首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The PGal4 transposon inserted upstream of the pan-neural gene prospero (pros) causes several neural and behavioral defects in the Voila(1) strain. The precise excision of the transposon simultaneously rescued all these defects whereas its unprecise excision created new pros(V) alleles, including the null allele pros(V17). Here, we describe the relationship between the genetic structure of pros locus, larval locomotion, and larval gustatory response. These two behaviors showed varying degrees of variation depending upon the pros allele. We also found a good relation between behavioral alteration, the level of Pros protein in the embryo, and the degree of disorganization in the larval neuromuscular junction. These data suggest that the complete development of the nervous system requires a full complement of Pros, and that a gradual decrease in the levels of this protein can proportionally alter the development and the function of the nervous system.  相似文献   

2.
3.
The nonA gene of Drosophila melanogaster is important for normal vision, courtship song, and viability and lies approximately 350 bp downstream of the dGpi1 gene. Full rescue of nonA mutant phenotypes can be achieved by transformation with a genomic clone that carries approximately 2 kb of 5' regulatory material and that encodes most of the coding sequence of dGpi1. We have analyzed this 5' region by making a series of deleted fragments, fusing them to yeast GAL4 sequences, and driving UAS-nonA expression in a mutant nonA background. Regions that both silence and enhance developmental tissue-specific expression of nonA and that are necessary for generating optomotor visual responses are identified. Some of these overlap the dGpi1 sequences, revealing cis-regulation by neighboring gene sequences. The largest 5' fragment was unable to rescue the normal electroretinogram (ERG) consistently, and no rescue at all was observed for the courtship song phenotype. We suggest that sequences within the nonA introns that were missing in the UAS-nonA cDNA may carry enhancer elements for these two phenotypes. Finally, we speculate on the striking observation that some of the cis-regulatory regions of nonA appear to be embedded within the coding regions of dGpi1.  相似文献   

4.
A genetically defined element of the fruitless (fru) locus in Drosophila melanogaster regulates the development of a male-specific muscle spanning the fifth abdominal segment in adult males, the 'muscle of Lawrence' (MOL). The region is defined by two cytological deletions, each with a breakpoint that co-maps with previously described mutant courtship phenotypes at cytogenetic interval 91B on the third chromosome. Flies that carry both of these deletions are viable, and males express abnormalities of courtship similar to those caused by the fru inversion breakpoint at 91B. In addition, these double-deletion males show the complete absence of the MOL, suggesting that they have little or no gene expression of a postulated MOL determinant; the musculature in the fifth abdominal segment of these mutants to indistinguishable from that of a normal female. Other mutant combinations that produce fruitless courtship phenotypes--including deletion and inversion breakpoints, and a marked transposon inserted at 91B--produce intermediate forms of the MOL. A new genetic variant, induced by imprecise excision of the marked transposon, is homozygous lethal and disrupts fru functions related to courtship and the MOL. The MOL is shown to be dispensable for fertility and is therefore not the causative factor of fru-induced behavioral sterility. These genetic variants and their phenotypic results are discussed with regard to a model for the organization of the fru locus.  相似文献   

5.
Crosses between Drosophila melanogaster and D. simulans normally result in progeny that are either inviable or sterile. Recent discovery of strains that rescue these inviability and sterility phenotypes has made it possible to study the developmental basis of reproductive isolation between these two species in greater detail. By producing both rescued and unrescued hybrids and examining the protein product staining patterns of genes known to be involved in early germline development and gametogenesis, we have found that in crosses between D. simulans and D. melanogaster, hybrid female sterility results from the improper control of primordial germline proliferation, germline stem cell maintenance, and cystoblast formation and differentiation during early oogenesis. Rescued hybrid females are fertile, yet they generally have lower amounts of adult germline from the outset and show a premature degeneration of adult germline cells with age. In addition, older rescued hybrid females also exhibit mutant egg phenotypes associated with defects in dorso-ventral patterning which may result from the improper partitioning of cytoplasmic factors during early oogenesis that could stem from the early defect. Although a variety of germline and oogenic defects are described for the hybrid females, all of them can potentially result from the same underlying primary defect. Hybrid males from these same crosses, on the other hand, have no detectable germline in adult reproductive tissues, even when hybrid sterility rescue strains are used, indicating that male sterility and female sterility stem from distinctly different developmental defects.  相似文献   

6.
The PGal4 transposon inserted upstream of the pan‐neural gene prospero (pros) causes several neural and behavioral defects in the Voila1 strain. The precise excision of the transposon simultaneously rescued all these defects whereas its unprecise excision created new prosV alleles, including the null allele prosV17. Here, we describe the relationship between the genetic structure of pros locus, larval locomotion, and larval gustatory response. These two behaviors showed varying degrees of variation depending upon the pros allele. We also found a good relation between behavioral alteration, the level of Pros protein in the embryo, and the degree of disorganization in the larval neuromuscular junction. These data suggest that the complete development of the nervous system requires a full complement of Pros, and that a gradual decrease in the levels of this protein can proportionally alter the development and the function of the nervous system. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 1–13, 2003  相似文献   

7.
8.
Autonomous mobility of different copies of the Fot1 element was determined for several strains of the fungal plant pathogen Fusarium oxysporum to develop a transposon tagging system. Two Fot1 copies inserted into the third intron of the nitrate reductase structural gene (niaD) were separately introduced into two genetic backgrounds devoid of endogenous Fot1 elements. Mobility of these copies was observed through a phenotypic assay for excision based on the restoration of nitrate reductase activity. Inactivation of the Fot1 transposase open reading frame (frameshift, deletion, or disruption) prevented excision in strains free of Fot1 elements. Molecular analysis of the Nia+ revertant strains showed that the Fot1 element reintegrated frequently into new genomic sites after excision and that it can transpose from the introduced niaD gene into a different chromosome. Sequence analysis of several Fot1 excision sites revealed the so-called footprint left by this transposable element. Three reinserted Fot1 elements were cloned and the DNA sequences flanking the transposon were determined using inverse polymerase chain reaction. In all cases, the transposon was inserted into a TA dinucleotide and created the characteristic TA target site duplication. The availability of autonomous Fot1 copies will now permit the development of an efficient two-component transposon tagging system comprising a trans-activator element supplying transposase and a cis-responsive marked element.  相似文献   

9.
The fru4 allele of the sex determination gene fruitless is induced by insertion of a P[lacZ,ry+] enhancer trap element. This insert also acts to disrupt expression of the fru P1 promoter derived male-specific proteins, consequently impairing male courtship behavior. fru4 maps less than 2 kb upstream of the fru P3 promoter, whose function is essential for viability. We replaced this insert with a GAL4 element, P[GAL4,w+], recovering two lines with insertions in opposite orientations at the locus, one of which demonstrated fru-specific mutant phenotypes. Reporter expression of these lines recapitulated that of P3- and P4-derived proteins which, when correlated with a developmental and tissue specific survey of fru promoters' activities, uncovered a previously unsuspected complexity of fru regulation. These novel fru alleles provide the tools for manipulation of fru-expressing cells, allowing the consequent effects to be related back to specific fru functions and the regulatory units controlling these activities.  相似文献   

10.
The fruitfly Drosophila melanogaster is one of the most appropriate model organisms to study the genetics of behaviour. Here, we focus on prospero (pros), a key gene for the development of the nervous system which specifies multiple aspects from the early formation of the embryonic central nervous system to the formation of larval and adult sensory organs. We studied the effects on locomotion, courtship and mating behaviour of three mild pros mutations. These newly isolated pros mutations were induced after the incomplete excision of a transposable genomic element that, before excision, caused a lethal phenotype during larval development. Strikingly, these mutant strains, but not the strains with a clean excision, produced a high frequency of heterozygous flies, after more than 50 generations in the lab. We investigated the factors that could decrease the fitness of homozygotes relatively to heterozygous pros mutant flies. Flies of both genotypes had slightly different levels of fertility. More strikingly, homozygous mutant males had a lower sexual activity than heterozygous males and failed to mate in a competitive situation. No similar effect was detected in mutant females. These findings suggest that mild mutations in pros did not alter vital functions during development but drastically changed adult male behaviour and reproductive fitness.  相似文献   

11.
D. A. Gailey  J. C. Hall 《Genetics》1989,121(4):773-785
The fruitless (fru) courtship mutant was dissected into three defects of male reproductive behavior, which were separable as to their genetic etiologies by application of existing and newly induced chromosomal aberrations. fru itself is a small inversion [In(3R) 90C; 91B] on genetic and cytological criteria. Uncovering the fru distal breakpoint with deletions usually led to males with two of the fru courtship abnormalities: no copulation attempts with females (hence, behavioral sterility) and vigorous courtship among males, including the formation of "courtship chains." However, certain genetic changes involving region 91B resulted in males who formed courtship chains but who mated with females. Uncovering the fru proximal breakpoint led to males that passively elicit inappropriately high levels of courtship. This elicitation property was separable genetically from the sterility and chain formation phenotypes and provisionally mapped to the interval 89F-90F, which includes the fru proximal breakpoint. Behavioral sterility and chaining were also observed in males expressing certain abnormal genotypes, independent of the fru inversion. These included combinations of deficiencies, each with a breakpoint in 91B, and a transposon inserted in 91B.  相似文献   

12.
Improved nitrogen-fixing inoculum strains for leguminous crops must be able to effectively compete with indigenous strains for nodulation, enhance legume productivity compared to the productivity obtained with indigenous strains, and maintain stable expression of any added genes in the absence of selection pressure. We constructed a transposable element containing the tfx region for expression of increased nodulation competitiveness and the par locus for plasmid stability. The transposon was inserted into tetA of pHU52, a broad-host-range plasmid conferring the H2 uptake phenotype. The resulting plasmid, pHUTFXPAR, conferred the plasmid stability, trifolitoxin production, and H2 uptake phenotypes in the broad-host-range organism Sinorhizobium sp. strain ANU280. The broad applications of a transposon conferring plasmid stability are discussed.  相似文献   

13.
14.
Phenotypic rescue experiments have been commonly used in zebrafish since it is convenient to study the causality of mutant phenotypes just by injecting mRNA into embryos. However, this strategy is only effective for phenotypes at early embryonic stages due to mRNA instability. For later developmental stages, DNA constructs are used to express exogenous genes, while it is usually ineffective owing to the problem of mosaicism. This study attempted to solve the problem by using Tol2‐mediated transgenesis. As a model case, we used vlad tepes (vlt), a zebrafish gata1 mutant, whose phenotypes have never been able to be rescued at later stages by transient rescue experiments. Blood cell‐specific transgenic expression of gata1 was driven by its own promoter/enhancer elements. The co‐injection of a Tol2‐donor plasmid containing gata1 cDNA and transposase mRNA efficiently rescued the bloodless phenotypes of vlt even in day 12 larvae when definitive erythropoiesis took place with primitive erythropoiesis. This Tol2‐mediated rescue is therefore considered to be a quick and easy method for analyzing the mutant phenotypes in zebrafish.  相似文献   

15.
16.
To understand the roles of secretory peptides in developmental signaling, we have studied Drosophila mutant for the gene peptidylglycine alpha-hydroxylating monooxygenase (PHM). PHM is the rate-limiting enzyme for C-terminal alpha-amidation, a specific and necessary modification of secretory peptides. In insects, more than 90% of known or predicted neuropeptides are amidated. PHM mutants lack PHM protein and enzyme activity; most null animals die as late embryos with few morphological defects. Natural and synthetic PHM hypomorphs revealed phenotypes that resembled those of animals with mutations in genes of the ecdysone-inducible regulatory circuit. Animals bearing a strong hypomorphic allele contain no detectable PHM enzymatic activity or protein; approximately 50% hatch and initially display normal behavior, then die as young larvae, often while attempting to molt. PHM mutants were rescued with daily induction of a PHM transgene and complete rescue was seen with induction limited to the first 4 days after egg-laying. The rescued mutant adults produced progeny which survived to various stages up through metamorphosis (synthetic hypomorphs) and displayed prepupal and pupal phenotypes resembling those of ecdysone-response gene mutations. Examination of neuropeptide biosynthesis in PHM mutants revealed specific disruptions: Amidated peptides were largely absent in strong hypomorphs, but peptide precursors, a nonamidated neuropeptide, nonpeptide transmitters, and other peptide biosynthetic enzymes were readily detected. Mutant adults that were produced by a minimal rescue schedule had lowered PHM enzyme levels and reproducibly altered patterns of amidated neuropeptides in the CNS. These deficits were partially reversed within 24 h by a single PHM induction in the adult stage. These genetic results support the hypothesis that secretory peptide signaling is critical for transitions between developmental stages, without strongly affecting morphogenetic events within a stage. Further, they show that PHM is required for peptide alpha-amidating activity throughout the life of Drosophila. Finally, they define novel methods to study neural and endocrine peptide biosynthesis and functions in vivo.  相似文献   

17.
Identifying and eliminating endogenous bacterial enzyme systems can significantly increase the efficiency of propagation of eukaryotic DNA in Escherichia coli. We have recently examined one such system which inhibits the propagation of lambda DNA rescued from transgenic mouse tissues. This rescue procedure utilizes lambda packaging extracts for excision of the lambda DNA from the transgenic mouse genome, as well as E. coli cells for subsequent infection and propagation. This assay, in combination with conjugal mating, P1 transduction, and gene cloning, was used to identify and characterize the E. coli locus responsible for this difference in efficiency. It was determined that the E. coli K-12 mcrB gene when expressed on a high-copy-number plasmid can cause a decrease in rescue efficiency despite the presence of the mcrB1 mutation, which inactivates the classic McrB restriction activity. (This mutation was verified by sequence analysis.) However, this McrB1 activity is not observed when the cloned mcrB1 gene is inserted into the E. coli genome at one copy per chromosome. A second locus was identified which causes a decrease in rescue efficiency both when expressed on a high-copy-number plasmid and when inserted into the genome. The data presented here suggest that this locus is mrr and that the mrr gene product can recognize and restrict cytosine-methylated sequences. Removal of this DNA region including the mrr gene from E. coli K-12 strains allows high rescue efficiencies equal to those of E. coli C strains. These modified E. coli K-12 plating strains and lambda packaging extract strains should also allow a significant improvement in the efficiency and representation of eukaryotic genomic and cDNA libraries.  相似文献   

18.
Response to the insect hormone ecdysone is mediated by a nuclear receptor complex containing Ultraspiracle (USP) and the Ecdysone Receptor (EcR). Among other phenotypes, loss of functional USP in Drosophila eye development results in an accelerated morphogenetic furrow, although loss of ecdysone arrests the furrow. We have shown that USP both represses and activates a gene affecting furrow movement, the ecdysone-responsive Z1 isoform of Broad-Complex, and we report additional usp mutant phenotypes. Using targeted replacement of USP to rescue usp mutant clones in the eye, we have mapped various USP functions and tested whether the USP nuclear receptor has an activating as well as a repressive effect on furrow movement. Furrow movement and related phenotypes are rescued by the presence of USP in a limited domain near the furrow while other phenotypes are rescued by USP expression posterior to the furrow. Our data indicate roles for USP activity at multiple developmental stages and help explain why loss of functional USP leads to furrow advancement while loss of ecdysone stops furrow movement.  相似文献   

19.
Glycoengineered yeast cells, which express human-compatible glycan structures, are particularly attractive host cells to produce therapeutic glycoproteins. Disruption of OCH1 gene, which encodes an α-1,6-mannosyltransferase required for mannan-type N-glycan formation, is essential for the elimination of yeast-specific N-glycan structures. However, the gene disruption causes cell wall defects leading to growth defects. Here, we tried to identify factors to rescue the growth defects of och1Δ cells by in vivo mutagenesis using piggyBac (PB)-based transposon. We isolated a mutant strain, named 121, which could grow faster than parental och1Δ cells. The PB element was introduced into the promoter region of BEM4 gene and upregulated the BEM4 expression. Overexpression of BEM4 suppressed growth defects in och1Δ cells. The slow grow phenotypes were partially rescued by expression of Rho1p, whose function is regulated by Bem4p. Our results indicate that BEM4 would be useful to produce therapeutic proteins in glycoengineered yeast without the growth defects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号