首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of the pyruvate dehydrogenase complex in extracts of the gutted body, head, foregut/midgut and hindgut (hindgut epithelium and microorganisms) tissues of the lower termite Coptotermes formosanus (Shiraki) were determined by measuring the [14C]-acetyl-CoA produced from [2-14C]-pyruvate and the 14CO2 produced from [1-14C]-pyruvate. The activities of pyruvate dehydrogenase, l-lactate dehydrogenase, acetyl-CoA synthetase, malate dehydrogenase (decarboxylating), and acetate kinase in the termite tissues and the hindgut also were determined. The sum (7.1 nmol/termite/h) of the pyruvate dehydrogenase complex activities in the termite tissues other than the hindgut was five times higher than the activity in the hindgut. Significant amounts of l-lactate dehydrogenase activity were found in all of the tissues. All of the tissues other than the hindgut had significant amounts of acetyl-CoA synthetase activity. Malate dehydrogenase (decarboxylating) activity was about ten times higher in the hindgut extract than in the gutted body and head extracts and the activity in the foregut/midgut extract was very low. These results indicate that acetyl-CoA for the TCA cycle is produced effectively in the tissues of the termite itself, both from pyruvate by the pyruvate dehydrogenase complex and from acetate by acetyl-CoA synthetase.  相似文献   

2.
Spirochetes of the genus Treponema are surprisingly abundant in termite guts, where they play an important role in reductive acetogenesis. Although they occur in all termites investigated, their evolutionary origin is obscure. Here, we isolated the first representative of ‘termite gut treponemes’ from cockroaches, the closest relatives of termites. Phylogenomic analysis revealed that Breznakiella homolactica gen. nov. sp. nov. represents the most basal lineage of the highly diverse ‘termite cluster I', a deep-branching sister group of Treponemataceae (fam. ‘Termitinemataceae’) that was present already in the cockroach ancestor of termites and subsequently coevolved with its host. Breznakiella homolactica is obligately anaerobic and catalyses the homolactic fermentation of both hexoses and pentoses. Resting cells produced acetate in the presence of oxygen. Genome analysis revealed the presence of pyruvate oxidase and catalase, and a cryptic potential for the formation of acetate, ethanol, formate, CO2 and H2 - the fermentation products of termite gut isolates. Genes encoding key enzymes of reductive acetogenesis, however, are absent, confirming the hypothesis that the ancestral metabolism of the cluster was fermentative, and that the capacity for acetogenesis from H2 plus CO2 - the most intriguing property among termite gut treponemes - was acquired by lateral gene transfer.  相似文献   

3.
The anaerobic hyperthermophilic archaea Desulfurococcus amylolyticus, Hyperthermus butylicus, Thermococcus celer, Pyrococcus woesei, the hyperthermophilic bacteria Thermotoga maritima and Clostridium thermohydrosulfuricum and the aerobic mesophilic archaeon Halobacterium saccharovorum were grown either on complex media, on sugars or on pyruvate as carbon and energy sources. During growth acetate was formed as fermentation product by all organisms. The enzymes involved in acetyl-CoA formation from pyruvate and in acetate formation from acetyl-CoA were investigated:
  1. Cell extracts of all species, both archaea and bacteria, catalyzed the coenzyme A-dependent oxidative decarboxylation of pyruvate with viologen dyes or with Clostridium pasteurianum ferredoxin as electron acceptors indicating a pyruvate: ferredoxin oxidoreductase to be operative in acetyl-CoA formation from pyruvate.
  2. Cell extracts of all archaeal species, both hyperthermophiles (D. amylolyticus, H. butylicus, T. celer, P. woesei) and the mesophile H. saccharovorum, contained an acetyl-CoA synthetase (ADP forming), which catalyzes both acetate formation from acetyl-CoA and ATP synthesis from ADP and phosphate (Pi): Acetyl-CoA+ADP+Pi?Acetate + ATP+CoA. Phosphate acetyltransferase and acetate kinase could not be detected.
  3. Cell extracts of the hyperthermophilic (eu)bacteria T. maritima and C. thermohydrosulfuricum contained phosphate acetyltransferase and acetate kinase rather than acetyl-CoA synthetase (ADP forming).
These data indicate that acetyl-CoA synthetase (ADP forming) represents a typical archaeal property rather than an enzyme specific for hyperthermophiles. It is proposed that in all acetate forming archaea the formation of acetate and of ATP from acetyl-CoA, ADP and Pi are catalyzed by acetyl-CoA synthetase (ADP forming), whereas in all acetate forming (eu)bacteria these reactions are catalyzed by two enzymes, phosphate acetyltransferase and acetate kinase.  相似文献   

4.
Uricolytic bacteria were present in guts of Reticulitermes flavipes in populations up to 6 × 104 cells per gut. Of 82 strains isolated under strict anaerobic conditions, most were group N Streptococcus sp., Bacteroides termitidis, and Citrobacter sp. All isolates used uric acid (UA) as an energy source anaerobically, but not aerobically, and NH3 was the major nitrogenous product of uricolysis. However, none of the isolates had an absolute requirement for UA. Utilization of heterocyclic compounds other than UA was limited. Fresh termite gut contents also degraded UA anaerobically, as measured by 14CO2 evolution from [2-14C]UA. The magnitude of anaerobic uricolysis [0.67 pmol of UA catabolized/(gut × h)] was entirely consistent with the population density of uricolytic bacteria in situ. Uricolytic gut bacteria may convert UA in situ to products usable by termites for carbon, nitrogen, energy, or all three. This possibility is consistent with the fact that R. flavipes termites from UA, but they do not void the purine in excreta despite the lack of uricase in their tissues.  相似文献   

5.
《Journal of Asia》2020,23(3):666-674
Termites are generally deficient in pyruvate dehydrogenase (PDH), which links glycolysis to the Krebs cycle; however, one termite species, Coptotermes formosanus, has some PDH activity, though it is not enough to maintain the respiration of the termite by itself. We obtained a high quality annotated draft genome of C. formosanus. We found that all genes constituting the PDH complex and controlling PDH activity are present in the genome of C. formosanus, except for the PDH protein X component that is essential for a functional PDH complex. Additionally, we found that C. formosanus has three endo-ß-1,4-glucanases (EGs), for which the amino acid sequences differ from those of previously reported EGs. Despite the ability of termites to convert cellulose to glucose and the resulting glucose to pyruvate, PDH is likely to function poorly due to a missing X component of the PDH complex.  相似文献   

6.
Coptotermes formosanus Shiraki is a wood‐feeding termite which secretes a series of lignolytic and cellulolytic enzymes for woody biomass degradation. However, the lignin modification mechanism in the termite is largely elusive, and the characteristics of most lignolytic enzymes in termites remain unknown. In this study, a laccase gene lac1 from C. formosanus was heterogeneously expressed in insect Sf9 cells. The purified Lac1 showed strong activities toward hydroquinone (305 mU/mg) and 2,6‐dimethoxyphenol (2.9 mU/mg) with low Km values, but not veratryl alcohol or 2,2’‐azino‐bis (3‐ethylbenzothiazoline‐6‐sulfonic acid). Lac1 could function well from pH 4.5 to 7.5, and its activity was significantly inhibited by H2O2 at above 4.85 mmol/L (P < 0.01). In addition, the lac1 gene was found to be mainly expressed in the salivary glands and foregut of C. formosanus, and seldom in the midgut or hindgut. These findings suggested that Lac1 is a phenol‐oxidizing laccase like RflacA and RflacB from termite Reticulitermes flavipes, except that Lac1 was found to be more efficient in phenol oxidation, and it did not require H2O2 for its function. It is suspected that this kind of termite laccase might only be able to directly oxidize low redox‐potential substrates, and the high redox‐potential groups in lignin might be oxidized by other enzymes in the termite or by using the Fenton reaction.  相似文献   

7.
Predation pressure from ants is a major driving force in the adaptive evolution of termite defense strategies and termites have evolved elaborate chemical and physical defenses to protect themselves against ants. We examined predator–prey interactions between the woodland ant, Aphaenogaster rudis (Emery) and the eastern subterranean termite, Reticulitermes flavipes (Kollar), two sympatric species widely distributed throughout deciduous forests in eastern North America. To examine the behavioral interactions between A. rudis and R. flavipes we used a series of laboratory behavioral assays and predation experiments where A. rudis and R. flavipes could interact individually or in groups. One-on-one aggression tests revealed that R. flavipes are vulnerable to predation by A. rudis when individual termite workers or soldiers are exposed to ant attacks in open dishes and 100% of termite workers and soldiers died, even though the soldiers were significantly more aggressive towards the ants. The results of predation experiments where larger ant and termite colony fragments interacted provide experimental evidence for the importance of physical barriers for termite colony defense. In experiments where the termites nested within artificial nests (sand-filled containers), A. rudis was aggressive at invading termite nests and inflicted 100% mortality on the termites. In contrast, termite mortality was comparable to controls when termite colonies nested in natural nests comprised of wood blocks. Our results highlight the importance of physical barriers in termite colony defense and suggest that under natural field conditions termites may be less susceptible to attacks by ants when they nest in solid wood, which may offer more structural protection than sand alone.  相似文献   

8.
Acetate dominated the extracellular pool of volatile fatty acids (VFAs) in the hindgut fluid of Reticulitermes flavipes, Zootermopsis angusticollis, and Incisitermes schwarzi, where it occurred at concentrations of 57.9 to 80.6 mM and accounted for 94 to 98 mol% of all VFAs. Small amounts of C3 to C5 VFAs were also observed. Acetate was also the major VFA in hindgut homogenates of Schedorhinotermes lamanianus, Prorhinotermes simplex, Coptotermes formosanus, and Nasutitermes corniger. Estimates of in situ acetogenesis by the hindgut microbiota of R. flavipes (20.2 to 43.3 nmol · termite−1 · h−1) revealed that this activity could support 77 to 100% of the respiratory requirements of the termite (51.6 to 63.6 nmol of O2 · termite−1 · h−1). This conclusion was buttressed by the demonstration of acetate in R. flavipes hemolymph (at 9.0 to 11.6 mM), but not in feces, and by the ability of termite tissues to readily oxidize acetate to CO2. About 85% of the acetate produced by the hindgut microbiota was derived from cellulose C; the remainder was derived from hemicellulose C. Selective removal of major groups of microbes from the hindgut of R. flavipes indicated that protozoa were primarily responsible for acetogenesis but that bacteria also functioned in this capacity. H2 and CH4 were evolved by R. flavipes (usually about 0.4 nmol · termite−1 · h−1), but these compounds represented a minor fate of electrons derived from wood dissimilation within R. flavipes. A working model is proposed for symbiotic wood polysaccharide degradation in R. flavipes, and the possible roles of individual gut microbes, including CO2-reducing acetogenic bacteria, are discussed.  相似文献   

9.
In vitro, the pyruvate dehydrogenase complex is sensitive to product inhibition by NADH and acetyl-coenzyme A (CoA). Based upon Km and Ki relationships, it was suggested that NADH can play a primary role in control of pyruvate dehydrogenase complex activity in vivo (JA Miernyk, DD Randall [1987] Plant Physiol 83:306-310). We have now extended the in vitro studies of product inhibition by assaying pyruvate dehydrogenase complex activity in situ, using purified intact mitochondria from green pea (Pisum sativum) seedlings. In situ activity of the pyruvate dehydrogenase complex is inhibited when mitochondria are incubated with malonate. In some instances, isolated mitochondria show an apparent lack of coupling during pyruvate oxidation. The inhibition by malonate, and the apparent lack of coupling, can both be explained by an accumulation of acetyl-CoA. Inhibition could be alleviated by addition of oxalacetate, high levels of malate, or l-carnitine. The CoA pool in nonrespiring mitochondria was approximately 150 micromolar, but doubled during pyruvate oxidation, when 60 to 95% of the total was in the form of acetyl-CoA. Our results indicate that in situ activity of the mitochondrial pyruvate dehydrogenase complex can be controlled in part by acetyl-CoA product inhibition.  相似文献   

10.
Intact mitochondria have been successfully prepared from body tissues from the termites Nasutitermes walkeri and Coptotermes formosanus. This is the first report of the successful isolation of mitochondria from termites (Isoptera: Termitidae). Using an oxygen electrode, oxygen consumption by the mitochondria during the oxidation of various respiratory substrates was determined and their properties measured in terms of respiratory control index and ADP/O. ADP/O was as expected for substrates such as pyruvate, acetylcarnitine and acetyl-CoA and carnitine. Pyruvate and acetate were the major respiratory substrates in both species. The total activity of the pyruvate dehydrogenase complex (PDHc) in the mitochondria from N. walkeri and C. formosanus was determined to be 72.87+/-8.98 and 8.29+/-0.42 nmol/termite/h, respectively. Mitochondria isolated in the presence of inhibitors of PDHc interconversion were used to determine that about 60% of the PDHc was maintained in the active form in both N. walkeri and C. formosanus. The sufficient PDHc activity and high rate of pyruvate oxidation in mitochondria from N. walkeri suggest that pyruvate is rapidly metabolised, whereas the low mitochondrial PDHc activity of C. formosanus suggests that in this species more pyruvate is produced than can be oxidised in the termite tissues.  相似文献   

11.
Acetate Synthesis from H2 plus CO2 by Termite Gut Microbes   总被引:1,自引:7,他引:1       下载免费PDF全文
Gut microbiota from Reticulitermes flavipes termites catalyzed an H2-dependent total synthesis of acetate from CO2. Rates of H2-CO2 acetogenesis in vitro were 1.11 ± 0.37 μmol of acetate g (fresh weight)−1 h−1 (equivalent to 4.44 ± 1.47 nmol termite−1 h−1) and could account for approximately 1/3 of all the acetate produced during the hindgut fermentation. Formate was also produced from H2 + CO2, as were small amounts of propionate, butyrate, and lactate-succinate. However, H2-CO2 formicogenesis seemed largely unrelated to acetogenesis and was believed not to be a significant reaction in situ. Little or no CH4 was formed from H2 + CO2 or from acetate. H2-CO2 acetogenesis was inhibited by O2, KCN, CHCl3, and iodopropane and could be abolished by prefeeding R. flavipes with antibacterial drugs. By contrast, prefeeding R. flavipes with starch resulted in almost complete defaunation but had little effect on H2-CO2 acetogenesis, suggesting that bacteria were the acetogenic agents in the gut. H2-CO2 acetogenesis was also observed with gut microbiota from Prorhinotermes simplex, Zootermopsis angusticollis, Nasutitermes costalis, and N. nigriceps; from the wood-eating cockroach Cryptocercus punctulatus; and from the American cockroach Periplaneta americana. Pure cultures of H2-CO2-acetogenic bacteria were isolated from N. nigriceps, and a preliminary account of their morphological and physiological properties is presented. Results indicate that in termites, CO2 reduction to acetate, rather than to CH4, represents the main electron sink reaction of the hindgut fermentation and can provide the insects with a significant fraction (ca. 1/3) of their principal oxidizable energy source, acetate.  相似文献   

12.
  • 1.1. The termite, Odentoiermes horni. W., houses three fungal species, viz. Xylaria nigripes, Termitomyces microcorpus, and Trichoderma (species not identified), in its gut. X. nigripes was found to possess higher esterase activity levels than the other two.
  • 2.2. Four esterase enzymes, viz. FE-I, -II, -III and -IV, with pI values 5.1, 5.25, 5.4 and 5.6, respectively, were identified, isolated and purified to apparent homogeneity from the fungus X. nigripes, their biochemical and enzymological properties were determined, and compared with those of the previously characterized host termite mid-gut enzymes, TE-I and -II.
  • 3.3. The Mr, ofFE-I and -II was 85.1 kDa and those of FE-III and -IV was 87.5 kDa. However, TE-I and -II were relatively smaller (Mr ~ 78.5 kDa). Each of the fungal enzymes, viz. FE-I to -IV, was a homodimer with subunits associated non-covalently. The subunit Mr, were 42.6 kDa for FE-I and -II, and 43.7 kDa for FE-III and -IV. On the other hand, the termite mid-gut enzymes, TE-I and -II, were also homodimeric, but the subunits were associated covalently (subunit M, = 40 kDa). Immunologically the fungal esterase enzymes, viz. FE-I to -IV, were different from those of the host termite mid-gut esterases, viz. TE-I and -II.
  • 4.4. The substrate specificity and inhibitor sensitivity studies classify these enzymes, i.e. FE-I to -IV, as carboxylesterases (EC 3.1.1.1). Steady-state product inhibition kinetics suggested; an ordered release of products, i.e. alcohol followed by acid, and a Uni-Bi kinetic reaction mechanism.
  • 5.5. The two preliminary studies, i.e. the confinement of most esterase activity to the gut-tissue free from microorganisms and starvation of termites not leading to complete loss of esterase activity in the gut of the termites, suggested that there may not be any symbiotic relationship between termite, O. horni, and its gut associated microorganisms with regard to ester metabolism. Though the enzymes from the two sources were carboxylesterases, several of their properties were different and hence, they are different entities.
  相似文献   

13.
Heliobacteria are a group of anoxygenic phototrophs that can grow photoheterotrophically in defined minimal media on only a limited range of organic substrates as carbon sources. In this study the mechanisms which operate to assimilate carbon and the routes employed for the biosynthesis of cellular intermediates were investigated in a newHeliobacterium strain, HY-3. This was achieved using two approaches (1) by measuring the activities of key enzymes in cell-free extracts and (2) by the use of13C nuclear magnetic resonance (NMR) spectroscopy to analyze in detail the labelling pattern of amino-acids of cells grown on [13C] pyruvate and [13C] acetate.Heliobacterium strain HY-3 was unable to grow autotrophically on CO2/H2 and neither (ATP)-citrate lyase nor ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBPcase) were detectable in cell-free extracts. The enzyme profile of pyruvate grown cells indicated the presence of a pyruvate:acceptor oxidoreductase at high specific activity which could convert pyruvate to acetyl-Coenzyme A. No pyridine nucleotide dependent pyruvate dehydrogenase complex activity was detected. Of the citric-acid cycle enzymes, malate dehydrogenase, fumarase, fumarate reductase and an NADP-specific isocitrate dehydrogenase were readily detectable but no aconitase or citrate synthase activity was found. However, the labelling pattern of glutamate in long-term 2-[13C] acetate incorporation experiments indicated that a mechanism exists for the conversion of carbon from acetyl-CoA into 2-oxoglutarate. A 2-oxoglutarate:acceptor oxidoreductase activity was present which was also assayable by isotope exchange, but no 2-oxoglutarate dehydrogenase complex activity could be detected. Heliobacteria appear to use a type of incomplete reductive carboxylic acid pathway for the conversion of pyruvate to 2-oxoglutarate but are unable to grow autotrophically using this metabolic route due to the absence of ATP-citrate lyase.  相似文献   

14.
We developed an isotopic technique to assess mitochondrial acetyl-CoA turnover (≈citric acid flux) in perfused rat hearts. Hearts are perfused with buffer containing tracer [13C2,2H3]acetate, which forms M5 + M4 + M3 acetyl-CoA. The buffer may also contain one or two labeled substrates, which generate M2 acetyl-CoA (e.g. [13C6]glucose or [1,2-13C2]palmitate) or/and M1 acetyl-CoA (e.g. [1-13C]octanoate). The total acetyl-CoA turnover and the contributions of fuels to acetyl-CoA are calculated from the uptake of the acetate tracer and the mass isotopomer distribution of acetyl-CoA. The method was applied to measurements of acetyl-CoA turnover under different conditions (glucose ± palmitate ± insulin ± dichloroacetate). The data revealed (i) substrate cycling between glycogen and glucose-6-P and between glucose-6-P and triose phosphates, (ii) the release of small excess acetyl groups as acetylcarnitine and ketone bodies, and (iii) the channeling of mitochondrial acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Because of this channeling, the labeling of acetylcarnitine and ketone bodies released by the heart are not proxies of the labeling of mitochondrial acetyl-CoA.  相似文献   

15.
Abstract Hydrogen emission by wood-feeding termites, Coptotermes formosanus, Reticulitermes flavipes and Reticulitermes virginicus, was investigated upon a cellulosic substrate as their food source. The emission rates among the three species tested were significantly different and R. virginicus demonstrated the greatest H2 emission at 4.78 ± 0.15 μmol/h/g body weight. In a sealed test apparatus, H2 emission for each termite species showed a quick increase at the initial incubation hours (3–6 h), followed by a slower growth, possibly due to the feedback inhibition by gas accumulation. Further investigation revealed that continuous H2 emission could be maintained by reducing the H2 partial pressure in the sealed container. The bioconversion of cellulose to molecular H2 by the subterranean termites tested could reach as high as 3 858 ± 294 μmol/g cellulose, suggesting that the termite gut system is unique and efficient in H2 conversion from cellulosic substrate.  相似文献   

16.
Citr+Lactococcus lactis subsp. lactis 3022 produced more biomass and converted most of the glucose substrate to diacetyl and acetoin when grown aerobically with hemin and Cu2+. The activity of diacetyl synthase was greatly stimulated by the addition of hemin or Cu2+, and the activity of NAD-dependent diacetyl reductase was very high. Hemin did not affect the activities of NADH oxidase and lactate dehydrogenase. These results indicated that the pyruvate formed via glycolysis would be rapidly converted to diacetyl and that the diacetyl would then be converted to acetoin by the NAD-dependent diacetyl reductase to reoxidize NADH when the cells were grown aerobically with hemin or Cu2+. On the other hand, the YGlu value for the hemincontaining culture was lower than for the culture without hemin, because acetate production was repressed when an excess of glucose was present. However, in the presence of lipoic acid, an essential cofactor of the dihydrolipoamide acetyltransferase part of the pyruvate dehydrogenase complex, hemin or Cu2+ enhanced acetate production and then repressed diacetyl and acetoin production. The activity of diacetyl synthase was lowered by the addition of lipoic acid. These results indicate that hemin or Cu2+ stimulates acetyl coenzyme A (acetyl-CoA) formation from pyruvate and that lipoic acid inhibits the condensation of acetyl-CoA with hydroxyethylthiamine PPi. In addition, it appears that acetyl-CoA not used for diacetyl synthesis is converted to acetate.  相似文献   

17.
A homobutanol fermentation pathway was engineered in a derivative of Escherichia coli B (glucose [glycolysis] => 2 pyruvate + 2 NADH; pyruvate [pyruvate dehydrogenase] => acetyl-CoA + NADH; 2 acetyl-CoA [butanol pathway enzymes] + 4 NADH => butanol; summary stoichiometry: glucose => butanol). Initially, the native fermentation pathways were eliminated from E. coli B by deleting the genes encoding for lactate dehydrogenase (ldhA), acetate kinase (ackA), fumarate reductase (frdABCD), pyruvate formate lyase (pflB), and alcohol dehydrogenase (adhE), and the pyruvate dehydrogenase complex (aceEF-lpd) was anaerobically expressed through promoter replacement. The resulting strain, E. coli EG03 (ΔfrdABCD ΔldhA ΔackA ΔpflB Δ adhE ΔpdhR ::pflBp6-aceEF-lpd ΔmgsA), could generate 4 NADH for every glucose oxidized to two acetyl-CoA through glycolysis and the pyruvate dehydrogenase complex. However, EG03 lost its ability for anaerobic growth due to the lack of NADH oxidation pathways. When the butanol pathway genes that encode for acetyl-CoA acetyltransferase (thiL), 3-hydroxybutyryl-CoA dehydrogenase (hbd), crotonase (crt), butyryl-CoA dehydrogenase (bcd, etfA, etfB), and butyraldehyde dehydrogenase (adheII) were cloned from Clostridium acetobutylicum ATCC 824, and expressed in E. coli EG03, a balanced NADH oxidation pathway was established for homobutanol fermentation (glucose => 4 NADH + 2 acetyl-CoA => butanol). This strain was able to convert glucose to butanol (1,254 mg l(-1)) under anaerobic condition.  相似文献   

18.
RNA synthesis during morphogenesis of the fungusMucor racemosus   总被引:6,自引:0,他引:6  
Bacteroides succinogenes produces acetate and succinate as major products of carbohydrate fermentation. An investigation of the enzymes involved indicated that pyruvate is oxidized by a flavin-dependent pyruvate cleavage enzyme to acetyl-CoA and CO2. Active CO2 exchange is associated with the pyruvate oxidation system. Reduction of flavin nucleotides is CoASH-dependent and does not require ferredoxin. Acetyl-CoA is further metabolized via acetyl phosphate to acetate and ATP. Reduced flavin nucleotide is used to reduce fumarate to succinate by a particulate flavin-specific fumarate reductase reaction which may involve cytochrome b. Phosphoenolpyruvate (PEP) is carboxylated to oxalacetate by a GDP-specific PEP carboxykinase. Oxalacetate, in turn, is converted to malate by a pyridine nucleotide-dependent malate dehydrogenase. The organism has a NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. The data suggest that reduced pyridine nucleotides generated during glycolysis are oxidized in malate formation and that the electrons generated during pyruvate oxidation are used to reduce fumarate to succinate.  相似文献   

19.
Anaerobic Degradation of Uric Acid by Gut Bacteria of Termites   总被引:1,自引:2,他引:1       下载免费PDF全文
A study was done of anaerobic degradation of uric acid (UA) by representative strains of uricolytic bacteria isolated from guts of Reticulitermes flavipes termites. Streptococcus strain UAD-1 degraded UA incompletely, secreting a fluorescent compound into the medium, unless formate (or a formicogenic compound) was present as a cosubstrate. Formate functioned as a reductant, and its oxidation to CO2 by formate dehydrogenase provided 2H+ + 2e needed to drive uricolysis to completion. Uricolysis by Streptococcus UAD-1 thus corresponded to the following equation: 1UA + 1formate → 4CO2 + 1acetate + 4NH3. Urea did not appear to be an intermediate in CO2 and NH3 formation during uricolysis by strain UAD-1. Formate dehydrogenase and uricolytic activities of strain UAD-1 were inducible by growth of cells on UA. Bacteroides termitidis strain UAD-50 degraded UA as follows: 1UA → 3.5 CO2 + 0.75acetate + 4NH3. Exogenous formate was neither required for nor stimulatory to uricolysis by strain UAD-50. Studies of UA catabolism by Citrobacter strains were limited, because only small amounts of UA were metabolized by cells in liquid medium. Uricolytic activity of such bacteria in situ could be important to the carbon, nitrogen, and energy economy of R. flavipes.  相似文献   

20.
In hydrolysates of the eastern subterranean termite, Reticulitermes flavipes, the most abundant protein amino acids (μmoles) were glycine, alanine, and glutamic acid; the least abundant were methionine and histidine. Sawdust from both sound and Lenzites trabea-decayed sapwood blocks of sugar maple, loblolly pine, and slash pine was force-fed to termites. A diet of decayed rather than sound wood had little effect on protein amino acid composition of the termites; glycine content varied the most. In contrast, diet affected the free amino acid composition. Except for glutamic acid, the major protein amino acids of the termites were not the predominant free amino acids. Tyrosine and histidine were relatively more abundant as free than as protein amino acids. Greatest differences in protein amino acid compositions of sound and decayed wood were in contents of glycine, leucine, lysine, and arginine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号