首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Zhang Y  Yu S  Bao F 《Carbohydrate research》2008,343(14):2504-2508
Crystal structures of cyclomaltoheptaose (beta-cyclodextrin) complexes with p-aminobenzoic acid and o-aminobenzoic acid have been determined by single-crystal X-ray diffraction. The space group of the beta-cyclodextrin-p-aminobenzoic acid complex is P2(1) with a host:guest stoichiometry of 1:1, and that of the beta-cyclodextrin-o-aminobenzoic acid complex is P1 with a stoichiometry of 2:3. The different structures of the guest molecules lead to the different molecular packing structures of the two complexes. Intermolecular hydrogen-bond interactions are the main force that stabilize the supramolecular systems. In both crystals, there are water molecules located near the cavity rims and in interstices between molecules of beta-cyclodextrin participating in formation of intermolecular hydrogen bonds.  相似文献   

2.
The structure of the complex of beta-cyclodextrin (cyclomaltoheptaose) with beta-naphthyloxyacetic acid was studied in solid state by X-ray diffraction and in aqueous solution by 1H NMR spectroscopy. The complex crystallizes in the channel mode, space group C2, with a stoichiometry of 2:1; two beta-cyclodextrin molecules related by a twofold crystal axis form dimers, in the cavity of which one guest molecule is found on average. The above stoichiometry indicates one guest per beta-CD dimer statistically oriented over two positions or two guest molecules in pi-pi interactions in half of the beta-CD dimers and the rest of the beta-CD dimers empty. In addition, occupancy of 0.5 for the guest per every beta-CD dimer is in accord with the occupancy of the two disordered primary hydroxyls. These two hydroxyl groups, to which the carboxylic oxygen atoms of the guest are hydrogen bonded, point towards the interior of the beta-CD cavity. In aqueous solution, the 1H NMR spectroscopic study indicated that there is a mixture of complexes with host-guest stoichiometries both 1:1 and 2:1.  相似文献   

3.
The crystal structure of the 1:1 complex of beta-cyclodextrin (cyclomaltoheptaose) with trans-cinnamic acid was studied by X-ray diffraction. Two beta-cyclodextrin molecules related by a twofold crystal axis form dimers in the hydrophobic cavity of which, two guest molecules are entirely buried. The complex crystallizes in the monoclinic C2 space group with channel-type molecular packing. The oxygen atoms of the carboxylate group of the trans-cinnamic acid molecule form strong hydrogen bonds with two water molecules lying in the interdimeric space of the hydrophobic channel.  相似文献   

4.
Wang EJ  Yan Z  Cai J 《Carbohydrate research》2007,342(11):1530-1534
The crystal structure of the inclusion complex of cyclomaltoheptaose (beta-cyclodextrin) with 4-hydroxybiphenyl was determined by single-crystal X-ray diffraction at 150K. The complex contains two cyclomaltoheptaose molecules, two 4-hydroxybiphenyl molecules, one ethanol molecule and fifteen water molecules in the asymmetric unit, and could be formulated as [2(C(42)H(70)O(35)).2(C(12)H(10)O).(C(2)H(6)O).15(H(2)O)]. It crystallized in the triclinic space group P1 with unit cell constants a=15.257(3), b=15.564(3), c=15.592(2)A, alpha=104.485(15) degrees , beta=101.066(14) degrees , gamma=104.330(17) degrees , V=3,343.6(10)A(3). In the crystal lattice, two beta-cyclodextrins form a head-to-head dimer jointed through hydrogen bonds. Two 4-hydroxybiphenyls were included in the dimer cavity with their hydroxyl groups protruding from two primary hydroxyl sides of the cyclodextrin molecules. The guest 4-hydroxybiphenyl molecules linked into a chain via a combination of an O-Hcdots, three dots, centeredO hydrogen bond and face-to-face pi-pi stacking of the phenyl rings. The crystal structure supports the calculation results indicating that the 2:2 inclusion complex formed by beta-cyclodextrin and 4-hydroxybiphenyl is the energetically favored structure.  相似文献   

5.
The crystal and molecular structure of the 1:1 inclusion complex of beta-cyclodextrin (cyclomaltoheptaose) with squaric acid (3,4-dihydroxycyclobutene-1,2-dione) was determined by X-ray diffraction. The complex crystallizes in the monoclinic P2(1) space group and belongs to the monomeric cage-type, characterized by a herringbone-like packing motif. Co-crystallized water molecules are present on seven sites, of which six are fully occupied. The guest molecule is placed inside the beta-cyclodextrin cavity, perpendicular to the plane defined by the glycosidic O-4n atoms, and held in place by direct and water-mediated hydrogen bonds mainly involving symmetry-related beta-cyclodextrin molecules. The accommodation of the planar guest molecule into the beta-cyclodextrin cavity determines a significant distortion of the latter from the sevenfold symmetry.  相似文献   

6.
The inhibition by 1,10-phenanthroline of E. coli DNA polymerase I has recently been attributed to the formation in the assay mixtures of a unique and effective inhibitor, the 2:1 1,10-phenanthroline-cuprous ion complex (1). We have now found that this coordination complex is also an effective inhibitor of E. coli DNA dependent RNA polymerase, Micrococcus luteus DNA dependent DNA polymerase, and T-4 DNA dependent DNA polymerase. This conclusion is based either on the requirement of a thiol for 1,10-phenanthroline inhibition or on the reversal of 1,10-phenanthroline inhibition by the non-inhibitory cuprous ion specific chelating agent 2,9-dimethyl-1,10-phenanthroline. 2,2′,2″-Terpyridine is also very effective at relieving 1,10-phenanthroline inhibition. The reversal of 1,10-phenanthroline inhibition should be attempted before it is claimed that 1,10-phenanthroline inhibits any polymerases by coordinating a zinc ion at the active site.  相似文献   

7.
Aizawa Y  Sugiura Y  Ueno M  Mori Y  Imoto K  Makino K  Morii T 《Biochemistry》1999,38(13):4008-4017
The basic region peptide derived from the basic leucine zipper protein GCN4 bound specifically to the native GCN4 binding sequences in a dimeric form when the beta-cyclodextrin/adamantane dimerization domain was introduced at the C-terminus of the GCN4 basic region peptide. We describe here how the structure and stability of the dimerization domain affect the cooperative formation of the peptide dimer-DNA complex. The basic region peptides with five different guest molecules were synthesized, and their equilibrium dissociation constants with a peptide possessing beta-cyclodextrin were determined. These values, ranging from 1.3 to 15 microM, were used to estimate the stability of the complexes between the dimers with various guest/cyclodextrin dimerization domains and GCN4 target sequences. An efficient cooperative formation of the dimer complexes at the GCN4 binding sequence was observed when the adamantyl group was replaced with the norbornyl or noradamantyl group, but not with the cyclohexyl group that formed a beta-cyclodextrin complex with a stability that was 1 order of magnitude lower than that of the adamantyl group. Thus, cooperative formation of the stable dimer-DNA complex appeared to be effected by the stability of the dimerization domain. For the peptides that cooperatively formed dimer-DNA complexes, there was no linear correlation between the stability of the inclusion complex and that of the dimer-DNA complex. With the beta-cyclodextrin/adamantane dimerization domain, the basic region peptide dimer preferred to bind to a palindromic 5'-ATGACGTCAT-3' sequence over the sequence lacking the central G.C base pair and that with an additional G.C base pair in the middle. Changing the adamantyl group into a norbornyl group did not alter the preferential binding of the peptide dimers to the palindromic sequence, but slightly affected the selectivity of the dimer for other nonpalindromic sequences. The helical contents of the peptides in the DNA-bound dimer with the adamantyl group were decreased by reducing the stability of the dimer-DNA complex, which was possibly caused by deformation of the helical structure proximal to the dimerization domain.  相似文献   

8.
beta-Cyclodextrin dimers bearing an oxamido bis(2-benzoic) carboxyl linker (1) or its metal complexes (2 and 3) were newly synthesized, and their inclusion complexation behavior with a series of representative aliphatic oligopeptides, i.e., Leu-Gly, Gly-Leu, Gly-Pro, Glu-Glu, Gly-Gly, Gly-Gly-Gly, and Glu(Cys-Gly), was elucidated by means of UV/vis, circular dichroism, fluorescence, and 2D NMR spectroscopy in Tris-HCl buffer solution (pH 7.4) at 25 degrees C. The results obtained indicated that metallobridged bis(beta-cyclodextrin)s 2 or 3 could significantly enhance the original molecular binding abilities of parent bis(beta-cyclodextrin) 1 toward model substrates through the cooperative binding of two cyclodextrin moieties and the additional chelation effect supplied by the coordinated metal centers. It is interesting that hosts 2 and 3 displayed an entirely different fluorescence behavior upon complexation with guest oligopeptides. Among the guest peptides examined, 3 showed the highest complex formation constant of 68 200 M(-)(1) for Glu-Glu, up to 510-fold as compared with 1 (135 M(-)(1)), while 1 gave excellent molecular selectivity for Glu(Cys-Gly)/Glu-Glu pair, up to 51-fold. The molecular binding ability and selectivity were discussed from the viewpoints of the induced-fit and multiple recognition mechanism between host and guest.  相似文献   

9.
It was found that 6-p-toluidinylnaphthalene-2-sulfonate (TNS) showed pronounced fluorescence enhancement when it was added to alpha-, beta-, and gamma-cyclodextrin solutions. 2. The following results were obtained by quantitative study of the interactions of three kinds of cyclodextrins with TNS by following TNS fluorescence at pH5.3. and 25 degrees. i) alpha-Cyclodextrin forms a l : l complex with TNS. ii) beta- and gamma-Cyclodextrins form 1 : 1 and also 2 : 1 complexes; in the latter two cyclodextrin molecules bind to one TNS molecule. iii) The dissociation constants of cyclodextrin-TNS complexes were determined to be 54.9 mM for alpha-cyclodextrin, 0.65 mM for beta-cyclodextrin and 0.66 mM for gamma-cyclodextrin in the 1 : 1 complex, and the secondary dissociation constants in the 2 : 1 complex were 71.4 mM for beta-cyclodextrin in the 1 : 1 complex, and the secondary dissociation constants in the 2 : 1 complex were 71.4 mM for beta-cyclodextrin and 32.6 mM for gamma-cyclodextrin. iv)...  相似文献   

10.
The hydroxo-bridged dinuclear copper (II)/phen complex [Cu(2)(phen)(2)(OH)(2)(H(2)O)(2)][Cu(2)(phen)(2)(OH)(2)Cl(2)]Cl(2).6H(2)O (phen=1,10-phenanthroline) has been prepared and characterized by single crystal X-ray diffraction. The coordinated area of the complex shows two distorted [CuN(2)O(2)O(w)] and [CuN(2)O(2)Cl] square-pyramidal and one strictly planar configuration CuO(2)Cu involving two O atoms of hydroxo-bridged, Cu(2+) cations, N atoms of two phen ligands and disorder solvate water and chlorine anions. In the presence of H(2)O(2), the complex of mono(1,10-phenanthroline)copper exhibits higher activity as a nuclease than bis(1,10-phenanthroline)copper.  相似文献   

11.
We have studied the binding of two inhibitor molecules, imidazole and 1,10-phenanthroline, to liver alcohol dehydrogenase by crystallographic methods. X-ray data for the imidazole complex were collected to 0.29-nm resolution and for the 1,10-phenanthroline complex to 0.45-nm resolution. In both cases we found only one peak in the difference electron density maps close to the active zinc atom. The peak corresponding to 1,10-phenanthroline overlaps the site of the density of the zinc-bound water in the apoenzyme and the imidazole density partly overlaps this density. We can not discern any additional peaks close to the zinc atom which would correspond to new positions of bound water. We thus conclude that both these inhibitors bind to the catalytic zinc atom and that upon binding they displace the water molecule that is firmly bound to this zinc atom in the apoenzyme. We do not see any structural changes in the remaining part of the molecule.  相似文献   

12.
The 1:1 inclusion complex of beta-cyclodextrin and benzamide was prepared and characterized by single crystal X-ray diffraction, PXRD, TGA, and IR. This complex crystallizes in the monoclinic P2(1) space group with unit cell constants a=15.4244(16), b=10.1574(11), c=20.557(2)A, beta=110.074(2) degrees , V=3025.1(6)A(3). The guest molecule projects into the beta-cyclodextrin cavity from the primary hydroxyl side. The amide group protrudes from the primary hydroxyl side and forms hydrogen bonds with the adjacent beta-cyclodextrin molecule. There are six crystallized water molecules, which play crucial roles in crystal packing.  相似文献   

13.
The use of four cyclodextrins (three native and one beta-CD derivative) as NMR chiral solvating agents to resolve the enantiomers of (+/-)-cizolirtine, 1, and its chemical precursor (the carbinol, (+/-)-2), was investigated. The best enantiodiscrimination occurred when beta-cyclodextrin was used. ROESY experiments were performed to qualitatively ascertain the most probable host-guest structures in D(2)O solution, and the binding features found were explained in terms of spatial fitting of the guest molecules into the macrocyclic cavities. No geometrical differences were noted between the two diastereomeric complexes formed by a cyclodextrin and a racemic substrate, so the magnetic nonequivalence induced on guest protons by the enantioselective binding had to be explained as a result of subtle disparities in the orientation and/or the conformational state of the complexed enantiomers.  相似文献   

14.
In a systematic effort to identify and develop effective anticancer agents, four oxovanadium(IV) complexes with 1,10-phenanthroline (Phen) or 4,7-dimethyl-1,10-phenanthroline (Me2-Phen) as ligand(s) were synthesized and characterized. Among the four oxovanadium(IV) complexes synthesized, the crystal structure of the bis(phenanthroline)oxovanadium(IV) complex bis(1,10-phenanthroline)sulfatooxovanadium(IV) ([VO(SO4)(Phen)2], compound 1) has been determined. Compound 1 crystallized in the space group P2(1)/n with unit cell parameters a = 14.2125(17) A, b = 10.8628(13) A, c = 20.143(2) A, alpha = 90 degrees, beta = 102.569(2) degrees, gamma = 90 degrees, V = 3035.3(6) A3, and Z = 4. The refinement of compound 1 by full-matrix least-squares techniques gave an R factor of 0.0785 for 4356 independent reflections. The structure contains two enantiomorphous molecules, lambda and delta, which are related by an inversion center. Compound 1 exhibited 3.5-fold more potent cytotoxic activity against NALM-6 human leukemia cells than the mono(phenanthroline)oxovanadium(IV) complex (diaqua)(1,10-phenanthroline)sulfatooxovanadium(IV) ([VO(SO4)(Phen)(H2O)2], compound 2) (IC50 values: 0.97+/-0.10 microM versus 3.40+/-0.20 microM: P=0.0004). Methyl substitution in the phenanthroline ligand enhanced the anti-leukemic activity of the mono(phenanthroline)oxovanadium(IV) complex 4.4-fold (IC50 values: 0.78+/-0.10 microM, compound 4, versus 3.40+/-0.20 microM, compound 2; P=0.0003) and the anti-leukemic activity of the bis(phenanthroline)oxovanadium(IV) complex 5.7-fold (IC50 values: 0.17+/-0.02 microM, compound 3, versus 0.97+/-0.10 microM, compound 1; P=0.001). The leading oxovanadium compound, bis(4,7-dimethyl-1,10-phenanthroline)sulfatooxovanadium(IV) ([VO(SO4)(Me2-Phen)2], compound 3) triggered the production of reactive oxygen species (ROS) in human leukemia cells, caused G1-arrest and inhibited clonogenic growth at nanomolar concentrations.  相似文献   

15.
Molecular modelling and energy minimisation calculations that incorporate solvent effects have been used to investigate the complexation of delta and lambda-[Ru(1,10-phenanthroline]2+ to DNA. The most stable binding geometry for both enantiomers is one in which a phenanthroline chelate is positioned in the major groove. The chelate is partially inserted between neighbouring base pairs, but is not intercalated. For delta, though not for lambda, a geometry with two chelates in the major groove is only slightly less favourable. Minor groove binding is shown to be no more favourable than external electrostatic binding. The optimised geometries of the DNA/[Ru(1,10-phenanthroline]2+ complexes enable published linear dichroism spectra to be used to determine the percentage of each enantiomer in the two most favourable major groove sites. For delta 57 +/- 15% and for lambda 82 +/- 7% of bound molecules are in the partially inserted site.  相似文献   

16.
The crystal structure of the host-guest noncovalent complex of cyclomaltoheptaose (beta-cyclodextrin, betaCD) with the O-diglycosyl flavonoid neohesperidin dihydrochalcone [(3,5-dihydroxy-4-(3-hydroxy-4-methoxyhydrocinnamoyl)phenyl-2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside, NDC] has been determined from single-crystal X-ray diffraction data collected at low temperature (130 K), using synchrotron radiation. The crystal data are as follows: a =15.125(5), b =30.523(5), c =41.332(5) Angstroms, orthorhombic, space group C222(1). The structure contains 19 molecules of water, of which 11 appeared well positioned, whereas 9 are disordered over 23-positions. The betaCD-NDC complex is characterized by one aromatic part of NDC deeply inserted into the hydrophobic cavity of the betaCD through the primary OH rim, and it is present in the crystal as a dimer. The dimeric units, formed by head-to-head assemblies of CD molecules, each with its guest, are self-assembled in columns. The stability of the columns is provided by host-guest and guest-guest attractive interactions, thus showing a key role of the guest molecules in the crystal architecture. The guest conformation in the complex is different from that reported in the literature for uncomplexed NDC. The host-induced conformational changes on NDC provide the optimum geometry requirements for the assembly of the dimeric units.  相似文献   

17.
A binuclear complex [(phen)Cu(mu-bipp)Cu(phen)](ClO(4))(4), where phen=1,10-phenanthroline and bipp=2,9-bis(2-imidazo[4,5-f][1,10]phenanthroline)-1,10-phenanthroline, has been synthesized and its interaction with calf-thymus DNA in the buffer containing 5mM Tris and 50mM NaCl has been studied by means of electronic absorption titration, luminescence titration and viscometric measurements. The absorbance of the complex in the range of 320-400 nm, which is mainly based on bipp showed no obvious change upon addition of DNA, while the peak at 270 nm, which is determined by both phen and bipp decreased by up to 18%. The emission band of the complex around 360 nm decreased remarkably in presence of DNA. The emission quenching of this complex by [Fe(CN)(6)](4-) was depressed greatly when bound to DNA. The relative viscosity of DNA was increased by this complex more significantly than a bipp directed intercalating reagent. These results suggest that this complex binds to calf thymus DNA by intercalation of the two phenanthrolinecopper terminals. The apparent intrinsic binding constant of the complexes with DNA was 1.6 x 10(4)M(-1) as determined by UV-visible titration.  相似文献   

18.
The inclusion complexation behavior of chiral members of cinchona alkaloid with beta- and gamma-cyclodextrins (1 and 2) and 6,6(')-trimethylenediseleno-bridged bis(beta-cyclodextrin) (3) was assessed by means of fluorescence and 2D-NMR spectroscopy. The spectrofluorometric titrations have been performed in aqueous buffer solution (pH 7.20) at 25.0 degrees C to determine the stability constants of the inclusion complexation of 1-3 with guest molecules (i.e., cinchonine, cinchonidine, quinine, and quinidine) in order to quantitatively investigate the molecular selective binding ability. The stability constants of the resulting complexes of 2 with guest molecules are larger than that of 1. As a result of cooperative binding, the stability constants of inclusion complexation of dimeric beta-cyclodextrin 3 with cinchonidine and cinchonine are higher than that of parent 1 by factor of 4.5 and 2.4, respectively. These results are discussed from the viewpoint of the size-fit and geometric complementary relationship between the host and guest.  相似文献   

19.
Liu Y  Li L  Zhang HY  Liang P  Wang H 《Carbohydrate research》2003,338(17):1751-1757
A novel bridged bis(beta-cyclodextrin) with a pyromellitic acid 2,5-diamide tether (2) has been synthesized by reaction of 6(I)-(2-aminoethyleneamino)-6-deoxycyclomaltoheptaose [mono 6-(2-aminoethyleneamino)-6-deoxy-beta-cyclodextrin] with 1,2,4,5-benzenetetracarboxylic dianhydride. Its inclusion complexation behavior with some representative dyestuffs, i.e., Acridine Red (AR), Rhodamine B (RhB), Neutral Red (NR), Brilliant Green (BG), was studied by using UV-absorption, fluorescence, and 2D NMR spectroscopy. Fluorescence titrations have been performed at 25 degrees C in pH 7.2 buffer solution to calculate the binding constants of resulting complexes. These results obtained indicated that bis(beta-cyclodextrin) 2 exhibits the strongly enhanced binding ability with all dye molecules examined compared with natural cyclodextrins. The binding modes of 2 with dye molecules have been deduced by 2D NMR experiments to establish the correlations between molecular conformations and binding constants of inclusion complexation. It is found that the improved binding ability and molecular selectivity of 2 could be attributed to double-cavity cooperative inclusion interaction and the size/shape matching between the host and guest.  相似文献   

20.
Two new polypyridyl ligands containing substituent Br at different positions in the phenyl ring, PBIP [PBIP=2-(4-bromophenyl)imidazo[4,5-f]1,10-phenanthroline], OBIP [OBIP=2-(2-bromophenyl)imidazo[4,5-f]1,10-phenanthroline] and their Ru(II) complexes, [Ru(phen)2PBIP]2+ 1, [Ru(phen)2OBIP]2+ 2 (phen=1,10-phenanthroline), have been synthesized and characterized. The binding strength of the two complexes to calf thymus DNA (CT DNA) was investigated with spectrophotometric methods, viscosity measurements, as well as equilibrium dialysis and circular dichroism spectroscopy. The theoretical calculations for these two complexes were also carried out applying the density functional theory (DFT) method. The experimental results show that the Br group substituting H at different positions of the phenyl ring in the intercalated ligand has significant effects on the spectral properties and the DNA-binding behaviors of Ru(II) complexes. Both the complexes can bind to CT DNA in intercalative mode and interact with CT DNA enantioselectively. Moreover, complex 1 can bind to CT DNA more strongly than complex 2, and complex 2 can become a much better candidate as an enantioselective binder to CT DNA than complex 1. The theoretical calculations show that both intercalative ligands, PBIP and OBIP, in these two complexes are essentially planar, and the obtained electronic structures of the complexes can be used to explain reasonably some of their experimental regularities or trends. Such experimental and theoretical information will be useful in design of novel probes of nucleic acid structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号