首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The morphology of the sarcoplasmic reticulum in myocardial cells of the ventricle of the trout heart is described as the result of an investigation with the electron microscope. The sarcoplasmic reticulum is sparse in distribution compared to that of birds or mammals but shows a fundamentally similar organization. A very loose network of fine tubules is in intimate contact with the myofibrils but with no local modification with respect to the arrangement of myofilaments within the sarcomeres. There is no special association of the sarcoplasmic reticulum with the Z-bands. Some tubules pass to the cell periphery where they expand to form subsarcolemmal cisternae in which electron-dense matter is often seen. The occurrence of the subsarcolemmal cisternae (peripheral couplings) is random and they are not observed in the vicinity of intercalated discs. The sarcoplasmic reticulum is discussed in relation to excitation-contraction coupling in teleost myocardial cells, and in comparison with that of other vertebrates.I am grateful to Professor J. D. Lever for making certain facilities available, and to Mr. P. F. Hire for photographic assistance.  相似文献   

2.
Macrorhaphis acuta were bred in the laboratory (25°C) and fed on larvae ofAscotis selenaria reciprocaria. The incubation period was 8.4 days and the mean hatch was 94.4%. There were 5 nymphal instars which occupied 3.3, 5.0, 5.6, 6.6 and 12.0 days, respectively, from the lst to the 5th. Each nymph consumed an average of 22.8 host larvae to complete development. Adults had a mean longevity of 74.9 days and each consumed an average of 67.5 host larvae. Significant reduction was noted in pupation of 5th instar host larvae sucked by adult predators for periods ranging from 4 to 10 mn. The food requirements of 3rd, 4th, and 5th instar nymphs fed on 3rd instar host larvae were also investigated. The conversion ratio varied with the weight of food consumed during the instar and later instars were more efficient than earlier ones. Predatory value did not vary significantly with successive instars.  相似文献   

3.
Summary The endocardium of Oniscus asellus L. and Asellus aquaticus L. consists of lipid cells. The epicardium consists of a layer of cells with a vesiculated cytoplasm covered by a thick extracellular fibrous sheet. The myocardium is a single layer of cells, the sarcolemma invaginates at Z disc level forming transverse tubules, and longitudinal tubules branch off from these. At the A-I level' longitudinal tubules form transverse systems, which form couplings with the sarcoplasmic reticulum. The sarcoplasmic reticulum appears as perforated sheets enveloping the myofibrils. Two types of nerve terminal are found: one is embedded in a myocardial cell process, the other lies in a myocardial cell depression. They contain clear and dense-cored synaptic vesicles.This work was supported by grants from the Norwegian Research Council for Science and the Humanities  相似文献   

4.
Cardiac muscle fibers of the hummingbird and finch have no transverse tubules and are smaller in diameter than those of mammalian hearts. The fibers are connected by intercalated discs which are composed of desmosomes and f. adherentes; small nexuses are often interspersed. As in cardiac muscle of several other animals, the junctional SR of the couplings is highly structured in these two birds but, in addition, and after having lost sarcolemmal contact, the junctional SR continues beyond the coupling to extend deep into the interior of the cells and to form belts around the Z-I regions of the sarcomeres. This portion of the sarcoplasmic reticulum, which we have named "extended junctional SR," and which is so prominent and invariant a feature of cardiac cells of hummingbirds and finches, has not been observed in chicken cardiac cells. The morphological differences between these species of birds may be related to respective differences in heart rates characteristic for these birds.  相似文献   

5.
Euplectrus comstockii Howard (Hymenoptera: Eulophidae), is an ectoparasitic, gregarious wasp which parasitizes the larval stage of several important lepidopteran pests. Parasitization of both natural and unnatural hosts prevents molting in the parasitized instar. Here we report the effect of wasp venom on the European corn borer (unnatural host), an important pest of corn and other vegetables. Venom collected from venom glands of adultE. comstockii, when injected intoO. nubilalis 5th instars, inhibited the growth rate, development and molting of the injected larvae. The observed effect on molting was dose and age dependent. When 3rd, 4th and 5th instarO. nubilalis were envenomated by adult wasps, the larvae also were developmentally arrested and failed to undergo a molt. However, 3rd and 4th instars underwent apolysis (separation of the epidermis from the old cuticle) and produced new cuticle. Fifth instars did not. A premolt hemolymph ecdysteroid peak was not observed in these experimental 5th instars, but injections of 20-hydroxy-ecdysone induced apolysis and new cuticle formation. Envenomated 4th instars (on becoming pharate 5th instars) exhibited a premolt hemolymph ecdysteroid peak. HPLC/RIA revealed that 20-hydroxyecdysone was present in the hemolymph of these pharate 5th instars. Thus, in the European corn borer, the mode of action of the venom depended upon the instar parasitized. Our results support the presence of a venom component(s) that, in 4th instar hosts, inhibited ecdysis, but did not prevent hemolymph ecdysteroid levels from increasing sufficiently to stimulate apolysis. In 5th instars, the same, or perhaps, a different component(s) ofE. comstockii venom prevented the synthesis/release of ecdysteroid by inhibiting a previously unknown molt-regulating physiological event that occurs between days 3 and 4 of the instar. Deceased  相似文献   

6.
Summary The membrane systems of the cardiac muscle cell of the copepod Euchaeta norvegica Boeck are described. The heart wall, which is between 0.12 and 1.36 m thick, consists of an epicardium and a single layer of muscle cells. Invaginations of the sarcolemma forming transverse tubules have been found at all levels of the sarcomere with the exception of the H-band level. The longitudinal tubules of the same system are closely associated with the sarcoplasmic reticulum to form interior couplings at the A-I level of the sarcomere. Triadic couplings at the Z band level were not seen in E. norvegica, but peripheral couplings were demonstrated. Nexuses were found in the intercalated discs.  相似文献   

7.
With light and electron microscopy a comparison has been made of the morphology of ventricular (V) and Purkinje (P) fibers of the hearts of guinea pig, rabbit, cat, dog, goat, and sheep. The criteria, previously established for the rabbit heart, that V fibers are distinguished from P fibers by the respective presence and absence of transverse tubules is shown to be true for all animals studied. No evidence was found of a permanent connection between the sarcoplasmic reticulum and the extracellular space. The sarcoplasmic reticulum (SR) of V fibers formed couplings with the sarcolemma of a transverse tubule (interior coupling) and with the peripheral sarcolemma (peripheral coupling), whereas in P fibers the SR formed only peripheral couplings. The forms of the couplings were identical. The significance, with respect to excitation-contraction coupling, of the difference in the form of the couplings in cardiac versus skeletal muscle is discussed together with the electrophysiological implications of the differing geometries of bundles of P fibers from different animals.  相似文献   

8.
A system of markers has been devised to track the development of 3rd and 4th instar/pharate adult greenhouse whiteflies. Instars were identified based on measurements of body width and body length. Depending upon the host plant, the product of the two measurements was exceptionally useful in distinguishing between instars. Body depth was used to divide the 3rd instar into eight stages and body depth and color and appearance of the developing adult eye were used to divide the 4th instar/pharate adult into nine stages. Under conditions of L:D 16:8 and a temperature of 26±2°C, the body depth of 3rd instars reared on greenbean increased from 0.025 (stage 1) to 0.2 mm (stage 8) and the instar duration was approximately 3 days. The body depth of 4th instars increased from approximately 0.1±0.02 (Stage 1) to 0.3±0.03 mm (Stage 5) and then remained constant or decreased slightly during adult development. Ecdysteroid titers peaked at approximately 120 fg/μg protein during Stages 3 through 6 of the 4th instar. Based on an external examination of developing 4th instars and the fluctuations in ecdysteroid titer, it appears that adult development is initiated in Stage 4 or 5 4th instars. Results from histological studies support this view. In Stage 4 nymphs, a subtle change was observed in the corneagenous cells of the eye. However, most Stage 4 4th instars possessed wing development characteristic of earlier, immature stages. In all Stage 5 insects, wing development had been initiated and the corneagenous cells had become quite distinct. In Stage 6 whiteflies, the wing buds were deeply folded and by Stage 7, spines were observed on the new cuticle, indicating that the adult cuticle was well-formed by this stage. Our study is the first to investigate the timing and regulation of the molt, to monitor ecdysteroid titers in precisely staged 4th instar whiteflies and to examine the internal anatomical changes associated with metamorphosis in these tiny homopteran insects.  相似文献   

9.
Ca2+-ATPase of the sarcoplasmic reticulum was localized in cryostat sections from three different adult canine skeletal muscles (gracilis, extensor carpi radialis, and superficial digitalis flexor) by immunofluorescence labeling with monoclonal antibodies to the Ca2+-ATPase. Type I (slow) myofibers were strongly labeled for the Ca2+-ATPase with a monoclonal antibody (II D8) to the Ca2+-ATPase of canine cardiac sarcoplasmic reticulum; the type II (fast) myofibers were labeled at the level of the background with monoclonal antibody II D8. By contrast, type II (fast) myofibers were strongly labeled for Ca2+-ATPase of rabbit skeletal sarcoplasmic reticulum. The subcellular distribution of the immunolabeling in type I (slow) myofibers with monoclonal antibody II D8 corresponded to that of the sarcoplasmic reticulum as previously determined by electron microscopy. The structural similarity between the canine cardiac Ca2+-ATPase present in the sarcoplasmic reticulum of the canine slow skeletal muscle fibers was demonstrated by immunoblotting. Monoclonal antibody (II D8) to the cardiac Ca2+-ATPase binds to only one protein band present in the extract from either cardiac or type I (slow) skeletal muscle tissue. By contrast, monoclonal antibody (II H11) to the skeletal type II (fast) Ca2+-ATPase binds only one protein band in the extract from type II (fast) skeletal muscle tissue. These immunopositive proteins coelectrophoresed with the Ca2+-ATPase of the canine cardiac sarcoplasmic reticulum and showed an apparent Mr of 115,000. It is concluded that the Ca2+-ATPase of cardiac and type I (slow) skeletal sarcoplasmic reticulum have at least one epitope in common, which is not present on the Ca2+-ATPase of sarcoplasmic reticulum in type II (fast) skeletal myofibers. It is possible that this site is related to the assumed necessity of the Ca2+-ATPase of the sarcoplasmic reticulum in cardiac and type I (slow) skeletal myofibers to interact with phosphorylated phospholamban and thereby enhance the accumulation of Ca2+ in the lumen of the sarcoplasmic reticulum following beta-adrenergic stimulation.  相似文献   

10.
Summary The singing muscles of the katydid Neoconocephalus robustus develop adult ultrastructure late in the last nymphal instar and during the first few days of adult life. The ultrastructural changes during early adulthood were not affected by unilateral axotomy shortly after the adult molt. Both denervated and innervated muscles developed adult proportions of mitochondria, myofibril, and sarcoplasmic reticulum and transverse tubules.  相似文献   

11.
An electron microscope study has been made of the distribution of membrane couplings between the sarcoplasmic reticulum (SR) and either the plasmalemma or the T tubules in fetal and neonatal rat intercostal muscle. Within primitive muscle cells at 12 days of gestation, the SR forms both simple and specialized membrane junctions with the plasmalemma; caveolae are very few, and T tubules are not detected. Undifferentiated cells neighbor muscle cells. Occasionally these cells contain subsurface couplings between the endoplasmic reticulum and plasmalemmae. Possible relationships between these couplings and the peripheral couplings of muscle cells are discussed. By 15–18 days of gestation, caveolae and beaded T tubules, comparable to those of cultured muscle, develop; T tubules lie along-side myofibrils and are rarely transverse. SR couples both to T tubules and to plasmalemmae during this period. T tubules with lineal profiles appear after further development and their orientation transverse to A–I junctions becomes increasingly evident. Membrane couplings between SR and T tubules also increase in number, whereas the incidence of peripheral coupling declines rapidly Evidence suggests that peripheral couplings are swept into myotubes as caveolae proliferate and T tubules form. SR thus appears to initially couple with the plasmalemma and then to await T tubular growth. This contrasts with the developmental pattern described in cultured chick muscle in which peripheral couplings are not reported and T tubules with diads and triads occur at very primitive stages of muscle differentiation.  相似文献   

12.
The tiny parasitoid wasp, Encarsia formosa, has been used successfully to control greenhouse whiteflies (GHWFs) in greenhouses in many countries throughout the world. Therefore, there has been considerable interest in developing methods for artificially rearing this wasp. However, little information is available concerning the regulation of its development including the host-parasitoid interactions that are required for the parasitoid to complete its life cycle. Here we confirm that parasitoid developmental rates differ significantly based upon the host instar parasitized. Development was faster when 3rd and 4th instar GHWFs were offered for parasitization than when 1st or 2nd instars were used. Our results show that it is primarily the embryo and the first two parasitoid instars that exhibit prolonged developmental times when 1st and 2nd instar whiteflies are parasitized. Although percent emergence was not affected by host age at the time of parasitization, adult longevity as well as adult emergence pattern varied greatly depending upon the instar parasitized. When 3rd and 4th instar GHWFs were selected for oviposition, adult wasps lived significantly longer than when 1st or 2nd instars were used; also, there was a sharp emergence peak on the 2nd day after emergence was first observed (reduced or absent when 1st or 2nd instar GHWFs were parasitized) and the emergence period was reduced from between 8 and 11 days to 5 days. In general, the younger the host instar parasitized, the less synchronous was parasitoid development. Previous reports that E. formosa will not molt to the 2nd instar until the host has reached its 4th instar were not confirmed. When 1st instar host nymphs were parasitized, 2nd instar parasitoids were detected in 3rd instar hosts. Importantly, however, no matter which instar was parasitized, the parasitoid never molted to its last instar until the host had reached Stage 5 of its last instar, a stage in which host pharate adult formation has been initiated. It appears, then, that a condition(s) associated with host pharate adult formation is required for the parasitoid's final larval molt. Results reported here should facilitate the development of in vitro rearing systems for E. formosa.  相似文献   

13.
Summary The membrane systems of the cardiac muscle cell of the amphipod Tmetonyx cicada (O. Fabricius) are described. The sarcolemma invaginates and forms a transverse network of tubules at the level of the Z band. Narrow longitudinal tubules branch from the network and connect to another transverse network of tubules at the H band level, where dyadic and triadic junctions are formed with the sarcoplasmic reticulum. Adjacent myofibrils are normally separated by a well developed double layer of the sarcoplasmic reticulum. In areas where the myofibrils closely approach the outer sarcolemma, peripheral couplings have been found at the level of the H band.  相似文献   

14.
《Insect Biochemistry》1991,21(3):313-320
Changes in biliverdin-binding cyanoprotein content in whole body and tissue extracts during development of nymphal and adult (non-diapause) bean bugs, Riptortus clavatus were analyzed by rocket immunoelectrophoresis (RIE). RIE using anti-CPegg serum can be used to determine the content of CP-A (Cp-1, 2 and 3) and CP-B (CP-4) separately. During the nymphal stage CP content of whole body changes cyclically in each instar. In the first nymphal instar, CPegg is the main CP which disappears during the first-second instar ecdysis. In nymphal bugs from the 2nd to 4th instars only CP-B (CP-4) is detected, and at the beginning of each instar the CP content is very low but increases toward the next ecdysis, after which CP decreases and disappears very rapidly. In the 5th nymphal instar, CP-B is the major CP but CP-A (CP-1, 2 and 3) is also detected. These changes in whole body CP content of 5th instar nymphs are observed in both females and males. The content of total CPs in the 5th instar nymph reaches about 1000 μg in the whole insect. During nymphal-adult ecdysis, nymphal CPs decrease and disappear at day 2 after emergence. In female adults CP-A (CP-1 only) increases rapidly after day 4 of adult emergence, while no CP is detected in male adults. In females CPs were detected only in the fat body, hemolymph and ovary. In the mid-5th-instar nymphs, CPs (CP-A and B) are mainly distributed in the hemolymph. CPs in the Hemolymph decrease during nymphal-adult ecdysis, whereas they increase in the fat body. CPs disappear from both the hemolymph and fat body by 2 days after ecdysis. Subsequently in the adult stage only CP-A increases again in the fat body and ovary. By tracer experiments using [35S]-methionine, the fat body was shown to be the site of CP synthesis. CP-A and B synthetic activity was detected in nymphal females whereas, only CP-A synthesis was observed in adult females, while no CP synthesis was seen in adult males.  相似文献   

15.
研究了乌苏里鸣螽的生物学特性。该虫在河北省秦皇岛市 1年发生 1代 ,以滞育卵在土内越冬 ,翌年 3月下旬~ 6月上旬孵化为若虫。若虫共 7龄 ,1龄期 1 3~ 2 9d ,2龄期 8~ 2 0d ,3龄期 7~ 1 3d ,4龄期 6~ 9d,5龄期 6~ 9d ,6龄期 5~ 1 5d ,7龄期 1 2~ 1 7d。 6月下旬~ 8月中旬羽化为成虫 ,雌成虫产卵自 7月上旬至 9月下旬结束。成虫平均寿命 81 2 5d。  相似文献   

16.
The structure of the surface membrane/transverse tubular (T-tubular) system and of the sarcoplasmic reticulum (SR) of the labial adductor muscle of the honey bee (Apis mellifera) was examined by laser confocal scanning microscopy, after staining with the fluorescent membrane probe DiIC18(3). The following components of the surface membrane/T-tubular system were visualized: transverse tubular networks that are located in the A-band close to the A-I junction and form dyads with the SR, longitudinal tubules that link the T-tubular networks within the between sarcomeres, and surface invaginations of larger diameter that contain tracheoles. The well developed SR forms a dense network of branching and anastomosing tubules in the A-band. A few tubular elements in the interfibrillar space in the I-band link the SR of adjacent sarcomeres. This study demonstrates the advantages of the laser confocal microscope and lipophilic fluorescent dyes for studying the 3-D structure of cellular membrane systems.  相似文献   

17.
Rhodnius prolixus adults which had fed to repletion at each larval instar were frequently autogenous, while those allowed to take only partial blood meals at the 3rd, 4th and 5th larval instars were always anautogenous.Bugs fed to repletion at each larval instar had large abdominal fat bodies throughout adult life. In such bugs, the quantity of blood associated with the production of one egg was small and constant during the course of several blood meals.Bugs fed partial blood meals as larvae had small abdominal fat bodies following ecdysis to the adult; the quantity of blood associated with the production of one egg was large following the first adult feed because some of the blood meal was used to increase the size of the abdominal fat bodies.  相似文献   

18.
Supernumerary ecdysis of the common cutworm, Spodoptera litura was induced by crowded rearing and starvation. Long periods of starvation in the 3rd- and 4th-larval instars induced higher proportions of extra ecdyses, up to 100%. The pupal weights were essentially similar in spite of different instar numbers. However, starvation in the 5th (penultimate) and 6th instars hardly induced supernumerary ecdysis. Starvation caused a fluctuation in the head-capsule sizes of the larvae, but those larvae with head capsules wider than 1.65 mm were destined to become last instar at the next ecdysis. The significance of a threshold for the penultimate instar is discussed in relation to phase polymorphism.Crowded rearing also caused an increase in the proportion of extra ecdyses in the following generation, whereas isolation decreased it. It is concluded that supernumerary ecdysis is not a phase character, but is for recovery from reduced size due to food shortage.  相似文献   

19.
The developmental progress of silverleaf whitefly (Bemisia argentifolii) 3rd instars and 4th instar/pharate adults was monitored using a tracking system that had been designed to identify synchronous individuals in another species of whitefly, the greenhouse whitefly, Trialeurodes vaporariorum. When reared on greenbean under conditions of LD 16:8 and a temperature of 26 +/- 2 degrees C, the body depth of 3rd instar SLWFs increased from approximately 0.04 mm (Stage 2) to 0.175-0.2 mm (Stage 7-8) and the body depth of the 4th instar increased from approximately 0.1 mm (Stage 1) to 0.25-0.30 mm (Stage 4-5). The durations of the 3rd instar and the 4th instar/pharate adult were approximately 3 and 7 days, respectively. Examination of coronal sections of 4th instars revealed that adult eye and wing development are initiated during Stage 6, the stage in which an external examination showed that the eye has begun to undergo pigment diffusion. Ecdysteroid titers peaked at approximately 400 fg/ micro g protein during stages 4 through 6A of the 4th instar, i.e., just prior to and upon the initiation of the pharate adult stage. Although adult development is initiated later in the SLWF than in the GHWF (adult eye and wing development begin in Stages 4 and 5, respectively, in GHWFs), the same rapidity of metamorphosis is observed in both species. Within approximately 24 h, the simple bi-layered wing bud developed into a deeply folded wing of nearly adult proportions and within an additional 12-24 h, the nymphal eye and wing bud had been replaced by the well-differentiated eye and wing of the adult whitefly. Our study is the first to describe the regulation, timing, and progress of the nymphal-adult molt and of the structural changes that accompany nymphal-adult metamorphosis in the SLWF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号