首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Protein arginine methylation is a common post-translational modification in eukaryotes that is catalyzed by a family of the protein arginine methyltransferases (PRMTs). PRMTs are classified into three types: type I and type II add asymmetrically and symmetrically dimethyl groups to arginine, respectively, while type III adds solely monomethyl group to arginine. However, although the enzymatic activity of type I and type II PRMTs have been reported, the substrate specificity and the methylation activity of type III PRMTs still remains unknown. Here, we report the characterization of Caenorhabditis elegans PRMT-2 and PRMT-3, both of which are highly homologous to human PRMT7. We find that these two PRMTs can bind to S-adenosyl methionine (SAM), but only PRMT-3 has methyltransferase activity for histone H2A depending on its SAM-binding domain. Importantly, thin-layer chromatographic analysis demonstrates that PRMT-3 catalyzes the formation of monomethylated, but not dimethylated arginine. Our study thus identifies the first type III PRMT in C. elegans and provides a means to elucidate the physiological significance of arginine monomethylation in multicellular organisms.  相似文献   

3.
We have identified a protein, FLJ12673 or FBXO11, that contains domains characteristically present in protein arginine methyltransferases (PRMTs). Immuno-purified protein expressed from one of the four splice variants in HeLa cells and in Escherichia coli exhibited methyltransferase activity. Monomethylarginine, symmetric, and asymmetric dimethylarginine (SDMA, ADMA) were formed on arginine residues. Accordingly, we have designated the protein PRMT9. PRMT9 is the third member of the PRMT family that forms SDMA modifications in proteins. Structurally, this protein is distinct from all other known PRMTs implying that convergent evolution allowed this protein to develop the ability to methylate arginine residues and evolved elements conserved in PRMTs to accomplish this.  相似文献   

4.
Protein arginine methylation is a common post-translational modification in eukaryotes that is catalyzed by a family of the protein arginine methyltransferases (PRMTs). PRMTs are classified into three types: type I and type II add asymmetrically and symmetrically dimethyl groups to arginine, respectively, while type III adds solely monomethyl group to arginine. However, although the enzymatic activity of type I and type II PRMTs have been reported, the substrate specificity and the methylation activity of type III PRMTs still remains unknown. Here, we report the characterization of Caenorhabditis elegans PRMT-2 and PRMT-3, both of which are highly homologous to human PRMT7. We find that these two PRMTs can bind to S-adenosyl methionine (SAM), but only PRMT-3 has methyltransferase activity for histone H2A depending on its SAM-binding domain. Importantly, thin-layer chromatographic analysis demonstrates that PRMT-3 catalyzes the formation of monomethylated, but not dimethylated arginine. Our study thus identifies the first type III PRMT in C. elegans and provides a means to elucidate the physiological significance of arginine monomethylation in multicellular organisms.  相似文献   

5.
Lim Y  Lee E  Lee J  Oh S  Kim S 《Journal of biochemistry》2008,144(4):523-529
Protein arginine methylation is one of the post-translational modifications which yield monomethyl and dimethyl (asymmetric or symmetric) arginines in proteins. In the present study, we investigated the status of protein arginine methylation during human diploid fibroblast senescence. When the expression of protein arginine methyltransferases (PRMTs), namely PRMT1, PRMT4, PRMT5 and PRMT6 was examined, a significant reduction was found in replicatively senescent cells as well as their catalytic activities against histone mixtures compared with the young cells. Furthermore, when the endogenous level of arginine-dimethylated proteins was determined, asymmetric modification (the product of type I PRMTs including PRMT1, PRMT4 and PRMT6) was markedly down-regulated. In contrast, both up- and down-regulations of symmetrically arginine-methylated proteins (the product of type II PRMTs including PRMT5) during replicative senescence were found. Furthermore, when young fibroblasts were induced to premature senescence by sub-cytotoxic H2O2 treatment, results similar to replicative senescence were obtained. Finally, we found that SV40-mediated immortalized WI-38 and HeLa cell lines maintained a higher level of asymmetrically modified proteins as well as type I PRMTs than young fibroblasts. These results suggest that the maintenance of asymmetric modification in the expressed target proteins of type I PRMTs might be critical for cellular proliferation.  相似文献   

6.
蛋白质精氨酸甲基转移酶(protein arginine methyltransferases,PRMTs)是真核生物中常见的一种酶,可催化组蛋白和非组蛋白底物中的精氨酸残基发生甲基化.在人类的基因组中,PRMTs由9个基因编码.作为最主要的Ⅱ型精氨酸甲基转移酶,PRMT5是PRMT家族成员之一,参与了包括信号转导、转...  相似文献   

7.
Obianyo O  Osborne TC  Thompson PR 《Biochemistry》2008,47(39):10420-10427
Protein arginine methyltransferases (PRMTs) are SAM-dependent enzymes that catalyze the mono- and dimethylation of peptidyl arginine residues. Although all PRMTs produce monomethyl arginine (MMA), type 1 PRMTs go on to form asymmetrically dimethylated arginine (ADMA), while type 2 enzymes form symmetrically dimethylated arginine (SDMA). PRMT1 is the major type 1 PRMT in vivo, thus it is the primary producer of the competitive NOS inhibitor, ADMA. Hence, potent inhibitors, which are highly selective for this particular isozyme, could serve as excellent therapeutics for heart disease. However, the design of such inhibitors is impeded by a lack of information regarding this enzyme's kinetic and catalytic mechanisms. Herein we report an analysis of the kinetic mechanism of human PRMT1 using both an unmethylated and a monomethylated substrate peptide based on the N-terminus of histone H4. The results of initial velocity and product and dead-end inhibition experiments indicate that PRMT1 utilizes a rapid equilibrium random mechanism with the formation of dead-end EAP and EBQ complexes. This mechanism is gratifyingly consistent with previous results demonstrating that PRMT1 catalyzes substrate dimethylation in a partially processive manner.  相似文献   

8.
Type I protein arginine methyltransferases catalyze the formation of asymmetric omega-N(G),N(G)-dimethylarginine residues by transferring methyl groups from S-adenosyl-L-methionine to guanidino groups of arginine residues in a variety of eucaryotic proteins. The predominant type I enzyme activity is found in mammalian cells as a high molecular weight complex (300-400 kDa). In a previous study, this protein arginine methyltransferase activity was identified as an additional activity of 10-formyltetrahydrofolate dehydrogenase (FDH) protein. However, immunodepletion of FDH activity in RAT1 cells and in murine tissue extracts with antibody to FDH does not diminish type I methyltransferase activity toward the methyl-accepting substrates glutathione S-transferase fibrillarin glycine arginine domain fusion protein or heterogeneous nuclear ribonucleoprotein A1. Similarly, immunodepletion with anti-FDH antibody does not remove the endogenous methylating activity for hypomethylated proteins present in extracts from adenosine dialdehyde-treated RAT1 cells. In contrast, anti-PRMT1 antibody can remove PRMT1 activity from RAT1 extracts, murine tissue extracts, and purified rat liver FDH preparations. Tissue extracts from FDH(+/+), FDH(+/-), and FDH(-/-) mice have similar protein arginine methyltransferase activities but high, intermediate, and undetectable FDH activities, respectively. Recombinant glutathione S-transferase-PRMT1, but not purified FDH, can be cross-linked to the methyl-donor substrate S-adenosyl-L-methionine. We conclude that PRMT1 contributes the major type I protein arginine methyltransferase enzyme activity present in mammalian cells and tissues.  相似文献   

9.
10.
Human protein arginine methyltransferase (PRMT) 9 symmetrically dimethylates arginine residues on splicing factor SF3B2 (SAP145) and has been functionally linked to the regulation of alternative splicing of pre-mRNA. Site-directed mutagenesis studies on this enzyme and its substrate had revealed essential unique residues in the double E loop and the importance of the C-terminal duplicated methyltransferase domain. In contrast to what had been observed with other PRMTs and their physiological substrates, a peptide containing the methylatable Arg-508 of SF3B2 was not recognized by PRMT9 in vitro. Although amino acid substitutions of residues surrounding Arg-508 had no great effect on PRMT9 recognition of SF3B2, moving the arginine residue within this sequence abolished methylation. PRMT9 and PRMT5 are the only known mammalian enzymes capable of forming symmetric dimethylarginine (SDMA) residues as type II PRMTs. We demonstrate here that the specificity of these enzymes for their substrates is distinct and not redundant. The loss of PRMT5 activity in mouse embryo fibroblasts results in almost complete loss of SDMA, suggesting that PRMT5 is the primary SDMA-forming enzyme in these cells. PRMT9, with its duplicated methyltransferase domain and conserved sequence in the double E loop, appears to have a unique structure and specificity among PRMTs for methylating SF3B2 and potentially other polypeptides.  相似文献   

11.
12.
13.
蛋白质精氨酸甲基化是重要的细胞翻译后修饰方式,参与众多生命过程. 精氨酸的甲基化修饰与糖代谢相关疾病如糖尿病、糖耐量异常密切相关. 蛋白质精氨酸甲基化转移酶(protein arginine methyltransferases, PRMTs)活性下降及表达异常是糖代谢疾病的重要发病基础. 目前研究表明,PRMT1、PRMT4、PRMT5在糖代谢调节中均扮演重要角色,与糖代谢关键酶如磷酸烯醇式丙酮酸羧基激酶、葡萄糖6磷酸酶,胰岛素受体 胰岛素受体配体1 磷脂酰肌醇3激酶通道及其它通路密切相关. 给予甲基化抑制剂MTA及siRNA干扰甲基化则可引发糖代谢紊乱,进而诱发糖代谢疾病. 糖尿病药物罗格列酮、氨基胍与蛋白质精氨酸甲基化也有一定联系. 深入研究蛋白质精氨酸甲基化与糖代谢调节之间的联系及机制,可为防治糖代谢疾病及相关并发症提供更多的理论依据.  相似文献   

14.
The protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the mono- and dimethylation of arginine residues in a variety of proteins. Although these enzymes play important roles in a variety of cellular processes, aberrant PRMT activity is associated with several disease states, including heart disease and cancer. In an effort to guide the development of inhibitors targeting individual PRMTs, we initiated studies to characterize the molecular mechanisms of PRMT catalysis. Herein, we report studies on the kinetic mechanism of PRMT6. Initial velocity, product inhibition, and dead-end analog inhibition studies with the AcH4-21 and R1 peptides, as well as their monomethylated versions, indicate, in contrast to a previous report, that PRMT6 utilizes a rapid equilibrium random mechanism with dead-end EAP and EBQ complexes.  相似文献   

15.
16.
17.

Despite intense research efforts, our pharmaceutical repertoire against high-grade brain tumours has not been able to increase patient survival for a decade and life expectancy remains at less than 16 months after diagnosis, on average. Inhibitors of protein arginine methyltransferases (PRMTs) have been developed and investigated over the past 15 years and have now entered oncology clinical trials, including for brain tumours. This review collates recent advances in the understanding of the role of PRMTs and arginine methylation in brain tumours. We provide an up-to-date literature review on the mechanisms for PRMT regulation. These include endogenous modulators such as alternative splicing, miRNA, post-translational modifications and PRMT–protein interactions, and synthetic inhibitors. We discuss the relevance of PRMTs in brain tumours with a particular focus on PRMT1, -2, -5 and -8. Finally, we include a future perspective where we discuss possible routes for further research on arginine methylation and on the use of PRMT inhibitors in the context of brain tumours.

  相似文献   

18.
Elevated levels of asymmetric dimethylarginine (ADMA) correlate with risk factors for cardiovascular disease. ADMA is generated by the catabolism of proteins methylated on arginine residues by protein arginine methyltransferases (PRMTs) and is degraded by dimethylarginine dimethylaminohydrolase. Reports have shown that dimethylarginine dimethylaminohydrolase activity is down-regulated and PRMT1 protein expression is up-regulated under oxidative stress conditions, leading many to conclude that ADMA accumulation occurs via increased synthesis by PRMTs and decreased degradation. However, we now report that the methyltransferase activity of PRMT1, the major PRMT isoform in humans, is impaired under oxidative conditions. Oxidized PRMT1 displays decreased activity, which can be rescued by reduction. This oxidation event involves one or more cysteine residues that become oxidized to sulfenic acid (-SOH). We demonstrate a hydrogen peroxide concentration-dependent inhibition of PRMT1 activity that is readily reversed under physiological H2O2 concentrations. Our results challenge the unilateral view that increased PRMT1 expression necessarily results in increased ADMA synthesis and demonstrate that enzymatic activity can be regulated in a redox-sensitive manner.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号