首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the NADPH-Fe-induced peroxidation of liver microsomal lipids products are formed which are provided with cytopathological activities. In a previous study one of the major products was identified as an aldehyde of the 4-hydroxyalkenal class, namely 4-hydroxynonenal. In the present study another cytotoxic product has been isolated and identified as 4,5-dihydroxy-2,3-decenal. The isolation was performed by means of thin-layer chromatography and high-pressure liquid chromatography and the structure was ascertained mainly by means of mass spectroscopy of the free aldehyde and of its derivatives. In the absence of NADPH-Fe liver microsomes produced no 4,5-dihydroxydecenal. The inhibitory activity of 4,5-dihydroxydecenal on microsomal glucose-6-phosphatase is somewhat lower than that exhibited by 4-hydroxynonenal. This lower inhibitory activity correlates with the lower capacity to bind to the microsomal protein of 4,5-dihydroxydecenal as compared to 4-hydroxynonenal. The reactivities of the two aldehydes with cysteine were comparable. The production of toxic aldehydes may represent a mechanism by which lipid peroxidation causes deleterious effects on cellular functions.  相似文献   

2.
Aldehydes released during peroxidation of liver microsomal lipids and identified as 4-hydroxyalkenals (4-hydroxynonenal being quantitatively the most significant) strongly inhibited the calcium sequestration activity of liver microsomes. The ID50 for 4-hydroxynonenal was 42 microM. The inhibition appeared to be correlated with the amount of the aldehyde bound to the microsomal protein. In rats intoxicated with BrCCl3 significant amounts of protein-bound aldehydes were formed at only 5 min after poisoning, a time at which the calcium sequestring capacity is markedly inhibited.  相似文献   

3.
Lipid peroxidation in cellular membranes leads to the formation of toxic aldehydes. One product provided with particular reactivity has been identified as 4-hydroxynonenal and thoroughly studied as one of the possible mediators of the cellular injury induced by pro-oxidants. In the present study we have searched for the presence of 4-hydroxynonenal and other lipid peroxidation products in the liver of bromobenzene-poisoned mice, since under this experimental condition the level of lipid peroxidation is much greater than in the case of CCl4 or BrCCl3 hepatotoxicity. 4-Hydroxynonenal was looked for in liver extracts as either free aldehyde or its 2,4-dinitrophenylhydrazone derivative. In both cases, by means of thin-layer chromatography (TLC) and high-pressure liquid chromatography, a well resolved peak corresponding to the respective standards (free aldehyde or 2,4-dinitrophenylhydrazone derivative) was obtained. Total carbonyls present in the liver of intoxicated animals were detected as 2,4-dinitrophenylhydrazone derivatives. The hydrazones were pre-separated by TLC into three fractions according to different polarity (polar, non-polar, fraction I, and non-polar, fraction II). The amounts of carbonyls present in each fraction were determined by ultraviolet-visible spectroscopy. 'Non-polar carbonyls, fraction II' were further fractionated by TLC. The fraction containing alkanals and alk-2-enals was analyzed by high-pressure liquid chromatography and several aldehydes were identified. In addition, protein bound carbonyls were determined in the liver of bromobenzene-treated mice. The biological implications of the finding of 4-hydroxynonenal and other carbonyls in vivo in an experimental model of hepatotoxicity are discussed.  相似文献   

4.
During the NADPH-Fe induced peroxidation of liver microsomal lipids, products are formed which show various cytopathological effects including inhibition of microsomal glucose-6-phosphatase. The major cytotoxic substance has been isolated and identified as 4-hydroxy-2,3-trans-nonenal. The structure was ascertained by means of ultraviolet, infrared and mass spectrometry and high-pressure liquid chromatographic analysis. Moreover, 4-hydroxynonenal, prepared by chemical synthesis, was found to reproduce the biological effects brought about by the biogenic aldehyde. Preliminary investigations suggest that as compared to 4-hydroxynonenal very low amounts of other 4-hydroxyalkenals, namely 4-hydroxyoctenal, 4-hydroxydecenal and 4-hydroxyundecenal are also formed by actively peroxidizing liver microsomes. In the absence of NADPH-Fe liver microsomes produced only minute amounts of 4-hydroxyalkenals. The biochemical and biological effects of synthetic 4-hydroxyalkenals have been studied in great detail in the past. The results of these investigations together with the finding that 4-hydroxyalkenals, in particular 4-hydroxynonenal, are formed during NADPH-Fe stimulated peroxidation of liver microsomal lipids, may help to elucidate the mechanism by which lipid peroxidation causes deleterious effects on cells and cell constituents.  相似文献   

5.
Lipid peroxidation in microsomal membranes produces a large number of aldehydes, alcohols, and ketones, some of which have been shown to be cytotoxic. This study has determined the kinetic parameters for the oxidation of aldehyde lipid peroxidation products by purified rat hepatic microsomal aldehyde dehydrogenase (ALDH). Livers were obtained from male Sprague-Dawley rats for preparation of microsomal ALDH which was purified 400-fold. Kinetic parameters, Vmax and V/K, were determined for saturated and unsaturated aldehydes of three to nine carbons in length in the presence of NAD+. Of the aldehydes examined, only acrolein and 4-hydroxynonenal were not oxidized by ALDH. The Vmax values (mumol NADH produced/min/mg protein) increased linearly with carbon chain length and ranged from 6.5 to 23 for the saturated series and 4.0 to 9.0 for the unsaturated aldehydes. The affinity constant V/K (nmol NADH produced/min/mg protein/nmol aldehyde/liter) also increased with carbon chain length and ranged from 12 to 9000 for the saturated aldehydes and 13 to 5300 for the unsaturated aldehydes. These results suggest that microsomal ALDH may serve a biological role for detoxification of reactive aldehydes produced by lipid peroxidation of microsomal membranes.  相似文献   

6.
Lipid peroxidation in the liver of carcinogen-resistant rats   总被引:3,自引:0,他引:3  
Recently, we developed a new strain of rats that exhibit marked resistance to the hepatotoxic and carcinogenic actions of 3'-methyl-4-dimethylaminoazobenzene (3'-MeDAB) and some other carcinogens. In this work, we compared lipid peroxidation in the liver of these carcinogen-resistant (R) rats and the parental Donryu strain rats that are sensitive (S) to hazardous actions of these carcinogens. The liver microsomal fractions of the R group contained less amounts of polyunsaturated fatty acids. Microsomal lipid peroxidation in the presence of exogenous NADPH was much lower in R rats than in S rats. Liver microsomes of R rats were much less active than those of S rats also in producing 4-hydroxynonenal, carbonyl compounds and conjugated diene. The hepatic contents of ascorbic acid, glutathione, alpha-tocopherol and coenzyme Q in the R rats were similar to those in S rats. The activities of the free radical scavenger enzymes, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), in the two groups were also similar. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are both thought to function in disposal of these cytotoxic aldehydes. The liver microsomal and mitochondrial ALDH activities of the two groups were similar. The ADH activity of the liver cytosolic fraction of R rats was nearly twice that of S rats, as measured with 4-hydroxynonenal as substrate. The higher ADH activity may explain the decreased lipid peroxidation in R rats at least partly, if this enzyme is involved in lipid peroxidation.  相似文献   

7.
The metabolism of the lipid peroxidation product 4-hydroxynonenal and of several other related aldehydes by isolated hepatocytes and rat liver subcellular fractions has been investigated. Hepatocytes rapidly metabolize 4-hydroxynonenal in an oxygen-independent process with a maximum rate (depending on cell preparation) ranging from 130 to 230 nmol/min per 10(6) cells (average 193 +/- 50). The aldehyde is also rapidly utilized by whole rat liver homogenate and the cytosolic fraction (140 000 g supernatant) supplemented with NADH, whereas purified nuclei, mitochondria and microsomes supplemented with NADH show no noteworthy consumption of the aldehyde. In cytosol, the NADH-mediated metabolism of the aldehyde exhibits a 1:1 stoichiometry, i.e. 1 mol of NADH oxidized/mol of hydroxynonenal consumed, and the apparent Km value for the aldehyde is 0.1 mM. Addition of pyrazole (10 mM) or heat inactivation of the cytosol completely abolishes aldehyde metabolism. The various findings strongly suggest that hepatocytes and rat liver cytosol respectively convert 4-hydroxynonenal enzymically is the corresponding alcohol, non-2-ene-1,4-diol, according to the equation: CH3-[CH2]4-CH(OH)-CH = CH-CHO + NADH + H+----CH3-[CH2]4-CH(OH)-CH = CH-CH2OH + NAD+. The alcohol non-2-ene-1,4-diol has not yet been isolated from incubations with hepatocytes and liver cytosolic fractions, but was isolated in pure form from an incubation mixture containing 4-hydroxynonenal, isolated liver alcohol dehydrogenase and NADH and its chemical structure was confirmed by mass spectroscopy. Compared with liver, all other tissues possess only little ability to metabolize 4-hydroxynonenal, ranging from 0% (fat pads) to a maximal 10% (kidney) of the activity present in liver. The structure of the aldehyde has a strong influence on the rate and extent of its enzymic NADH-dependent reduction to the alcohol. The saturated analogue nonanal is a poor substrate and only a small proportion of it is converted to the alcohol. Similarly, nonenal is much less readily utilized as compared with 4-hydroxynonenal. The effective conversion of the cytotoxic 4-hydroxynonenal and other reactive aldehydes to alcohols, which are probably less toxic, could play a role in the general defence system of the liver against toxic products arising from radical-induced lipid peroxidation.  相似文献   

8.
4-Hydroxynonenal is one of the main breakdown products of lipid peroxidation. It has an antiproliferative effect, which may partly be the consequence of an interaction with cytoskeletal structures. Its effects on microtubular protein are compared with those of homologous aldehydes with the same number of carbon atoms, and with that of benzaldehyde. Unlike the other aliphatic aldehydes, this latter aldehyde does not impair microtubular functions at every concentration in the range. Nonanal has the greatest effect on tubulin polymerization, whereas it only slightly impairs colchicine binding activity. 2-Nonenal and 4-hydroxynonenal have less inhibiting effect on tubulin polymerization; their effect on colchicine binding activity is dose-dependent. The targets of 4-hydroxynonenal on tubulin are -SH groups; the action mechanism of other aldehydes has not yet been identified.  相似文献   

9.
Carbonyl compounds released during the NADPH-Fe dependent peroxidation of liver microsomal lipids and identified as 4-hydroxyalkenals (almost entirely as 4-hydroxynonenal) inhibit protein synthesis in a rabbit reticulocyte lysate. The ID50 was 0.48 mM. The inhibitory effect was reproduced by synthetic 4-hydroxynonenal. The inhibition was already evident at 1–2 min of incubation. The addition of ?SH groups to the incubation medium afforded a marked protection against the inhibition of protein synthesis. The inhibitory effect seems to be due to an interaction of the carbonyl compound with ?SH groups essential for the cellular protein synthetic machinery.  相似文献   

10.
To elucidate a possible role of membrane-bound aldehyde dehydrogenase in the detoxication of aldehydic products of lipid peroxidation, the substrate specificity of the highly purified microsomal enzyme was investigated. The aldehyde dehydrogenase was active with different aliphatic aldehydes including 4-hydroxyalkenals, but did not react with malonic dialdehyde. When Fe/ADP-ascorbate-induced lipid peroxidation of arachidonic acid was carried out in an in vitro system, the formation of products which react with microsomal aldehyde dehydrogenase was observed parallel with malonic dialdehyde accumulation.  相似文献   

11.
1. The properties and distribution of the NAD-linked unspecific aldehyde dehydrogenase activity (aldehyde: NAD+ oxidoreductase EC 1.2.1.3) has been studied in isolated cytoplasmic, mitochondrial and microsomal fractions of rat liver. The various types of aldehyde dehydrogenase were separated by ion exchange chromatography and isoelectric focusing. 2. The cytoplasmic fraction contained 10-15, the mitochondrial fraction 45-50 and the microsomal fraction 35-40% of the total aldehyde dehydrogenase activity, when assayed with 6.0 mM propionaldehyde as substrate. 3. The cytoplasmic fraction contained two separable unspecific aldehyde dehydrogenases, one with high Km for aldehydes (in the millimolar range) and the other with low Km for aldehydes (in the micromolar range). The latter can, however, be due to leakage from mitochondria. The high-Km enzyme fraction contained also all D-glucuronolactone dehydrogenase activity of the cytoplasmic fraction. The specific formaldehyde and betaine aldehyde dehydrogenases present in the cytoplasmic fraction could be separated from the unspecific activities. 4. In the mitochondrial fraction there was one enzyme with a low Km for aldehydes and another with high Km for aldehydes, which was different from the cytoplasmic enzyme. 5. The microsomal aldehyde dehydrogenase had a high Km for aldehydes and had similar properties as the mitochondrial high-Km enzyme. Both enzymes have very little activity with formaldehyde and glycolaldehyde in contrast to the other aldehyde dehydrogenases. They are apparently membranebound.  相似文献   

12.
The formation, reactivity and toxicity of aldehydes originating from lipid peroxidation of cellular membranes are reviewed. Very reactive aldehydes, namely 4-hydroxyalkenals, were first shown to be formed in autoxidizing chemical systems. It was subsequently shown that 4-hydroxyalkenals are formed in biological conditions, i.e. during lipid peroxidation of liver microsomes incubated in the NADPH-Fe systems. Our studies carried out in collaboration with Hermann Esterbauer which led to the identification of 4-hydroxynonenal (4-HNE) are reported. 4-HNE was the most cytotoxic aldehyde and was then assumed as a model molecule of oxidative stress. Many other aldehydes (alkanals, alk-2-enals and dicarbonyl compounds) were then identified in peroxidizing liver microsomes or hepatocytes. The in vivo formation of aldehydes in liver of animals intoxicated with agents that promote lipid peroxidation was shown in further studies. In a first study, evidence was forwarded for aldehydes (very likely alkenals) bound to liver micro-somal proteins of CCl4 or BrCCl3-intoxicated rats. In a second study, 4-HNE and a number of other aldehydes (alkanals and alkenals) were identified in the free (non-protein bound) form in liver extracts from bromoben-zene or ally-1 alcohol-poisoned mice. The detection of free 4-HNE in the liver of CCl4 or BrCCl3-poisoned animals was obtained with the use of an electrochemical detector, which greatly increased the sensitivity of the HPLC method. Furthermore, membrane phospho-lipids bearing carbonyl groups were demonstrated in both in vitro (incubation of microsomes with NADPH-Fe) and in vivo (CCl4 or BrCCl3 intoxication) conditions. Finally, the results concerned with the histochemical detection of lipid peroxidation are reported. The methods used were based on the detection of lipid peroxidation-derived carbonyls. Very good results were obtained with the use of fluorescent reagents for carbonyls, in particular with 3-hydroxy-2-naphtoic acid hydrazide (NAH) and analysis with confocal scanning fluorescence microscopy with image video analysis. The significance of formation of toxic aldehydes in biological membranes is discussed.  相似文献   

13.
alpha,beta-Unsaturated aldehydes were investigated in vitro for their ability to inhibit superoxide anion radical (O2-.) production in stimulated human polymorphonuclear leukocytes (PMN). The aldehydes investigated were (i) trans-4-hydroxynonenal and malonaldehyde (MDA), two toxic lipid peroxidation products; (ii) acrolein and crotonaldehyde, two air pollutants derived from fossil fuel combustion; (iii) trans,trans-muconaldehyde, a putative hematotoxic benzene metabolite. Preincubation of PMN with reactive aldehydes followed by stimulation with the oxygen burst initiator phorbol myristate acetate (PMA) resulted in a dose-dependent inhibition of O2-. production. The concentration at which 50% inhibition (IC50) was observed was 21 microM for acrolein, 23 microM for trans,trans-muconaldehyde, 27 microM for trans-4-hydroxynonenal and 330 microM for crotonaldehyde. A similar inhibitory effect by these aldehydes was observed in digitonin- and concanavalin A-stimulated PMN. MDA inhibited O2-. production in PMA-stimulated PMN by 100% at 10(-2) M but gave no inhibition at 10(-3) M. The standard aldehyde propionaldehyde did not inhibit O2-. production at 10(-3)-10(-6) M. Preincubation of PMN with acrolein in the presence of cysteine completely protected against the inhibitory effect of this reactive aldehyde. The results indicate that the ability of toxic aldehydes to inhibit O2-. production in stimulated PMN correlates directly with their alkylation potential which is a function of the electrophilicity of the beta carbon.  相似文献   

14.
Oxidative stress is known to cause oxidative protein modification and the generation of reactive aldehydes derived from lipid peroxidation. Extent and kinetics of both processes were investigated during oxidative damage of isolated rat liver mitochondria treated with iron/ascorbate. The monofunctional aldehydes 4-hydroxynonenal (4-HNE), n-hexanal, n-pentanal, n-nonanal, n-heptanal, 2-octenal, 4-hydroxydecenal as well as thiobarbituric acid reactive substances (TBARS) were detected. The kinetics of aldehyde generation showed a lag-phase preceding an exponential increase. In contrast, oxidative protein modification, assessed as 2,4-dinitrophenylhydrazine (DNPH) reactive protein-bound carbonyls, continuously increased without detectable lag-phase. Western blot analysis confirmed these findings but did not allow the identification of individual proteins preferentially oxidized. Protein modification by 4-HNE, determined by immunoblotting, was in parallel to the formation of this aldehyde determined by HPLC. These results suggest that protein oxidation occurs during the time of functional decline of mitochondria, i.e. in the lagphase of lipid peroxidation. This protein modification seems not to be caused by 4-HNE.  相似文献   

15.
1. Methods using t.l.c. and high-pressure liquid chromatography (h.p.l.c.) have been used to separate the complex variety of substances possessing a carbonyl function that are produced during lipid peroxidation. 2. The major type of lipid peroxidation studied was the ADP-Fe2+-stimulated peroxidation of rat liver microsomal phospholipids. Preliminary separation of the polar and non-polar products was achieved by t.l.c.: further separation and identification of individual components was performed by h.p.l.c. Estimations were performed on microsomal pellets and the supernatant mixture after incubation of microsomes for 30 min at 37 degrees C. 3. The polar fraction was larger than the non-polar fraction when expressed as nmol of carbonyl groups/g of liver. In the non-polar supernatant fraction the major contributors were n-alkanals (31% of the total), alpha-dicarbonyl compounds (22%) and 4-hydroxyalkenals (37%) with the extraction method used. 4. Major individual contributors to the non-polar fraction were found to be propanal, 4-hydroxynonenal, hexanal and oct-2-enal. Other components identified include butanal, pent-2-enal, hex-2-enal, hept-2-enal, 4-hydroxyoctenal and 4-hydroxyundecenal. The polar carbonyl fraction was less complex than the non-polar fraction, although the identities of the individual components have not yet been established. 5. Since these carbonyl compounds do not react significantly in the thiobarbituric acid reaction, which largely demonstrates the presence of malonaldehyde, it is concluded that considerable amounts of biologically reactive carbonyl derivatives are released in lipid peroxidation and yet may not be picked up by the thiobarbituric acid reaction.  相似文献   

16.
The effect of several aliphatic aldehydes on lipid peroxidation was evaluated by measuring the oxygen uptake rate, thiobarbituric acid-reactive products formation and the emitted visible chemiluminescence intensity. Measurements were carried out in brain homogenates and erythrocyte plasma membrane and liver microsomal fractions. In all systems studied, aldehydes (25 mmol/L) (e.g. acetaldehyde, 2,2-dimethylpropanal), increased the intensity of the luminescence associated with the oxidation process. In contrast, aldehyde incorporation decreased TBARS production and the rate of oxygen uptake. The increased luminescence intensity is explained in terms of secondary reactions of aldehyde derived free radicals. These results clearly indicate that extreme care must be exercized in the intepretation of chemiluminescence data in the presence of aldehydes. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
The effects of the lipid-peroxidation product 4-hydroxynonenal on the formation of fluorescent chromolipids from microsomes, mitochondria and phospholipids were studied. Incubation of freshly prepared rat liver microsomes or mitochondria with 4-hydroxynonenal results in a slow formation of a fluorophore with an excitation maximum at 360 nm and an emission maximum at 430 nm. The rate and extent of the development of the 430 nm fluorescence can be significantly enhanced by ADP-iron (Fe3+). With microsomes, yet not with mitochondria. NADPH has a catalytic effect similar to that of ADP-iron. Fluorescent chromolipids with maximum excitation and emission at 360/430 nm are also formed during the NADPH-linked ADP-iron-stimulated lipid peroxidation. Phosphatidylethanolamine and phosphatidylserine react with 4-hydroxynonenal revealing a fluorophore with the same spectral characteristics as that obtained in the microsomal and mitochondrial system. The findings suggest that the fluorescent chromolipids formed by lipid peroxidation are not derived from malonaldehyde, but are formed from 4-hydroxynonenal or similar reactive aldehydes via a NADPH and/or ADP-iron-catalysed reaction with phosphatidylethanolamine and phosphatidylserine contained in the membrane.  相似文献   

18.
Mutations in human Retinol Dehydrogenase 12 (RDH12) are known to cause photoreceptor cell death but the physiological function of RDH12 in photoreceptors remains poorly understood. In vitro, RDH12 recognizes both retinoids and medium-chain aldehydes as substrates. Our previous study suggested that RDH12 protects cells against toxic levels of retinaldehyde and retinoic acid [S.A. Lee, O.V. Belyaeva, I.K. Popov, N.Y. Kedishvili, Overproduction of bioactive retinoic acid in cells expressing disease-associated mutants of retinol dehydrogenase 12, J. Biol. Chem. 282 (2007) 35621-35628]. Here, we investigated whether RDH12 can also protect cells against highly reactive medium-chain aldehydes. Analysis of cell survival demonstrated that RDH12 was protective against nonanal but not against 4-hydroxynonenal. At high concentrations, nonanal inhibited the activity of RDH12 towards retinaldehyde, suggesting that nonanal was metabolized by RDH12. 4-Hydroxynonenal did not inhibit the RDH12 retinaldehyde reductase activity, but it strongly inhibited the activities of lecithin:retinol acyl transferase and aldehyde dehydrogenase, resulting in decreased levels of retinyl esters and retinoic acid and accumulation of unesterified retinol. Thus, the results of this study showed that RDH12 is more effective in protection against retinaldehyde than against medium-chain aldehydes, and that medium-chain aldehydes, especially 4-hydroxynonenal, severely disrupt cellular retinoid homeostasis. Together, these findings provide a new insight into the effects of lipid peroxidation products and the impact of oxidative stress on retinoid metabolism.  相似文献   

19.
Expression of aldehyde dehydrogenase 3A1 (ALDH3A1) in certain normal and tumor cells is associated with protection against the growth inhibitory effect of reactive aldehydes generated during membrane lipid peroxidation. We found that human lung tumor (A549) cells, which express high levels of ALDH3A1 protein, were significantly less susceptible to the antiproliferative effects of 4-hydroxynonenal compared to human hepatoma HepG2 or SK-HEP-1 cells that lack ALDH3A1 expression. However, A549 cells became susceptible to lipid peroxidation products when they were treated with arachidonic acid. The growth suppression of A549 cells induced by arachidonic acid was associated with increased levels of lipid peroxidation and with reduced ALDH3A1 enzymatic activity, protein, and mRNA levels. Furthermore, arachidonic acid treatment of the A549 cells resulted in an increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma), whereas NF-kappaB binding activity was inhibited. Blocking PPARgamma using a selective antagonist, GW9662, prevented the arachidonic acid-mediated reduction of ALDH3A1 expression as well as the growth inhibition of A549 cells, suggesting the central role of PPARgamma in these phenomena. The increase in PPARgamma and the reduction in ALDH3A1 were also prevented by exposing cells to vitamin E concomitant with arachidonic acid treatment. In conclusion, our data show that the arachidonic acid-induced suppression of A549 cell growth is associated with increased lipid peroxidation and decreased ALDH3A1 expression, which may be due to activation of PPARgamma.  相似文献   

20.
The alteration of structural and biological properties of human plasma low density lipoprotein (LDL) exposed to oxidative conditions is in part ascribed to lipid peroxidation. The objective of this investigation was to measure quantitatively several parameters in oxidizing LDL indicative for lipid peroxidation. Exposure of freshly prepared EDTA-free LDL to an oxygen-saturated buffer led to a complete depletion of alpha- and gamma-tocopherol within 6 hr, thereafter lipid peroxidation commenced as indicated by the kinetics of the loss of linoleic (18:2) and arachidonic (20:4) acids, the formation of aldehydic lipid peroxidation products and fluorescent apoB. Within 24 hr of oxidation, on average 79 nmol of 18:2 (initial 345) and 12.8 nmol of 20.4 (initial 25.6) were oxidized per mg of LDL and the sample contained in total 7.1 nmol of aldehydes with the following molar distribution: 36.6% malonaldehyde, 25% hexanal, 8.9% propanal, 8.2% 4-hydroxynonenal, 7.6% butanal, 4.1% 2.4-heptadienal, 3.4% pentanal, 3.4% 4-hydroxyhexenal, and 2.5% 4-hydroxyoctenal. Malonaldehyde was predominantly (93%) in the aqueous phase, whereas the other aldehydes remained mostly (34-98%) within the LDL particle, where the total aldehyde concentration was in the range of 12 mM. Oxidized LDL exhibited a 1.6-fold enhanced electrophoretic mobility. Similarily, native LDL incubated for 5 hr with aldehydes showed increased electrophoretic mobility. At equal concentrations (5 mM) 4-hydroxynonenal was most effective, followed by 2,4-heptadienal, hexanal, and malonaldehyde. This study reports for the first time the rate and extent of the change of LDL constituents occurring during lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号