首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) catalyzes the first step in the biosynthesis of amino sugars by transferring the amino group from l-glutamine to the acceptor substrate, fructose 6-phosphate, generating the products glucosamine 6-phosphate and glutamic acid. We describe a method for the synthesis and purification of the substrate, fructose 6-phosphate, and methods for a radiometric assay of human GFAT1 that can be performed in either of two formats: a small disposable-column format and a high-throughput 96-well-plate format. The method performed in the column format can detect 1 pmol of glucosamine 6-phosphate, much less than that required by previously published assays that measure GlcN 6-phosphate. The column assay demonstrates a broad linear range with low variability. In both formats, the assay is linear with time and enzyme concentration and is highly reproducible. This method greatly improves the sensitivity and speed with which GFAT1 activity can be measured and facilitates direct kinetic measurement of the transferase activity.  相似文献   

3.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) has recently been shown to be an insulin-regulated enzyme that plays a key role in the induction of insulin resistance in cultured cells. As a first step in understanding the molecular regulation of this enzyme the human form of this enzyme has been cloned and the functional protein has been expressed in Escherichia coli. A 3.1-kilobase cDNA was isolated which contains the complete coding region of 681 amino acids. Expression of the cDNA in E. coli produced a protein of approximately 77 kDa and increased GFAT activity 4.5-fold over endogenous bacterial levels. Recombinant GFAT activity was inhibited 51% by UDP-GlcNAc whereas bacterial GFAT activity was insensitive to inhibition by UDP-GlcNAc. On the basis of these results we conclude that: 1) functional human GFAT protein was expressed, and 2) the cloned human cDNA encodes both the catalytic and regulatory domains of GFAT since the recombinant GFAT was sensitive to UDP-GlcNAc. Overall, the development of cloned GFAT molecular probes should provide new insights into the development of insulin resistance by allowing quantitation of GFAT mRNA levels in pathophysiological states such as non-insulin-dependent diabetes mellitus and obesity.  相似文献   

4.
5.
For measuring glutamine:fructose-6-phosphate amidotransferase (GFAT) activity in cultured cells, an enzyme method -GDH method- was set up with high-efficiency, high-sensitivity and simple operation by determining the formed glutamate. During the process of making samples, reduced glutathione (GSH, 5 mM) and glucose-6-phosphate Na2 (5 mM) were added to the buffer for scraping the cells. The range of protein content in the samples was 80-150 microg. In the GFAT activity assay, the end product reduced acetylpyridine adenine dinucleotide (APADH) was determined at 370 nm directly. The suitable concentrations of the reactants fructose-6-phosphate (F-6-P), glutamine, acetylpyridine adenine dinucleotide (APAD) and glutamate dehydrogenase (GDH) were 0.8, 6 and 0.3 mM and 6 U, respectively. However, the excess of APAD may interfere with the APADH measurement. The reaction time course was 90 min. The GFAT activity in 3T3-L1, L6, HepG2 and HIRc cells were 1.84-8.51 nmol glutamate/mg protein.min.  相似文献   

6.
7.
Glutamine:fructose-6-phosphate amidotransferase (glucosamine-6-phosphate synthase) catalyzes the first step of the hexosamine pathway required for the biosynthesis of cell wall precursors. The Candida albicans GFA1 gene was cloned by complementing a gfa1 mutation of Saccharomyces cerevisiae (previously known as gcn1-1; W. L. Whelan and C. E. Ballou, J. Bacteriol. 124:1545-1557, 1975). GFA1 encodes a predicted protein of 713 amino acids and is homologous to the corresponding gene from S. cerevisiae (72% identity at the nucleotide sequence level) as well as to the genes encoding glucosamine-6-phosphate synthases in bacteria and vertebrates. In cell extracts, the C. albicans enzyme was 4-fold more sensitive than the S. cerevisiae enzyme to UDP-N-acetylglucosamine (an inhibitor of the mammalian enzyme) and 2.5-fold more sensitive to N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid (a glutamine analog and specific inhibitor of glucosamine-6-phosphate synthase). Cell extracts from the S. cerevisiae gfa1 strain transformed with the C. albicans GFA1 gene exhibited sensitivities to glucosamine-6-phosphate synthase inhibitors that were similar to those shown by the C. albicans enzyme. Southern hybridization indicated that a single GFA1 locus exists in the C. albicans genome. Quantitative Northern (RNA) analysis showed that the expression of GFA1 in C. albicans is regulated during growth: maximum mRNA levels were detected during early log phase. GFA1 mRNA levels increased following induction of the yeast-to-hyphal-form transition, but this was a response to fresh medium rather than to the morphological change.  相似文献   

8.
Glutamine:fructose-6-phosphate amidotransferase (Gfat) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway. The increasing amount of evidence that links excess hexosamine biosynthesis with pathogenic complications of type II diabetes highlights the need to understand the regulation of Gfat. Previous studies showed that eukaryotic Gfat is subjected to feedback inhibition by UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) and to phosphorylation by cAMP-activated protein kinase A (PKA). In this study, overexpression of human Gfat isoform 1 (hGfat1) in insect cells revealed that hGfat1 is phosphorylated in vivo. Using matrix-assisted laser desorption/ionization and electrospray tandem mass spectrometry, we have identified Ser243 as a novel phosphorylation site. Biochemical properties of the wild type and the Ser243Glu mutant of hGfat1 overexpressed in Escherichia coli were compared. Our results provide evidence that phosphorylation at Ser243 stimulates glucosamine 6-phosphate-synthesizing activity, lowers amidohydrolyzing activity in the absence of fructose 6-phosphate (F6P) (glutaminase activity), and lowers Km(F6P) 2-fold, but has no effect on UDP-GlcNAc inhibition. On the basis of the sequence consensus, AMP-activated protein kinase and calcium/calmodulin-dependent kinase II were identified to phosphorylate specifically Ser243 in vitro. Phosphorylation by these two kinases results in an increase of enzymatic activity by 1.4-fold. These findings suggest for the first time that hGfat1 may be regulated by kinases other than PKA.  相似文献   

9.
10.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) is a rate-limiting enzyme in the hexoamine biosynthetic pathway and plays an important role in type 2 diabetes. We now report the first structures of the isomerase domain of the human GFAT in the presence of cyclic glucose-6-phosphate and linear glucosamine-6-phosphate. The C-terminal tail including the active site displays a rigid conformation, similar to the corresponding Escherichia coli enzyme. The diversity of the CF helix near the active site suggests the helix is a major target for drug design. Our study provides insights into the development of therapeutic drugs for type 2 diabetes.  相似文献   

11.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) is the rate-limiting enzyme in glucosamine synthesis. Prior studies from our laboratory indicated that activation of adenylate cyclase was associated with depletion of O-GlcNAc modification. This finding and evidence that human GFAT (hGFAT) might be regulated by cAMP-dependent protein kinase (PKA) led us to investigate the role of PKA in hGFAT function. We confirmed that adenylate cyclase activation by forskolin results in diminished O-GlcNAc modification of several cellular proteins which can be overcome by exposure of the cells to glucosamine but not glucose, suggesting the PKA activation results in depletion of UDP-GlcNAc for O-glycosylation. To determine if GFAT is indeed regulated by PKA, we expressed the active form of the enzyme using a vaccinia virus expression system and showed that the activity of the enzyme was to decrease to undetectable levels by PKA phosphorylation. We mapped the PKA phosphorylation sites with the aid of matrix-assisted laser desorption ionization mass spectroscopy and showed that the protein was stoichiometrically phosphorylated at serine 205 and also phosphorylated, to a lesser extent at serine 235. Mutagenesis studies indicated that the phosphorylation of serine 205 by PKA was necessary for the observed inhibition of enzyme activity while serine 235 phosphorylation played no observable role. The activity of GFAT is down-regulated by cAMP, thus placing regulation on the hexosamine pathway that is in concert with the energy requirements of the organism. During starvation, hormones acting through adenylate cyclase could direct the flux of glucose metabolism into energy production rather than into synthetic pathways that require hexosamines.  相似文献   

12.
We reported previously that glutamine:F-6-P amidotransferase (GFAT) plays an integral role in the development of insulin resistance by directing the flow of incoming glucose into the hexosamine biosynthesis pathway. To determine whether the enzymatic activity of GFAT is altered during desensitization of the glucose transport system, we treated isolated rat adipocytes with various combinations of insulin, glucose, and glutamine. Treatment with insulin or glucose alone (or in combination) failed to reduce cytosolic GFAT activity after 4 h, whereas combined treatment with all three components elicited a progressive loss of GFAT activity that was rapid (t1/2 of 2 h) and extensive (70% loss). A pronounced loss of GFAT activity was also seen in cells exposed to glucosamine, an agent known to directly enter the hexosamine pathway (55% loss at 4 h, ED50 of 360 microM). Moreover, a close correlation was observed between the induction of desensitization and the loss of GFAT activity as a function of glucose, insulin, glutamine, and glucosamine concentrations. When total intracellular hexosamine products were measured, we found that hexosamine formation was unaltered by insulin or glucose (or a combination) but was elevated by greater than 4-fold in the presence of insulin, glucose, and glutamine (t1/2 of 22 min), a condition known to cause both desensitization and loss of GFAT activity. Additional studies indicated that the loss of GFAT activity under desensitizing conditions is not due to allosteric regulation since removal of potential allosteric factors from the cytosol of desensitized cells by G-25 column chromatography failed to restore enzyme activity. Overall, these studies indicate that 1) GFAT is an insulin-regulated enzyme; however, control of enzyme activity is not due to a direct action of insulin, but rather is mediated by insulin-induced enhancement of glucose uptake; 2) the routing of incoming glucose through the hexosamine pathway and the formation of hexosamine products appears to regulate GFAT activity; and 3) the progressive loss of GFAT activity over several hours is probably not due to allosteric regulation.  相似文献   

13.
A full-length cDNA clone encoding fructose-6-phosphate, 2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana (AtF2KP) was isolated. The encoded protein is composed of two different regions: (i) a 400 amino acid COOH-terminal region, covering the catalytic region of the protein which is homologous to enzymes from other eukaryotes. This region is highly conserved among plant species (88% identity to spinach F2KP). (ii) A 345 amino acid plant-specific NH(2)-terminal region, with 59% identity to spinach F2KP, which is composed of homologous motifs and intermittent variable sequences. Western blots show that F2KP from several plant species migrates in sodium dodecyl sulphate-polyacrylamide gel electrophoresis as a similar sized (93 kDa) protein. AtF2KP was expressed in Escherichia coli as a full length and a truncated (without the NH(2)-terminal region) fusion protein. Both forms had kinase as well as phosphatase activity, but presence of the NH(2)-terminal region influenced the ratio between the two activities. It is suggested that the NH(2)-terminal region represents a regulatory region, which defines specific properties of the plant enzymes. A genomic clone for the corresponding gene, AtF2KP, was isolated. The clone (9519 bp) included 23 exons, 22 introns and the promoter sequence. Southern blot analysis showed only one copy of the gene in the A. thaliana genome.  相似文献   

14.
15.
Regulation and expression of human CYP1A1 is demonstrated in transgenic mice. We have developed two transgenic mouse lines. One mouse strain (CYPLucR) carries a functional human CYP1A1 promoter (-1612 to +293)-luciferase reporter gene, and the other strain (CYP1A1N) expresses CYP1A1 under control of the full-length human CYP1A1 gene and 9 kb of flanking regulatory DNA. With CYPLucR(+/-) mice, 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) and several other aryl hydrocarbon receptor ligands induced hepatocyte-specific luciferase activity. When other tissues were examined, TCDD induced luciferase activity in brain with limited induction in lung and no detectable luciferase activity in kidney. Treatment of CYP1A1N(+/-) mice with TCDD resulted in induction of human CYP1A1 in liver and lung, while mouse Cyp1a1 was induced in liver, lung, and kidney. Although induced CYP1A1/Cyp1a1 could not be detected by Western blot analysis in brains from CYP1A1N(+/-) mice, induction in brain was verified by detection of CYP1A1/Cyp1a1 RNA. The administration of TCDD to nursing mothers to examine the effect of lactational exposure via milk demonstrated prominent induction of luciferase activity in livers of CYPLucR(+/-) newborn pups with limited induction in brain. However, TCDD treatment of adult CYPLucR(+/-) mice led to a 7-10-fold induction of brain luciferase activity. Combined these results indicate that tissue-specific and developmental factors are controlling aryl hydrocarbon receptor-mediated induction of human CYP1A1.  相似文献   

16.
The molecular basis of adipocyte-specific gene expression is not well understood. We have previously identified a 518-bp enhancer from the adipocyte P2 gene that stimulates adipose-specific gene expression in both cultured cells and transgenic mice. In this analysis of the enhancer, we have defined and characterized a 122-bp DNA fragment that directs differentiation-dependent gene expression in cultured preadipocytes and adipocytes. Several cis-acting elements have been identified and shown by mutational analysis to be important for full enhancer activity. One pair of sequences, ARE2 and ARE4, binds a nuclear factor (ARF2) present in extracts derived from many cell types. Multiple copies of these elements stimulate gene expression from a minimal promoter in preadipocytes, adipocytes, and several other cultured cell lines. A second pair of elements, ARE6 and ARE7, binds a separate factor (ARF6) that is detected only in nuclear extracts derived from adipocytes. The ability of multimers of ARE6 or ARE7 to stimulate promoter activity is strictly adipocyte specific. Mutations in the ARE6 sequence greatly reduce the activity of the 518-bp enhancer. These data demonstrate that several cis- and trans-acting components contribute to the activity of the adipocyte P2 enhancer and suggest that ARF6, a novel differentiation-dependent factor, may be a key regulator of adipogenic gene expression.  相似文献   

17.
O-linked N-acetylglucosamine (O-GlcNAc) protein modification has been implicated in the regulation of signaling pathways, cell function, and gene expression. Glutamine:fructose-6-phosphate amidotransferase-1 (GFAT-1) is the rate-limiting enzyme in the hexosamine biosynthetic pathway (HBP), which generates the sugar nucleotide UDP-GlcNAc, where this nucleotide acts as the donor for O-GlcNAc modification. In this study, we determined whether GFAT-1 regulates adipogenesis in adipocytes. 3T3-L1 preadipocytes were differentiated using medium containing high glucose, insulin, dexamethasone, and isobutylmethylxanthine. Cells were harvested 4, 8, and 12 h and 1, 2, 3, 4, 6, and 8 days after the initiation of differentiation. Global level of O-GlcNAc modification increased 4 h after induction and persisted for 8 days of observation. GFAT-1 mRNA and protein expression was also upregulated beginning 4 h after induction. Pharmacological inhibition of GFAT-1 or GFAT-1 siRNA treatment blocked the increase in O-GlcNAcylation and the formation of lipid droplets in adipocytes. GFAT-1 may regulate the expression of C/EBPβ, PPARγ, SREBP-1, fatty acid synthase, S3-12, perilipin, or adipophilin during adipogenesis. Our results suggest that GFAT-1 plays a critical role in modulating adipogenesis via the regulation of protein O-GlcNAcylation in adipocytes.  相似文献   

18.
To investigate altered fructose-2,6-bisphosphate (fructose-2,6-P2) metabolism, we measured fructose-2,6-P2 levels and fructose-6-phosphate,2-kinase (fructose-6-P,2-kinase) activities in various tissues, including liver, kidney, heart, and skeletal muscle, of ventromedial hypothalamus (VMH)-lesioned rats during feeding and starvation. The plasma insulin level was 6 times or more higher in these rats than in the controls. The fructose-2,6-P2 level in liver was much greater in VMH-lesioned rats than in the controls: 15.1 +/- 2.2 nmol/g tissue versus 7.7 +/- 0.7 in the fed state, 5.3 +/- 1.1 versus 1.6 +/- 0.4 in the starved state. In kidney, heart, and skeletal muscle, fructose-2,6-P2 levels were not different between the two animal groups. The activity of hepatic fructose-6-P,2-kinase remained high after 20 h of starvation in VMH-lesioned rats, whereas it was decreased markedly in the controls. The hepatic concentration of fructose-6-phosphate was also high in VMH-lesioned rats. Both fructose-6-P,2-kinase activity and fructose-6-phosphate concentration in the liver of starved VMH-lesioned rats were comparable to those of control rats in fed conditions. These results indicate that the alteration of fructose-2,6-P2 metabolism is characteristic of liver in VMH-lesioned rats, and that the increase in hepatic fructose-2,6-P2 may activate hepatic glycolysis not only during feeding but also during starvation, leading to the enhanced lipogenesis in these obese rats.  相似文献   

19.
20.
Two Bifidobacterium strains with acquired resistance to bile were used in this study. Significant differences on membrane-associated protein profiles were found between the bile resistant derivatives and their corresponding original strains. One of the major species detected in one of the resistant derivatives had an apparent denatured molecular mass of approximately 90 kDa, and was identified as xylulose-5-phosphate/fructose-6-phosphate phosphoketolase, the key enzyme of Bifidobacterium carbohydrate catabolism. Phosphoketolase activity was considerably higher in membrane preparations and cell-free extracts of the two bile resistant derivatives. This correlated to a greater consumption rate of glucose in resistant strains. Fructose-6-phosphate phosphoketolase activity in the strain Bifidobacterium bifidum CECT4549 and its resistant derivative was found to be partially associated with the cytoplasmic membrane through weak interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号