首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Insect Biochemistry》1987,17(1):7-16
Stock adults of Culex pipiens and tarsalis reared in crude media had a third of their phospholipid fatty acids as polyunsaturates, mainly 18C but including prominent proportions of arachidonic (20:4n6) and eicosapentaenoic (20:5n3) acids. Adults reared with synthetic media devoid of polyunsaturated fatty acids and therefore unable to fly at emergence contained no more than trace amounts of any polyunsaturate. With synthetic media containing single polyunsaturates the following findings emerged. Of four polyunsaturates known to be highly effective essential fatty acids individually 20:4n6 or 20:5n3 appeared unchanged in tissue phospholipids in proportions reflecting dietary concentrations; dietary 22:4n6 or 22:6n3 (docosahexaenoic acid) appeared also as 20:4n6 or 20:5n3, respectively, retroconverted from the administered dietary fatty acids, which were detected only in traces. Two moderately effective dietary fatty acids, 18:3n6 (γ-linolenic) and 20:3n6 (homo-γ-linolenic), which support weak flight at emergence, appeared in tissue phospholipids respectively as 18:3n6 only, or as similar proportions of 18:3n6 and 20:3n6, this latter indicating shortening to the 18C analogue as well as accumulation of the dietary 20C acid. Six other polyunsaturates [18:2n6 (linoleic), 18:3n3 (linolenic) and their 20C and 22C analogues], all considered slightly effective as essential fatty acids although unable to support proper flight, appeared in tissue phospholipid in dose-related proportions as the 18C basal n6 or n3 family analogues, with only traces of the higher analogues when these were the dietary fatty acids provided, indicating sequential chain shortening within each series, n6 or n3, no interconversion of n6 and n3 members (also shown by all other data), and efficient accumulation of the resultant 18C polyunsaturates. These findings show no capability for de novo synthesis of polyunsaturated fatty acids, afford an insight into the metabolic interrelations of diet-derived polyunsaturates and indicate a primary importance for endogenous arachidonic and eicosapentaenoic acids in mosquito essential fatty acid physiology.  相似文献   

2.
The essential fatty acid requirement for normal pupal-adult ecdysis in Galleria mellonella was studied using non-axenic casein-based semisynthetic diets with or without various 99% pure fatty acids. The abilities of linoleic and linolenic acids to alleviate faulty adult emergence differed markedly, linolenic acid being 10-fold more potent than linoleic acid. One other ω6 polyunsaturated fatty acid, C20:2ω6, resembled its analogue, linoleic acid (18:2ω6), in efficacy at high dosage, but three others, C18:3ω6, C20: ω6 and C20:4ω6 (arachidonic acid), were without effect. Of five ω3 polyunsatures tested, C22:3ω3 and C20:3ω3 were as effective as linolenic acid (C18:3ω3), their shorter-chained analogue. Docosahexaenoic acid (C22:6ω3) was totally ineffective, but eicosapentaenoic acid (C20:5ω3), though supporting no perfect emergences, produced some active adults having wing malformations only, and was therefore considered partially active. It is suggested that a C18 polyunsaturate is physiologically required by G. mellonella and can be derived from various dietary longer-chained analogues by simple carbon chain shortening so long as there are no additional double bonds carboxylwards of an active di- or trienoic sequence. The partial activity of C20:5ω3 suggests there may additionally be a physiological requirement for this or a related long-chain polyunsaturate. The possibility of multiple essential fatty acid requirements in Lepidoptera in general is discussed.  相似文献   

3.
Rats were maintained for 2 weeks on a low-fat basal diet (5% energy) and a diet from which 50% of the energy was derived from butter. Lipids were extracted from aortae and platelets and the fatty acid profiles of individual phospholipids were examined. Similar responses to dietary butter enrichment occurred in PI, PS, PE and PC fractions from either tissue: 20:4(n - 6) and all other n - 6 series longer-chain polyunsaturated fatty acids except 20:3(n - 6) decreased in percentage; all n - 3 series polyunsaturated fatty acids increased, including 20:5(n - 3) and 22:6(n - 3); n - 9 series polyunsaturated fatty acids, derived from 18:1(n - 9), increased. Despite the considerable redistribution of polyunsaturated fatty acids, the percentages of total polyunsaturated fatty acids in each phospholipid were, in every case, independent of diet. None of the changes were localized in a particular phospholipid fraction. Quantitation of fatty acids using heptadecanoic acid as an internal standard revealed that the concentrations of 20:4(n - 6) in platelet and aortic PE and PC was higher than in PI fractions. Therefore, in terms of substrate amount, it appears that PC and PE as well as PI have the potential to provide endogenous 20:4(n - 6) for oxygenation to the prostanoids thromboxane A2 and prostacyclin I2.  相似文献   

4.
The accumulation and metabolism of certain polyunsaturated fatty acids by testes from the Australian field cricket, Teleogryllus commodus, are described. Testes accumulated a substantial proportion (about 16%) of label from radioactive C20:3n6 that was injected into the haemocoel. Fifty percent of the label accumulated by testes was associated with the phospholipid fraction, whereas in the remainder of the body 30% was incorporated into the phospholipid fraction. Prostaglandins (PG) E1, E2 and F2 alpha were quantified in extracts of the testes of adult insects by radioimmunoassay. Label from injected radioactive C18:2n6, C20:3n6 and C20:4n6 was recovered as prostaglandins PGE and PGF. The radioactivity from C18:2n6 that was recovered as PGE1 and PGF1 alpha indicated elongation/desaturation to C20:3n6 followed by conversion to PG. Since C18:2n6 is readily formed from acetate in T. commodus, these findings indicate the de novo biosynthesis of C20 polyunsaturated fatty acids and prostaglandins by this species.  相似文献   

5.
No data are reported on changes in mitochondrial membrane phospholipids in non-alcoholic fatty liver disease. We determined the content of mitochondrial membrane phospholipids from rats with non alcoholic liver steatosis, with a particular attention for cardiolipin (CL) content and its fatty acid composition, and their relation with the activity of the mitochondrial respiratory chain complexes. Different dietary fatty acid patterns leading to steatosis were explored. With high-fat diet, moderate macrosteatosis was observed and the liver mitochondrial phospholipid class distribution and CL fatty acids composition were modified. Indeed, both CL content and its C18:2n-6 content were increased with liver steatosis. Moreover, mitochondrial ATP synthase activity was positively correlated to the total CL content in liver phospholipid and to CL C18:2n-6 content while other complexes activity were negatively correlated to total CL content and/or CL C18:2n-6 content of liver mitochondria. The lard-rich diet increased liver CL synthase gene expression while the fish oil-rich diet increased the (n-3) polyunsaturated fatty acids content in CL. Thus, the diet may be a significant determinant of both the phospholipid class content and the fatty acid composition of liver mitochondrial membrane, and the activities of some of the respiratory chain complex enzymes may be influenced by dietary lipid amount in particular via modification of the CL content and fatty acid composition in phospholipid.  相似文献   

6.
Second generation rats depleted in long-chain polyunsaturated omega3 fatty acids display several features of the metabolic syndrome, including visceral obesity, liver steatosis, insulin resistance, hypertension, and cardiac hypertrophy. In the framework of an extensive study on such metabolic, hormonal and functional perturbations, the phospholipid fatty acid pattern and ex vivo metabolism of D-glucose were recently investigated in the soleus muscle of these omega3-depleted rats. The present study deals with the triglyceride fatty acid content and pattern of the soleus muscle in control animals and omega3-depleted rats. Some of the latter rats were injected intravenously 60-120 minutes before sacrifice with either an omega3 fatty acid-rich medium-chain triglyceride/fish oil emulsion (omega3-FO rats) or a control medium-chain triglyceride/olive oil emulsion (omega3-OO rats). The total fatty acid content of triglycerides was comparable in control and omega3-depleted rats and, in both cases, inversely related to their C20:4omega6 relative content. At variance with the situation found in control rats, no long-chain polyunsaturated omega3 fatty acid (C18:3omega3, C20:5omega3, C22:5omega3, C22:6omega3) was detected in the omega3-depleted rats. Unexpectedly, the triglyceride content in most long-chain polyunsaturated omega6 fatty acids (C18:2omega6, C20:3omega6, C20:4omega6 and C22:4omega6) had also decreased in the latter rats. Moreover, the activity of Delta9-desaturase was apparently increased in the omega3-depleted rats, as judged from the C16:1omega7/C16:0 and C18:1omega9/C18:0 ratios. The omega3-FO rats differed from omega3-OO rats by a lower contribution of C18:2omega6 metabolites (C18:3omega6, C20:3omega6, C20:4omega6 and C22:4omega6). These findings indicate that the prior injection of the medium-chain triglyceride/fish oil emulsion, known to increase the muscle phospholipid content in long-chain polyunsaturated omega3 fatty acids, may nevertheless accentuate the depletion in long-chain polyunsaturated omega6 fatty acids otherwise found in the triglycerides of omega3-depleted rats. Such a dual effect is reminiscent of that observed, under the same experimental conditions, for selected variables in D-glucose metabolism in the soleus muscle.  相似文献   

7.
The effects of dietary n - 3 polyunsaturated fatty acids (PUFA) on fatty acid profiles of rat brain phospholipid subclasses as well as on heart phosphatidylethanolamine through two generations were examined: Three groups of rats were fed 20 weight% fat diets in which approx. 30% of the fatty acids were polyunsaturated, either 17% linoleic acid + 13% C20(-) + C22 polyunsaturates from fish oil or 17% linoleic + 13% alpha-linolenic acid from linseed oil or 30% linoleic acid. The rats of the two generations were killed as adults at 18 weeks of age. The results demonstrated that fish oil was a better source than alpha-linolenic acid for incorporation of n - 3 PUFA into the examined phospholipids. This was seen both in brain and heart tissue and in both generations of rats. In the brain phosphatidylethanolamine (PE) and phosphatidylserine (PS) similar fatty acid profiles were found in 1st and 2nd generation, but fish oil was more efficient than 18:3(n - 3) in increasing the levels of 22:6(n - 3), 20:5(n - 3), 22:5(n - 3) and reducing 20:4(n - 6) and 22:5(n - 6). Fatty acid profiles of phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP) and phosphatidylinositol-4,5-bisphosphate (PIP2) were affected by dietary fats. In PIP and PIP2 of 2nd generation rats 20:4(n - 6) was reduced from 36 to 29% following fish oil intake, whereas alpha-linolenic acid had no effects. The cholesterol/phospholipid ratio was not affected in the brain, neither was the degree of unsaturation of the phospholipids. In heart PE the highest levels of 20:5(n - 3)(2%) and 22:6(n - 3) (36%) were observed following fish oil intake. However, in rats fed alpha-linolenic acid a considerable increase in the level of 22:6(n - 3) was observed from the 1st (21%) to the 2nd generation (26%).  相似文献   

8.
The purpose of the present study was to investigate the relation between adipose tissue polyunsaturated fatty acids, an index of long-term or habitual fatty acid dietary intake and depression. The sample consisted of 90 adolescents from the island of Crete. There were 54 girls and 36 boys, aged 13-18. The mean age was 15.2 years. Subjects were examined by the Preventive Medicine and Nutrition Clinic of the University of Crete. Depression was assessed through the use of the Beck Depression Inventory (BDI) and the Center for Epidemiologic Studies Depression Scale (CES-D). Unlike other studies, there were no significant relations between adipose tissue n-3 or n-6 polyunsaturated fatty acids and depression. BDI correlated positively with adipose tissue C20:3n-6/C18:3n-6 ratio, while CES-D correlated positively with adipose tissue (C20:3n-6+C22:5n-3)/(C18:3n-6+C20:5n-3) ratio. Depressed subjects (BDI>16, CES-D>16) had significantly elevated adipose tissue C20:3n-6/C18:3n-6 and (C20:3n-6+C22:5n-3)/(C18:3n-6+C20:5n-3) ratios, than non-depressed subjects. The observed positive relation between depression and the particular fatty acid ratios, in the present study, appears to indicate increasing activity of elongases, the enzymes responsible for elongating polyunsaturated fatty acids into their longer-chain derivatives, with increasing depression. This is the first literature report of a possible relation between elongases and depression. The observed relation may stem from a possible over-expression of the HELO1 (ELOVL5) gene, the gene encoding a protein responsible for elongating long-chain polyunsaturated fatty acids, in the adipose tissue of depressed adolescents.  相似文献   

9.
We present the phospholipid fatty acid compositions, determined by GLC,* of four individual tissues (testes, mushroom glands, conglobate glands, and salivary glands) from adult male cockroaches, P. americana. The testes phospholipids contained higher proportions of palmitic acid than did the exocrine tissues (16% vs about 8%). This was also true for palmitoleic (2.3% vs 0.4–1.3%), oleic (49% vs 30–35%), and linolenic acids (7% vs 0.5–2.8%). Testicular extracts were lower in linoleic acid (16%) than were the exocrine gland extracts (at 40–45%). All four tissues also contained low proportions of several long-chain polyunsaturated fatty acids of both omega-3 and omega-6 metabolic families, including C20:3n6, C20:4n6, and C20:5n3. The data suggest that the phospholipid fatty acid profiles of specific tissues differ from each other and from those obtained from whole-insect extracts. The presence of several polyenoics from the n3 and n6 metabolic families is interpreted in the context of complex fatty acid requirements at the tissue level.  相似文献   

10.
The phospholipid composition of Steinernema carpocapsae was studied in relation to diet and culture temperature. When reared at 18 and 27.5 C on Galleria mellonella or on an artificial diet supplemented with lard, linseed oil, or fish oil as lipid sources, nematode phospholipids contained an abundance of 20-carbon polyunsaturated fatty acids, with eicosapentaenoic acid (20:5(n - 3)) predominant, regardless of the fatty acid composition of the diet. Because the level of linolenic acid (18:3(n - 3)) in nematode phospholipids was very low and because eicosapentaenoic acid was present even when its precursor (linolenic acid) was undetectable in the diet, S. carpocapsae likely produces n - 3 polyunsaturated fatty acids by de novo biosynthesis, a pathway seldom reported in eukaryotic animals. Reduction of growth temperature from 25 to 18 C increased the proportion of 20:5(n - 3) but not other polyunsaturated fatty acids. A fluorescence polarization technique revealed that vesicles produced from phospholipids of nematodes reared at 18 C were less ordered than those from nematodes reared at 27.5 C, especially in the outermost region of the bilayer. Dietary fish oil increased fluidity in the outermost region but increased rigidity in deeper regions. Therefore, S. carpocapsae appears to modify its membrane physical state in response to temperature, and eicosapentaenoic acid may be involved in this response. The results also indicate that nematode membrane physical state can be modified dietarily, possibly to the benefit of host-finding or survival of S. carpocapsae at low temperatures.  相似文献   

11.
A feeding trial was conducted to determine the effect of replacing costly cod liver oil with corn oil as a source of dietary lipid on the growth and fatty acid composition of the larval freshwater prawn, Macrobrachium rosenbergii de Man. Prawn larvae were weaned to artificial diets containing cod liver oil and corn oil either singly or in various combinations (2 : 1, 1 : 1, 1 : 2, w/w). Weaning to artificial diets from Artemia nauplii commenced at larval stage III with complete substitution by stage X. The reference group was reared solely on Artemia nauplii during the entire experiment. Incorporation of corn oil at 33–67% of dietary supplemental oil did not have significant effects on the post‐larval production. However, larvae fed with corn oil alone revealed a significantly lower post‐larval production compared to other experimental diets as well as to the reference group. No significant differences (P > 0.05) were observed in dry weight, protein and lipid concentration among larvae fed on various dietary treatments. Palmitic (16 : 0) and oleic/vaccenic (18 : 1) acids were the dominant saturated and monounsaturated fatty acids in larval tissues, respectively, whereas the polyunsaturated fraction was dominated by eicosapentaenoic (20 : 5n‐3) acid. The polyunsaturated fatty acid composition was dominated by n‐3 acids rather than n‐6 fatty acids. The fatty acid composition of the prawn in general reflected that of the diet. Larvae on diets containing higher concentrations of corn oil rich in linoleic (18 : 2n‐6) acid showed a higher concentration of this acid in their tissues. No evidence of de novo synthesis of linoleic (18 : 2n‐6) acid was found. Higher levels of stearic (18 : 0), arachidonic (20 : 4n‐6) and eicosapentaenoic (20 : 5n‐3) acids found in larvae as compared with those fed Artemia and artificial diets strongly indicated the larval ability in chain elongation and desaturation of palmitic (16 : 0), linoleic (18 : 2n‐6) or linolenic (18 : 3n‐3) acids, respectively. Despite a large variation of n‐3 to n‐6 ratios of the live and artificial diets, larval n‐3 to n‐6 ratios were relatively stable among different dietary treatments, possibly indicative of the importance of such a ratio in the larval fatty acid metabolism.  相似文献   

12.
Rats depleted in long-chain polyunsaturated omega3 fatty acids (omega3-depleted rats) display several features of the metabolic syndrome including hypertension and cardiac hypertrophy. This coincides with alteration of the cardiac muscle phospholipid and triacylglycerol fatty acid content and/or pattern. In the present study, the latter variables were measured in the cardiac endothelium of normal and omega3-depleted rats. Samples derived from four rats each were obtained from 16 female normal fed rats and three groups of 36-40 female fed omega3-depleted rats each aged 8-9, 15-16 and 22-23 weeks. At comparable mean age, the ratio between the square root of the total fatty acid content of phospholipids and cubic root of the total fatty acid content of triacylglycerols was lower in omega3-depleted rats than in control animals. The total fatty acid content of triacylglycerols was inversely related to their relative content in C20:4omega6. Other differences between omega3-depleted rats and control animals consisted in a lower content of long-chain polyunsaturated omega3 fatty acids in both phospholipids and triacylglycerols, higher content of long-chain polyunsaturated omega6 fatty acids in phospholipids, higher activity of delta9-desaturase (C16:0/C16:1omega7 and C18:0/C18:1omega9 ratios) and elongase [(C16:0 + C16:1omega7)/(C18:0 + C18:1omega9) and C20:4omega6/C22:4omega6 ratios], but impaired generation of C22:6omega3 from C22:5omega3 in the former rats. These findings support the view that cardiovascular perturbations previously documented in the omega3-depleted rats may involve impaired heart endothelial function.  相似文献   

13.
The uptake and integrated intracellular metabolism of (n - 6) and (n - 3) polyunsaturated fatty acids was studied in isolated rat cardiac myocytes and in the perfused heart. Labeled linolenic acid (18:3(n - 3)) uptake and its subsequent metabolism into carbon dioxide as well as acylation into lipids was nonsaturable over a substrate range of 0.02 to 0.4 mM. [1-14C]Linoleic acid (18:2(n - 6)), dihomo-gamma-linolenic acid (20:3(n - 6)) and arachidonic acid (20:4(n - 6)) were transported into myocytes at rates similar to those for linolenic acid. Conversely both [1-14C]-gamma-linolenic acid (18:3(n - 6)) and eicosapentaenoic acid (20:5(n - 3)) were taken up at a slower rate. Oxidation of 18:3(n - 6) was 4-5-fold greater when compared with C18-C20 polyunsaturated fatty acids. When myocytes were incubated with labeled 18:2(n - 6), 18:3(n - 6), 18:3(n - 3), 20:4(n - 6) or 20:5(n - 3), it was not possible to detect any desaturation or chain-elongation products. Identical results were obtained when hearts were perfused with 1-14C-labeled linoleic acid.  相似文献   

14.
Diets rich in unsaturated and polyunsaturated fatty acids have a positive effect on mammalian torpor, whereas diets rich in saturated fatty acids have a negative effect. To determine whether the number of double bonds in dietary fatty acids are responsible for these alterations in torpor patterns, we investigated the effect of adding to the normal diet 5% pure fatty acids of identical chain length (C18) but a different number of double bonds (0, 1, or 2) on the pattern of hibernation of the yellow-pine chipmunk, Eutamias amoenus. The response of torpor bouts to a lowering of air temperature and the mean duration of torpor bouts at an air temperature of 0.5°C (stearic acid C18:0, 4.5±0.8 days, oleic acid C18:1, 8.6±0.5 days; linoleic acid C18:2, 8.5±0.7 days) differed among animals that were maintained on the three experimental diets. The mean minimum body temperatures (C18:0, +2.3±0.3°C; C18:1, +0.3±0.2°C; C18:2,-0.2±0.2°C), which torpid individuals defended by an increase in metabolic rate, and the metabolic rate of torpid animals also differed among diet groups. Moreover, diet-induced differences were observed in the composition of total lipid fatty acids from depot fat and the phospholipid fatty acids of cardiac mitochondria. For depot fat 7 of 13 and for heart mitochondria 7 of 14 of the identified fatty acids differed significantly among the three diet groups. Significant differences among diet groups were also observed for the sum of saturated, unsaturated and polyunsaturated fatty acids. These diet-induced alterations of body fatty acids were correlated with some of the diet-induced differences in variables of torpor. The results suggest that the degree of unsaturation of dietary fatty acids influences the composition of tissues and membranes which in turn may influence torpor patterns and thus survival of hibernation.Abbreviations bm body mass - T a air temperature - T b body temperature - FA fatty acid - MR metabolic rate - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - VO2 rate of oxygen consumption - SFA saturated fatty acids - UFA unsaturated fatty acids - UI unsaturation index - SNK Student-Newman-Keuls test  相似文献   

15.
Fatty acids in fish can arise from two sources: synthesis de novo from non‐lipid carbon sources within the animal, or directly from dietary lipid. Acetyl‐CoA derived mainly from protein can be converted to saturated fatty acids via the combined action of acetyl‐CoA carboxylase and fatty acid synthetase. The actual rate of fatty acid synthesis de novo is inversely related to the level of lipid in the diet. Freshwater fish can de‐saturate endogenously‐synthesized fatty acids to monounsaturated fatty acids via a A9 desaturase but lack the necessary enzymes for complete de novo synthesis of polyunsaturated fatty acids which must therefore be obtained preformed from the diet. Most freshwater fish species can desaturate and elongate 18:2(n‐6) and 18:3(n‐3) to their C20 and C22 homologues but the pathways involved remain ill‐defined. Cyclooxygenase and lipoxygenase enzymes can convert C20 polyunsaturated fatty acids to a variety of eicosanoid products. The dietary ratio of (n‐3) to (n‐6) polyunsaturated fatty acids influences the pattern of eicosanoids formed. The ß‐oxidation of fatty acids can occur in both mitochondria and peroxisomes but mi‐tochondrial ß‐oxidation is quantitatively more important and can utilise a wide range of fatty acid substrates.  相似文献   

16.
Three 14C-labeled 22-carbon polyunsaturated fatty acids, 7,10,13,16-[14C]docosatetraenoic acid (22:4(n-6)), 7,10,13,16,19-[14C]docosapentaenoic acid (22:5(n-3)), and 4,7,10,13,16,19-[14C]docosahexaenoic acid (22:6(n-3)), were compared with [3H]arachidonic acid (20:4(n-6] and [14C]linoleic acid (18:2(n-6)) to characterize their incorporation into the lipids of Ehrlich ascites cells. The relatively rapid incorporation of the labeled 22-carbon acids into phosphatidic acid indicated that substantial amounts of these acids may be incorporated through the de novo pathway of phospholipid synthesis. In marked contrast to 20:4(n-6), the 22-carbon acids were incorporated much less into choline glycerophospholipids (CGP) and inositol glycerophospholipids (IGP). No selective preference was apparent for the (n-3) or (n-6) type of fatty acids. The amounts of the acids incorporated into diacylglycerophosphoethanolamine were in the order of: 22:6(n-3) greater than 20:4(n-6) much greater than 22:5(n-3) greater than or equal to 22:4(n-6) greater than 18:2(n-6), whereas for alkylacylglycerophosphoethanolamine they were in the order of: 22:4(n-6) greater than 22:6(n-3) greater than 22:5(n-3) much greater than 20:4(n-6) greater than 18:2(n-6). Of the mechanisms possibly responsible for the selective entry of 22-carbon acids into ethanolamine glycerophospholipids, the most reasonable explanation was that the cytidine-mediated ethanolamine phosphotransferase may have a unique double selectivity: for hexaenoic species of diacylglycerol and for 22-carbon polyunsaturated fatty acid-containing species of alkylacylglycerol. The relative distribution of fatty acids between newly incorporated and already maintained lipid classes suggested that IGP may function in Ehrlich cells as an intermediate pool for the retention of polyunsaturated fatty acids in glycerolipids.  相似文献   

17.
The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is a serious pest of fruit crops in Asia, several Pacific Islands and sometimes the western United States, particularly California. Sterile insect technique programs have been developed for management of several tephritid fruit fly pests. These programs are based on continuous production of adult fruit flies. The high expense of mass-rearing oriental fruit flies drives research to improve the cost effectiveness of rearing programs. One recent improvement for mass rearing oriental fruit flies involves adding wheat germ oil (WGO) to the larval culture medium, which improved several parameters of biological performance. The performance enhancing influence of WGO is due to the presence of polyunsaturated fatty acids (PUFAs), some of which are nutritionally essential for many insect species. We considered the issue of whether WGO supplementation of the larval culture medium influences the fatty acid make up of adult tissues. We report that WGO supplementation led to substantial increases in adult tissue C18 PUFAs. Unlike the outcomes of unrelated nutritional studies on moths, the PUFA components of WGO did not improve adult fruit fly performance. Taken with recent publications reporting that WGO in larval diets influences gene expression, we conclude that dietary WGO improves biological performance of adults through changes in tissue C18 PUFAs and gene expression.  相似文献   

18.
Tuatara (Sphenodon) are rare reptiles endemic to New Zealand. Wild tuatara on Stephens Island (study population) prey on insects as well as the eggs and chicks of a small nesting seabird, the fairy prion (Pachyptila turtur). Tuatara in captivity (zoos) are fed diets containing different insects and lacking seabirds. We compared the fatty acid composition of major dietary items and plasma of wild and captive tuatara. Fairy prions (eaten by tuatara in the wild) were rich in C20 and C22 polyunsaturated fatty acids (PUFA), especially the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In contrast, items from the diet of captive tuatara contained no C20 and C22 PUFA and were higher in medium-chain and less unsaturated fatty acids. Plasma from wild tuatara was higher in n-3 PUFA [including alpha-linoleic acid (C18:3n-3), EPA and DHA], and generally lower in oleic acid (C18:1) and palmitic acid (C16:0), than plasma from captive tuatara in the various fractions (phospholipid, triacylglycerol, cholesterol ester and free fatty acids). Plasma from wild adult tuatara showed strong seasonal variation in fatty acid composition, reflecting seasonal consumption of fairy prions. Differences in the composition of diets and plasma between wild and captive tuatara may have consequences for growth and reproduction in captivity. Accepted: 3 August 1998  相似文献   

19.
The de novo biosynthesis of 5,11,14-eicosatrienoic acid (5,11,14-20:3), arachidonic acid (20:4(n - 6] and eicosadienoic acid (20:2(n - 6] and the elongation/desaturation of linoleic acid (18:2(n - 6] to 20:4(n - 6) and alpha-linolenic acid (18:3(n - 3] to eicosapentaenoic acid (20:5(n - 3] were demonstrated in adult males of the field cricket Teleogryllus commodus. Sodium [1-14C]acetate, [1-14C]18:2(n - 6) and [1-14C]18:3(n - 3) were injected into adult male crickets and after an incubation period, the testes and remaining tissues were extracted and the methyl esters obtained from the phospholipid and triacylglycerol fractions were analyzed. After 5 days of daily injections of [1-14C]acetate, the methyl esters of the triene and tetraene fatty acids from the testicular phospholipid fraction were purified by AgNO3-TLC and HPLC and analyzed by GLC, radio-HPLC, and radio-GLC of ozonolysis products. The results demonstrate the de novo biosynthesis of 20:2(n - 6), 20:4(n - 6) and an isomer of 20:3(n - 6) with double bonds in the 5,11,14 positions. the elongation/desaturation of 18:2(n - 6) to 20:4(n - 6) and 18:3(n - 3) to 20:5(n - 3) was demonstrated by analysis of the methyl esters derived from the testicular phospholipid fraction by radio-HPLC after injecting crickets with radiolabeled substrates.  相似文献   

20.
The aim of the study was to investigate whether the protein and folic acid content of the maternal diet and the sex of the offspring alter the polyunsaturated fatty acid content of hepatic phospholipids and triacylglycerol (TAG). Pregnant rats were fed diets containing 18% or 9% protein with either 1 or 5mg/kg folic acid. Maternal diet did not alter hepatic lipid composition in the adult offspring. Data from each maternal dietary group were combined and reanalysed. The proportion of 18:0, 20:4n-6 and 22:6n-3 in liver phospholipids was higher in females than in males, while hepatic TAG composition did not differ between sexes. Delta5 Desaturase expression was higher in females than in males. Neither Delta5 nor Delta6 desaturase expression was related to polyunsaturated fatty acid concentrations. These results suggest that sex differences in liver phospholipid fatty acid composition may reflect primary differences in the specificity of phospholipid biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号