and ptsP genes were identified based on the inability to use prolyl-glycyl-glycine as a proline source and were defective in [(14)C]ALA uptake activity. lysC and ptsP were shown to be proximal genes in the B. japonicum genome. However, RNase protection and in trans complementation analysis showed that lysC and ptsP are transcribed separately, and that both genes are involved in oligopeptide transport. Aspartokinase, encoded by lysC, catalyzes the phosphorylation of aspartate for synthesis of three amino acids, but the lysC strain is not an amino acid auxotroph. The ptsP gene encodes Enzyme I(Ntr) (EI(Ntr)), a paralogue of Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase (PTS) system. In vitro pull-down experiments indicated that purified recombinant aspartokinase and EI(Ntr) interact directly with each other. Expression of ptsP in trans from a multicopy plasmid complemented the lysC mutant, suggesting that aspartokinase normally affects Enzyme I(Ntr) in a manner that can be compensated for by increasing the copy number of the ptsP gene. ATP was not a phosphoryl donor to purified EI(Ntr), but it was phosphorylated by ATP in the presence of cell extracts. This phosphorylation was inhibited in the presence of aspartokinase. The findings demonstrate a role for a PTS protein in the transport of a non-sugar solute and suggest an unusual regulatory function for aspartokinase in regulating the phosphorylation state of EI(Ntr).  相似文献   

15.
E Boy  F Borne  J C Patte 《Biochimie》1979,61(10):1151-1160
We devised a procedure in order to isolate, in Escherichia coli, constitutive mutants for aspartokinase III synthesis, the first enzyme of the lysine regulon. It consists of the introduction of a limiting step in lysine biosynthesis, by the use of the partial suppression of a nonsense mutation. For the first time we could isolate many constitutive mutants. Their characteristics (cotransduction with the lysC structural gene; no effect on the synthesis of other enzymes of the regulon; cis-dominance) lead to classify these mutations as operator-type. The fact that no repressor mutations could be isolated is discussed.  相似文献   

16.
Tissue culture selection techniques were used to isolate a maize (Zea mays L.) variant D33, in which the aspartate family pathway was less sensitive to feedback inhibition by lysine. D33 was recovered by successively subculturing cultures originally derived from immature embryos on MS medium containing growth-inhibitory levels of lysine+threonine. The ability of D33 to grow vigorously on lysine+ threonine medium was retained after growth for 12 months on nonselection medium. New cultures initiated from shoot tissues of plants regenerated from D33 also were resistant to lysine+threonine inhibition. The Ki of aspartokinase for its feedback inhibitor, lysine, was about 9-fold higher in D33 than for the enzyme from unselected cultures. The free pools of lysine, threonine, isoleucine and methionine were increased 2–9-fold in D33 cultures. This was consistent with the observed change in feedback regulation of aspartokinase, the first enzyme common to the biosynthesis of these amino acids in the aspartate pathway. The accumulated evidence including the stability of resistance in the cultures, the resistance of cultures initiated from regenerated plants, the altered feedback regulation, and the increased free amino acids, indicates a mutational origin for these traits in line D33.Abbreviation LT lysine+threonine in equimolar concentration Paper No. 10880, Scientific Journal Series, Minnesota Agricultural Expertment Station  相似文献   

17.
The lysC gene encoding the lysine-sensitive aspartokinase III of Escherichia coli K12 has been cloned and its nucleotide sequence determined. Analysis of the deduced protein sequence (449 amino acid residues) reveals that the entire sequence of aspartokinase III is homologous to the N-terminal part of the two iso- and bifunctional aspartokinase-homoserine dehydrogenases I and II of E. coli. An evolutionary pathway leading to the three molecular species present in the same organism is proposed, and the possible involvement of a highly conserved region in subunit interactions is discussed.  相似文献   

18.
Summary Addition of L-lysine to cultures ofS. noursei enhanced the production of nourseothricin. The aspartokinase of the wild-type strain was under concerted feedback inhibition by lysine plus threonine but was stimulated by lysine alone. Threonine in the medium increased the synthesis of enzyme. 10% of the mutants resistant to AEC showed a higher specific production of the antibiotic.  相似文献   

19.
The control of aspartokinase and homoserine dehydrogenase activities was compared in aerobic and fermentative pseudomonads (genera Pseudomonas and Aeromonas), and in coliform bacteria representative of the principal genera of the Enterobacteriaceae. Isofunctional aspartokinases subject to independent end-product control occur in the Enterobacteriaceae and in Aeromonas. In Pseudomonas, there appears to be a single aspartokinase, subject to concerted feedback inhibition by lysine and threonine. Within this genus, the sensitivity of aspartokinase to the single allosteric inhibitors varies considerably: the aspartokinase of the acidovorans group is little affected by the single inhibitors, whereas that of the fluorescent group is severely inhibited by either amino acid at high concentration. In all bacteria examined, homoserine dehydrogenase activity is inhibited by threonine; inhibition is more severe in aerobic pseudomonads than in the other groups. In most of the bacteria examined, either nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate can serve as a cofactor for this enzyme, though the relative activity with the two pyridine nucleotides varies widely. Aerobic pseudomonads of the acidovorans group contain a homoserine dehydrogenase that is absolutely specific for NAD. The taxonomic implications of these findings are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号