首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homogenate preparations of human liver have been prepared and over 75% of the particulate neuraminidase activity (which comprises approx. 90% of the total activity) has been solubilized using 0.85% (w/v) Triton X-100 in 25 mM phosphate buffer (pH 6.8). The solubilized neuraminidase activity is extremely labile, but can be stabilized for at least 4 weeks at 2–4°C, using 10 mM N-acetylneuraminic acid. Kinetic characterization of homogenate and solubilized supernatant fluid neuraminidase activities indicated comparable pH optimum curves (maximum activity at pH 4.5–4.7) and apparent Km values (0.2–0.4 mM) for the synthetic fluorometric substrate 4-methylbelliferyl-α-D-N-acetylneuraminic acid. Isoelectric focusing has been performed on human liver homogenates and Triton X-100-solubilized neuraminidase activities, and the presence of several forms (4–6) with isoelectric points (pI values) between 4.4 and 5.2 has been demonstrated in both preparations. The similar kinetic and isoelectric focusing properties of the two preparations suggest that the solubilized enzyme activity is representative of the homogenate activity and that the solubilized enzyme is suitable for purification purposes.  相似文献   

2.
A gene encoding a putative sialidase was identified in the genome of the opportunistic fungal pathogen, Aspergillus fumigatus. Computational analysis showed that this protein has Asp box and FRIP domains, it was predicted to have an extracellular localization, and a mass of 42 kDa, all of which are characteristics of sialidases. Structural modeling predicted a canonical 6-bladed β-propeller structure with the model’s highly conserved catalytic residues aligning well with those of an experimentally determined sialidase structure. The gene encoding the putative Af sialidase was cloned and expressed in Escherichia coli. Enzymatic characterization found that the enzyme was able to cleave the synthetic sialic acid substrate, 4-methylumbelliferyl α-D-N-acetylneuraminic acid (MUN), and had a pH optimum of 3.5. Further kinetic characterization using 4-methylumbelliferyl α-D-N-acetylneuraminylgalactopyranoside revealed that Af sialidase preferred α2-3-linked sialic acids over the α2-6 isomers. No trans-sialidase activity was detected. qPCR studies showed that exposure to MEM plus human serum induced expression. Purified Af sialidase released sialic acid from diverse substrates such as mucin, fetuin, epithelial cell glycans and colominic acid, though A. fumigatus was unable to use either sialic acid or colominic acid as a sole source of carbon. Phylogenetic analysis revealed that the fungal sialidases were more closely related to those of bacteria than to sialidases from other eukaryotes.  相似文献   

3.
N-Acetylneuraminic acid was determined by gas chromatography-mass spectrometry using selected ion-monitoring technique with N-[2H3]acetylneuraminic acid as an internal standard. M-COOTMS fragments at mz 624 of trimethylsilyl derivatives of N-acetylneuraminic acid and at mz 627 of that of the internal standard were used as monitoring ions. The standard curve obtained was linear in the range of over 103, and the lower limit for quantitation was estimated to be a few hundred picograms. This method was used to measure total N-acetylneuraminic acid in the plasma of healthy humans and patients with lung cancer. The total N-acetylneuraminic acid level in the plasma was two to three times higher in the patients than in controls. A few hundred nanoliters of plasma was sufficient for the analysis. The mass fragmentogram of plasma gave a good signal/noise ratio, and measurements were very specific, accurate, and reproducible.  相似文献   

4.
This report describes the preparation of a sodium (4-methylumbelliferyl-α-d-N-acetylneuraminate) substrate and its use in a sensitive fluorometric assay of neuraminidase (EC 3.2.1.18) from Vibrio cholerae, cultured fibroblasts, and human leucocytes. V. cholerae neuraminidase showed maximum activity at pH 4.6 and an apparent Km of 1.5 mm and was activated by CaCl2 and inhibited by ethylenediaminetetraacetate, NaCl, and N-acetylneuraminic acid. The inhibition by N-acetylneuraminic acid was competitive (Ki = 6.1 mm). Cultured fibroblast and leucocyte neuraminidases showed maximum activity between pH 4.2 and 4.4 and apparent Km values of 0.13 and 0.22 mm, respectively. Neuraminidase activity was considerably reduced in cultured fibroblasts of patients with mucolipidosis types I, II, and III.  相似文献   

5.
Cultured skin fibroblasts from a patient suffering from generalized N-acetylneuraminic acid storage disease were found to accumulate large amounts (approx. 4.0 μmol/g fresh weight) of free N-acetylneuraminic acid in a lysosome-enriched subcellular fraction. However, there were no detectable deficiencies in lysosomal hydrolase activities (including neuraminidase), and the activities of CMP-N-acetylneuraminic acid synthetase and N-acetylneuraminic acid aldolase were within normal limits. The cellular glycoconjugate composition was normal, and pathologic fibroblasts labeled with either [3H]glucosamine-HCl or N-[3H]acetylmannosamine showed a marked accumulation of labeled free N-acetylneuraminic acid, along with elevated incorporation into sialoglycoconjugates. Neither normal nor pathologic fibroblasts secreted labeled free N-acetylneuraminic acid into the culture medium. These results are consistent with an inherited defect in N-acetylneuraminic acid reutilization, resulting in the lysosomal accumulation of the free monosaccharide in generalized N-acetylneuraminic acid storage disease.  相似文献   

6.
The sialidase secreted byClostridium chauvoei NC08596 was purified to apparent homogeneity by ion-exchange chromatography, gel filtration, hydrophobic interaction-chromatography, FPLC ion-exchange chromatography, and FPLC gel filtration. The enzyme was enriched about 10 200-fold, reaching a final specific activity of 24.4 U mg–1. It has a relatively high molecular mass of 300 kDa and consists of two subunits each of 150 kDa. The cations Mn2+, Mg2+, and Ca2+ and bovine serum albumin have a positive effect on the sialidase activity, while Hg2+, Cu2+, and Zn2+, chelating agents and salt decrease enzyme activity. The substrate specificity, kinetic data, and pH optimum of the enzyme are similar to those of other bacterial sialidases.Abbreviations FPLC fast protein liquid chromatography - NCTC National Collection of Type Cultures - ATCC American Type Culture Collection - MU-Neu5Ac 4-methylumbelliferyl--d-N-acetylneuraminic acid - buffer A 0.02m piperazine, 0.01m CaCl2, pH 5.5 - buffer B 0.02m piperazine, 0.01m CaCl2, 1.0m NaCl, pH 5.5 - buffer C 0.1m sodium acetate, 0.01m CaCl2, pH 5.5 - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - Neu5Ac N-acetylneuraminic acid - BSM bovine submandibular gland mucin - GD1a IV3Neu5Ac, II3Neu5Ac-GgOse4Cer - GM1 II3Neu5Ac-GgOse4Cer - MU-Neu4,5Ac2 4-methylumbelliferyl--d-N-acetyl-4-O-acetylneuraminic acid - TLC thin-layer chromatography - HPTLC high performance thin-layer chromatography - EDTA ethylenediamine tetraacetic acid - EGTA ethylene glycol bis(2-aminoethyl-ethen)-N,N,N,N-tetraacetic acid - BSA bovine serum albumin - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid - IEF isoelectric focusing - IEP isoelectric point  相似文献   

7.
When CaCl2 was added in increasing concentrations to a rat liver metabolic activation system (S9) buffered with sodium phosphate, the mutagenic activity and cytotoxicity of dimethylnitrosamine (DMN) in the Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) system were greatly increased. This effect was not observed with an S9 mix buffered with N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES). The calcium phosphate gel precipitate of the S9 mix possessed approximately built13 of the total activity of the mix, while the supernatant had only slight activity. However, when the calcium phosphate gel precipitate of a solution of S9 salts (without S9 protein) was added to the supernatant, the remaining 23 of the activity was recovered. Commercially obtained calcium phosphate, tricalcium phosphate, and alumina C γ gels could substitute for CaCl2 in the S9 mix, but diethylaminoethyl cellulose (DEAE cellulose) could not. Alumina C γ gel can exert its effect in the absence of both CaCl2 and phosphate in the S9 mix. Increasing the time of contact between the S9 protein and the S9 salts increased the efficacy with which the S9 mix activated DMN; this is indicative of an adsorptive process by calcium phosphate gel.  相似文献   

8.
An intracellular N-terminal exopeptidase isolated from cell extracts of Streptococcus durans has been purified 470-fold to homogeneity (specific activity of 12.0 μmol/min per mg). In the absence of thiol compounds, the purified aminopeptidase undergoes a slow oxidation with a 70% loss of activity, which can be restored by the addition of 2 mM β-mercaptoethanol. The purified aminopeptidase (Mr 300 000) preferred L-peptide and arylamide substrates with small nonpolar or basic side chains. SDS electrophoresis yielded a single protein band corresponding to a molecular weight of 49 400, suggesting that the native enzyme is a hexameric protein. The enzyme-catalyzed hydrolysis of L-alanyl-p-nitroanilide exhibited a bell-shaped pH dependence for log Vmax/Km(pK1 = 6.35; pK2 = 8.50) while the log Vmax versus pH profile showed only an acid limb (pK = 6.35). Methylene blue-sensitized photooxidation of the enzyme resulted in the complete loss of activity, while L-leucine, a competitive inhibitor, partially protected against this inactivation. Amino acid analysis indicated that this photooxidative loss of activity corresponded to the modification of one histidine residue per enzyme monomer. N-Ethylmaleimide (100 mM) caused a 78% reduction in enzyme activity. Treatment of the enzyme with 1.0 mM hydrogen peroxide resulted in the oxidation of two cysteine residues per enzyme monomer and caused a 70% decrease in the catalytic activity.  相似文献   

9.
An enzyme with polySia degrading activity was purified from a culture filtrate of Pseudomonas fluorescens JK-0412 to apparent homogeneity using DEAE-Sepharose CL-6B column chomatography and fast performance liquid chomatography separation on a Mono-Q column. The molecular mass of the purified enzyme (tentatively named Endo-PS) was approximately 20 kDa on SDS-PAGE and 120 kDa on native-PAGE gels, suggesting that the active form is a hexamer. Although 12 residues of the Endo-PS N-terminal amino acid sequence showed 75% homology to the 21 kDa chitin binding protein (CBP21) of Serratia marcescens 2170, no significant similarity to other known proteins was observed. Apparent K m and V max values of Endo-PS toward the artificial substrate 4-methylumbelliferyl-sialic acid (4-MU-Neu5Ac) were 0.08 mM and 16 nmol/mg/min, respectively. The enzyme was maximally active at 37°C and pH 8.0. Interestingly, the enzyme was shown to hydrolyze the natural substrate, ??2,8-linked polySia (colominic acid), in an endo-acting manner. However, no activity toward ??2,3- or ??2,6-sialyllactose was observed. Under optimal conditions, oligoSia ranging from 2 to 30 residues long were liberated by the cleavage of polySia, as identified by HPAEC-PED. Therefore, the purified enzyme Endo-PS was found to be a polySia-specific sialidase. This is the first report to describe the properties of a bacterial polySia-specific sialidase. Therefore, this enzyme may be a useful tool for both industrial oligoSia production and research on the structure and biological functions of polySia in nature.  相似文献   

10.
A sialidase [EC 3.2.1 18] was isolated and highly purified from the ovary of the starfish, Asterina pectinifera, and its enzymatic properties were compared with those of human placental sialidase. The final preparation gave one broad protein band corresponding to sialidase activity on polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 360 000 by HPLC on Sigma Chrome GFC-1300 and Sephadex G-150 column chromatography, and 55 000 by SDS-PAGE, suggesting the presence of a hexamer in the native protein. The optimum pH was between 3.0 and 4.0, and the enzyme liberated sialyl residues from the following compounds: α(2-3) and α(2-6) sialyllactose, colominic acid, fetuin, transferrin, gangliosides GM3, GD1a and GD1b. The enzyme was strongly inhibited by 4-aminophenyl and methyl thio-glycosides of sialic acid, but not by those glycosides of 5-amino sialic acid or sialic acid methyl ester. The enzyme was also highly inhibited by sulfated glucan and glycosaminoglycans. The substrate specificity and the effects of inhibitors on starfish sialidase were very similar to those of human placental sialidase.  相似文献   

11.
The natural sialidase ofClostridium septicum was purified and characterized in parallel with the recombinant enzyme expressed byEscherichia coli. The two enzymes exhibit almost identical properties. The maximum hydrolytic activity was measured at 37 °C in 60mm sodium acetate buffer, pH 5.3. Glycoproteins like fetuin and saponified bovine submandibular gland mucin, most of them having (2-6) linked sialic acids, are preferred substrates, while sialic acids from gangliosides, sialyllactoses, or the (2-8) linked sialic acid polymer (colominic acid) are hydrolysed at lower rates. (2-3) Linkages are more rapidly hydrolysed than (2-6) bonds of sialyllactoses. The cleavage rate is markedly reduced by O-acetylation of the sialic acid moiety. These properties are similar to those of other secreted clostridial sialidases. The enzyme exists in mono-, di- and trimeric forms, the monomer exhibiting a molecular mass of 125 kDa, which is close to the protein mass of 111 kDa deduced from the nucleotide sequence of the cloned gene.Abbreviations BSM bovine submandibular gland mucine - CMM cooked meat medium - EDTA ethylenediaminetetraacetic acid - FPLC fast performance liquid chromatography - LB Luria-Bertani - MU-Neu5Ac 4-methylumbelliferyl--d-N-acetylneuraminic acid - Neu5Ac N-acetylneuraminic acid - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid - Neu4,5Ac2 N-acetyl-4-O-acetylneuraminic acid - pI isoelectric point - SDS sodium dodecyl sulfate  相似文献   

12.
Radioactive gangliosides, N-[14C]-acetylneuraminylgalactosylglucosylceramide ([14C]GM3) and N- [14C]-acetylneuraminylgalactosyl-N-acetylgalactosaminyl- [N-acetylneuraminyl]-galactosylglucosylceramide ([14C]GD1a), were synthesized from CMP-[14C]sialic acid and the appropriate precursor glycolipid using specific sialyltransferase activities. These compounds were isolated and used as substrates to assay sialidase activity in HeLa cells. Although sodium butyrate added to the culture medium increased GM3 biosynthesis in HeLa cells, sialidase activity, as well as that of other glycohydrolases, was the same in control and butyrate-treated HeLa cells. The same sialidase activity appeared to hydrolyze both [14C]GM3 and [14C]GD1a, but not fetuin; the enzyme had a pH optimum of 5.0 and a Km of 75 μm for the ganglioside substrates. Although the cells contained a high sialidase activity (4–7 nmol/mg of protein/h) and could bind exogenously added [14C]GM3, no “ecto”-sialidase activity would be detected in intact cells under conditions where a close to physiological pH is maintained. The results indicate that ganglioside sialidase is not involved directly in the morphological and biochemical differentiation induced in HeLa cells by exposure to sodium butyrate.  相似文献   

13.
Human erythrocytes, fractioned into populations of different density by ultracentrifugation in albumin gradients were examined to determine what changes in cell surface carbohydrates occur during their lifespan. In addition to changes occurring in N-acetylneuraminic acid ageing was accompanied by reduction in the N-acetylglucosamine, N-acetylgalactosamine and galactose content of erythrocyte membranes. These results show that extensive heterogeneity exists in the cell surface carbohydrate of the circulating population of erythrocytes and suggest clearance of neuraminidase treated erythrocytes may not be an adequate model for the removal of aged cells.  相似文献   

14.
The lectin limulin from the serum of the horseshoe crab Limulus polyphemus binds to N-acetylneuraminic acid and 2-keto-3-deoxyoctonate residues. These interactions were examined using capsular polysaccharides from strains of Neisseria meningitidis and Escherichia coli. Our findings indicate that limulin has greatest reactivity with homopolymers of N-acetylneuraminic acid as compared with heteropolymers of either sugar. Polysaccharides with α(2→9) ketosidic linkages were most efficient in precipitating this lectin. Finally, O-acetylated homopolymers of N-acetylneuraminic acid were more reactive than their O-acetyl-negative counterparts.  相似文献   

15.
Treatment of human erythrocyte ghosts with phosphatidylinositol-phospholipase C (PIPLC) fromBacillus cereus liberated the ghost-linked sialidase. Maximal release of sialidase (about 70% of total) was achieved by incubating ghosts at 37°C for 60 min, at pH 6.0, with PIPLC (PIPLC total units/ghost protein ratio, 4.5 each time) added at the beginning of incubation and every 15 min (four subsequent additions). Liberated sialidase was fully resistant to at least four cycles of rapid freezing and thawing and to storage at 4°C for at least 48 h. The liberated enzyme had an optimal activity at pH 4.2, degraded ganglioside GD1a better than methylumbelliferylN-acetylneuraminic acid (about fourfold), and gave aK m value of 2.56 · 10–4 m and an apparentV max of 2.22 mU per mg protein on GD1a. Treatment of intact erythrocytes with PIPLC (PIPLC total units/erythrocyte protein ratio, 8), under conditions where haemolysis was practically negligible, caused liberation of 10–12% of membrane linked sialidase, indicating that the enzyme is, at least in part, located on the outer surface of the erythrocyte membrane. It is concluded that the erythrocyte membrane sialidase is anchored by a glycosylphosphatidylinositol structure sensitive to PIPLC action, and is partly located on the outer surface. Abbreviations: PLC, phospholipase C; PIPLC, phospholipase C acting selectively on phosphatidylinositol; NeuAc,N-acetylneuraminic acid; MU, 4-methylumbelliferone; PBS, Dulbecco's phosphate buffer saline solution. Gangliosides were coded according to Svennerholm [42] and the IUPAC-IUB recommendations [43].  相似文献   

16.
The slug, Limax flavus, contains a lectin that appears to be highly specific for sialic acid residues of glycoproteins. The carbohydrates which inhibited the hemagglutinating activity of the slug lectin and the concentration of the carbohydrate which gave a 50% inhibition are as follows: N-acetylneuraminic acid, 0.13 mm; N-glycolylneuraminic acid, 0.90 mm; d-glucosamine, 4.9 mm; d-galactosamine, 7.6 mm; N-acetyl-d-glucosamine, 23 mm; and N-acetyl-d-galactosamine, 24 mm. d-Galactose, d-glucose, d-mannose, α-methyl-d-glucoside, α-methyl-d-mannoside, l-arabinose, d-xylose, l-fucose, d-glucuronic acid, lactose, and sucrose were found to be ineffective as inhibitors of the hemagglutinating activity of the slug lectin. Hemagglutination by slug lectin was strongly inhibited by bovine submaxillary mucin and fetuin but not by sialic acid-free bovine submaxillary mucin or fetuin.  相似文献   

17.
Two analogs of N-acetylmannosamine, 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-d-mannopyranose (Ac4-NAcMan) and the 2-trifluoroacetamido derivative (Ac4F3-NAcMan), were synthesized as potential inhibitors of the formation of sialic acid-containing glycoconjugates and were examined for their ability to modify the incorporation of N-[3H]acetylmannosamine into cellular glycoconjugates of Friend murine erythroleukemia cells. Ac4F3-NAcMan and Ac4-NAcMan inhibited cellular replication in suspension culture at concentrations of 0.02 and 0.08 mM, respectively. The cytotoxicity of Ac4-NAcMan was relatively reversible, whereas that produced by Ac4F3-NAcMan was not, as judged by measurement of the cloning efficiencies of cells exposed to these agents. The analogs inhibited incorporation of N-[3H]acetylmannosamine into ethanol-soluble and -insoluble materials. Separation of ethanol-soluble metabolites by HPLC demonstrated that Ac4F3-NAcMan caused accumulation of radioactivity from N-[3H]acetylmannosamine in CMP-N-acetylneuraminic acid (CMP-NeuNAc) equal to the decrease in macromolecular-bound 3H caused by this agent. In contrast, similar exposure to Ac4-NAcMan produced a large increase in the amount of radioactivity in ethanol-soluble N-acetylneuraminic acid while decreasing the amount of label from N-[3H]acetylmannosamine in cellular CMP-NeuNAc, suggesting that the analogs differ in their biochemical sites of action. Treatment of cells with either analog increased the amount of neuraminidase-hydrolyzable sialic acid-like material on the cell surface; this appeared to be due to the incorporation of the analogs into cellular glycoconjugates, since incubation of cells with 3H-labeled analogs resulted in the appearance of radioactivity in cellular ethanol-insoluble and neuraminidase-hydrolyzable material. Incubation of cells with Ac4-NAcMan labeled with 14C in the 4-O-acetyl group further demonstrated that incorporation occurred with approx. 50% retention of this substituent. Thus, both the amount and the nature of the surface sialic acid constituents of treated cells were altered, suggesting that these or similar analogs could potentially be used to modify cellular membrane function.  相似文献   

18.
Abstract— Four glycoprotein:glycosyl transferases (a fetuin:N-acetylglucosaminyl transferase; a bovine submaxillary mucin: N-acetylgalactosaminyl transferase; a collagen: glucosyl transferase and an orosomucoid: galactosyl transferase) were purified 34-, 45-, 37- and 47-fold, respectively, from synaptosomes prepared from guinea pig cerebral cortex. Purifications were achieved by centrifugation and by column chromatography on Sephadex G-100 and G-150 of 0 , 1% (w/v) Triton X-100 extractsof the purified cerebral cortical synaptosomes. The enzymes were separated from endogenous acceptors and were highly specific for specific macromolecular acceptors; small molecules were ineffective as acceptors. The fetuin: N-acetylglucosaminyl transferase functioned only with fetuin minus N-acetylneuraminic acid, galactose and N-acetylglucosamine; the bovine submaxillary mucin: N- acetylgalactosaminyl transferase with bovine submaxillary much minus N-acetylneuraminic acid and N-acetylgalactosamine; the collagen: glucosyl transferase with collagen minus glucose; and the orosomucoid: galactosyl transferase with either orosomucoid minus N-acetylneuraminic acid and galactose or fetuin minus N-acetylneuraminic acid and galactose. Each transferase required a specific (XDP)-monosaccharide for transfer. The transferases were entirely dependent on either Mn2+ or Mg2+ for activation and Fe2+ and Hg2+ inhibited each of the four enzymes. The optimum pH's for the enzymes were: for fetuin: N-acetylglucosaminyl transferase, 7 , 4–8.0; for bovine submaxillary mucin: N-acetylgalactosaminyl transferase, 7 , 7; for collagen: glucosyl transferase, 7 , 7 and for orosomucoid: galactosyl transferase, 6 , 6. The enzymes were distributed subsynaptosomally primarily in the synaptosomal plasma membrane and in the mitochondria of the synaptosome. The respective values for Km (μM) and Vmex (pmoles/h/mg of protein) for the transferases were: fetuin: N-acetylglucosaminyl transferase, 12 and 143; for bovine submaxillary mucin: N-acetylgalactosaminyl transferase, 25 and 166; for collagen: glucosyl transferase, 4 and 10 and for orosomucoid:galactosyl transferase, 8 and 111.  相似文献   

19.
Alterations in rat liver transfer RNA (tRNA) methyltransferase activities have been observed after liver damage by various chemicals or by partial hepatectomy. The qualitative and quantitative nature of these activity changes and the time course for their induction have been studied. Since homologous tRNAs are essentially fully modified in vivo, E. coli tRNAs were used as in vitro substrates for the rat liver enzymes in these studies. Each of the liver-damaging agents tested rapidly caused increases in activities of the enzyme(s) catalyzing methyl group transfer to tRNAs that have an unmodified guanine at position 26 from the 5′ end of the molecule. This group of tRNAs includes E. coli tRNANfmet, tRNAAla1, tRNALeu1, or Leu2, and tRNASer3 (Group 1). In each case N2-methylguanine and N2,N2-dimethylguanine represented 90% or more of the products of these in vitro methylations. The product and substrate specificity observed are characteristic of N2-guanine methyltransferase II (S-adenosyl-L-methionine:tRNA (guanine-2)-methyltransferase, EC 2.1.1.32). In crude and partially purified preparations derived from livers of both control and treated animals this enzyme activity was not diminished significantly by exposure to 50°C for 10 min. The same liver-damaging agents induced little or no change in the activities of enzymes that catalyze methyl group transfer to various other E. coli tRNAs that do not have guanine at position 26 (Group 2). The results of mixing experiments appear to rule out the likelihood that the observed enzyme activity changes are due to stimulatory or inhibitory materials present in the enzyme preperations from control or treated animals. Thus, our experiments indicate that liver damage by each of several different methods, including surgery or administration of chemicals that are strong carcinogens, hepatotoxins, or cancer-promoting substances, all produce changes in liver tRNA methyltransferase activity that represent a selective increase in activity of N2-guanine tRNA methyltransferase II. It is proposed that the specificity of this change is not fortuitous, but is the manifestation of an as yet unidentified regulatory process.  相似文献   

20.
Nδ-(Phosphonacetyl)-L-ornithine, a transition state analogue for the reaction catalyzed by ornithine carbamoyltransferase (EC 2.1.3.3), was synthesized. It strongly inhibited bovine liver ornithine carbamoyltransferase. The inhibition was competitive with respect to carbamoyl-phosphate; the apparent Km values for carbamoyl-phosphate were 15 μM in 0.05 M N-2-hydroxyethylpiperazine-N′-2-ethanesulfonate (pH 7.2) and 33 μM in 0.1 M Tris-HCl (pH 8.5), and the inhibition constants at pH 7.2 and 8.5 were 7.1 and 4.7 nM, respectively. The inhibition was non-competitive with L-ornithine, the other substrate of the enzyme. This analogue may provide an effective reagent for the elucidation of carbamoyl-phosphate metabolism and its regulation in the liver of ureotelic animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号