首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
为获取柠檬香茅(Cymbopogon citratus)中萜类化合物及其合成酶基因信息,以正常生长及遮阴下的柠檬香茅嫩叶为材料,进行代谢组学和转录组学结合q RT-PCR验证分析。代谢组分析结果表明,柠檬香茅所含萜类共23种,包括单萜4种、倍半萜4种、二萜8种、三萜3种和四萜4种。在遮阴下,柠檬香茅的二萜类银杏内酯C和四萜类虾青素相对含量更高。转录组测序结果表明,单萜生物合成涉及4类合成酶的24个基因,二萜生物合成涉及11类合成酶的49个基因,倍半萜和三萜生物合成涉及12类合成酶的58个基因,其中6类合成酶的8个基因在遮阴下的相对表达量显著提高,而前萘二烯加氧酶(c64786.0)基因正好相反。q RT-PCR分析表明,遮阴下4个FPKM值差异明显的萜类合成酶基因表达的变化趋势与转录组测序结果一致,但不同合成酶基因的差异表达量存在差异。因此,柠檬香茅所含4类共23种萜类化合物由27类合成酶共131个基因编码而来,不同光照强度影响9个合成酶基因的表达和2种萜类化合物含量。  相似文献   

3.
Trapp SC  Croteau RB 《Genetics》2001,158(2):811-832
Terpenoids are the largest, most diverse class of plant natural products and they play numerous functional roles in primary metabolism and in ecological interactions. The first committed step in the formation of the various terpenoid classes is the transformation of the prenyl diphosphate precursors, geranyl diphosphate, farnesyl diphosphate, and geranylgeranyl diphosphate, to the parent structures of each type catalyzed by the respective monoterpene (C(10)), sesquiterpene (C(15)), and diterpene synthases (C(20)). Over 30 cDNAs encoding plant terpenoid synthases involved in primary and secondary metabolism have been cloned and characterized. Here we describe the isolation and analysis of six genomic clones encoding terpene synthases of conifers, [(-)-pinene (C(10)), (-)-limonene (C(10)), (E)-alpha-bisabolene (C(15)), delta-selinene (C(15)), and abietadiene synthase (C(20)) from Abies grandis and taxadiene synthase (C(20)) from Taxus brevifolia], all of which are involved in natural products biosynthesis. Genome organization (intron number, size, placement and phase, and exon size) of these gymnosperm terpene synthases was compared to eight previously characterized angiosperm terpene synthase genes and to six putative terpene synthase genomic sequences from Arabidopsis thaliana. Three distinct classes of terpene synthase genes were discerned, from which assumed patterns of sequential intron loss and the loss of an unusual internal sequence element suggest that the ancestral terpenoid synthase gene resembled a contemporary conifer diterpene synthase gene in containing at least 12 introns and 13 exons of conserved size. A model presented for the evolutionary history of plant terpene synthases suggests that this superfamily of genes responsible for natural products biosynthesis derived from terpene synthase genes involved in primary metabolism by duplication and divergence in structural and functional specialization. This novel molecular evolutionary approach focused on genes of secondary metabolism may have broad implications for the origins of natural products and for plant phylogenetics in general.  相似文献   

4.
中粒咖啡萜类合成酶基因家族的生物信息学分析   总被引:1,自引:0,他引:1  
程甜  魏强  李广林 《植物学报》2016,51(2):235-250
萜类化合物具有重要的生理、生态作用和药用价值,萜类合成酶(TPS)是合成萜类化合物的关键酶。通过整合中粒咖啡(Coffee canephora)的基因组和转录组数据,利用生物信息学方法,鉴定出43个萜类合成酶全长基因,并对这些基因的分子进化、结构、复制、表达及功能分化的机理进行了探究。结果表明,中粒咖啡萜类合成酶基因可以分为5个亚家族(a、b、c、e/f、g),不同亚家族的基因结构差异很大;串联复制是基因家族扩增的主要原因;表达分析结果表明,萜类合成酶基因在不同组织中的表达差异明显;中粒咖啡萜类合成酶基因启动子区的顺式调控元件可能与基因的功能分化相关;不同亚家族之间的功能差异主要由亚家族特异的氨基酸决定。  相似文献   

5.
A family of 40 terpenoid synthase genes ( AtTPS) was discovered by genome sequence analysis in Arabidopsis thaliana. This is the largest and most diverse group of TPS genes currently known for any species. AtTPS genes cluster into five phylogenetic subfamilies of the plant TPS superfamily. Surprisingly, thirty AtTPS closely resemble, in all aspects of gene architecture, sequence relatedness and phylogenetic placement, the genes for plant monoterpene synthases, sesquiterpene synthases or diterpene synthases of secondary metabolism. Rapid evolution of these AtTPS resulted from repeated gene duplication and sequence divergence with minor changes in gene architecture. In contrast, only two AtTPS genes have known functions in basic (primary) metabolism, namely gibberellin biosynthesis. This striking difference in rates of gene diversification in primary and secondary metabolism is relevant for an understanding of the evolution of terpenoid natural product diversity. Eight AtTPS genes are interrupted and are likely to be inactive pseudogenes. The localization of AtTPS genes on all five chromosomes reflects the dynamics of the Arabidopsis genome; however, several AtTPS genes are clustered and organized in tandem repeats. Furthermore, some AtTPS genes are localized with prenyltransferase genes ( AtGGPPS, geranylgeranyl diphosphate synthase) in contiguous genomic clusters encoding consecutive steps in terpenoid biosynthesis. The clustered organization may have implications for TPS gene evolution and the evolution of pathway segments for the synthesis of terpenoid natural products. Phylogenetic analyses highlight events in the divergence of the TPS paralogs and suggest orthologous genes and a model for the evolution of the TPS gene family.  相似文献   

6.
7.

Background

In recent years, the genus Pestalotiopsis is receiving increasing attention, not only because of its economic impact as a plant pathogen but also as a commonly isolated endophyte which is an important source of bioactive natural products. Pestalotiopsis fici Steyaert W106-1/CGMCC3.15140 as an endophyte of tea produces numerous novel secondary metabolites, including chloropupukeananin, a derivative of chlorinated pupukeanane that is first discovered in fungi. Some of them might be important as the drug leads for future pharmaceutics.

Results

Here, we report the genome sequence of the endophytic fungus of tea Pestalotiopsis fici W106-1/CGMCC3.15140. The abundant carbohydrate-active enzymes especially significantly expanding pectinases allow the fungus to utilize the limited intercellular nutrients within the host plants, suggesting adaptation of the fungus to endophytic lifestyle. The P. fici genome encodes a rich set of secondary metabolite synthesis genes, including 27 polyketide synthases (PKSs), 12 non-ribosomal peptide synthases (NRPSs), five dimethylallyl tryptophan synthases, four putative PKS-like enzymes, 15 putative NRPS-like enzymes, 15 terpenoid synthases, seven terpenoid cyclases, seven fatty-acid synthases, and five hybrids of PKS-NRPS. The majority of these core enzymes distributed into 74 secondary metabolite clusters. The putative Diels-Alderase genes have undergone expansion.

Conclusion

The significant expansion of pectinase encoding genes provides essential insight in the life strategy of endophytes, and richness of gene clusters for secondary metabolites reveals high potential of natural products of endophytic fungi.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-014-1190-9) contains supplementary material, which is available to authorized users.  相似文献   

8.
Bacterial interactions with plants are accompanied by complex signal exchange processes. Previously, the nitrogen-fixing symbiotic (rhizo)bacterium Bradyrhizobium japonicum was found to carry adjacent genes encoding two sequentially acting diterpene cyclases that together transform geranylgeranyl diphosphate to ent-kaurene, the olefin precursor to the gibberellin plant hormones. Species from the three other major genera of rhizobia were found to have homologous terpene synthase genes. Cloning and functional characterization of a representative set of these enzymes confirmed the capacity of each genus to produce ent-kaurene. Moreover, comparison of their genomic context revealed that these diterpene synthases are found in a conserved operon which includes an adjacent isoprenyl diphosphate synthase, shown here to produce the geranylgeranyl diphosphate precursor, providing a critical link to central metabolism. In addition, the rest of the operon consists of enzymatic genes that presumably lead to a more elaborated diterpenoid, although the production of gibberellins was not observed. Nevertheless, it has previously been shown that the operon is selectively expressed during nodulation, and the scattered distribution of the operon via independent horizontal gene transfer within the symbiotic plasmid or genomic island shown here suggests that such diterpenoid production may modulate the interaction of these particular symbionts with their host plants.  相似文献   

9.
Wang  Liping  Liang  Jin  Xie  Xin  Liu  Jiang  Shen  Qinqin  Li  Lixia  Wang  Qiang 《Plant molecular biology》2021,105(1-2):55-64
Key message

SsLOS directly catalyzed formation of the sesquiterpenoid ether liguloxide in the medicinal plant Senecio scandens.

Abstract

Terpene synthases determine the diversity of terpene skeletons and corresponding terpenoid natural products. Oxygenated groups introduced in catalysis of terpene synthases are important for solubility, potential bioactivity and further elaboration of terpenoids. Here we identified one terpene synthase, SsLOS, in the Chinese medicinal plant Senecio scandens. SsLOS acted as the sesquiterpene synthase and utilized (E,E)-farnesyl diphosphate as the substrate to produce a blend of sesquiterpenoids. GC–MS analysis and NMR structure identification demonstrated that SsLOS directly produced the sesquiterpenoid ether, liguloxide, as well as its alcoholic isomer, 6-epi-guaia-2(3)-en-11-ol. Homology modeling and site-directed mutagenesis were combined to explore the catalytic mechanism of SsLOS. A few key residues were identified in the active site and hedycaryol was identified as the neutral intermediate of SsLOS catalysis. The plausible catalytic mechanism was proposed as well. Altogether, SsLOS was identified and characterized as the sesquiterpenoid ether synthase, which is the second terpenoid ether synthase after 1,8-cineol synthase, suggesting some insights for the universal mechanism of terpene synthases using the water molecule in the catalytic cavity.

  相似文献   

10.
Although terpenoid synthases catalyze the most complex reactions in biology, these enzymes appear to play little role in the chemistry of catalysis other than to trigger the ionization and chaperone the conformation of flexible isoprenoid substrates and carbocation intermediates through multistep reaction cascades. Fidelity and promiscuity in this chemistry (whether a terpenoid synthase generates one or several products), depends on the permissiveness of the active site template in chaperoning each step of an isoprenoid coupling or cyclization reaction. Structure-guided mutagenesis studies of terpenoid synthases such as farnesyl diphosphate synthase, 5-epi-aristolochene synthase, and gamma-humulene synthase suggest that the vast diversity of terpenoid natural products is rooted in the facile evolution of alpha-helical folds shared by terpenoid synthases in all forms of life.  相似文献   

11.
12.
Members of the family Geobacteraceae are commonly the predominant Fe(III)-reducing microorganisms in sedimentary environments, as well as on the surface of energy-harvesting electrodes, and are able to effectively couple the oxidation of acetate to the reduction of external electron acceptors. Citrate synthase activity of these organisms is of interest due to its key role in acetate metabolism. Prior sequencing of the genome of Geobacter sulfurreducens revealed a putative citrate synthase sequence related to the citrate synthases of eukaryotes. All citrate synthase activity in G. sulfurreducens could be resolved to a single 49-kDa protein via affinity chromatography. The enzyme was successfully expressed at high levels in Escherichia coli with similar properties as the native enzyme, and kinetic parameters were comparable to related citrate synthases (kcat = 8.3 s−1; Km = 14.1 and 4.3 μM for acetyl coenzyme A and oxaloacetate, respectively). The enzyme was dimeric and was slightly inhibited by ATP (Ki = 1.9 mM for acetyl coenzyme A), which is a known inhibitor for many eukaryotic, dimeric citrate synthases. NADH, an allosteric inhibitor of prokaryotic hexameric citrate synthases, did not affect enzyme activity. Unlike most prokaryotic dimeric citrate synthases, the enzyme did not have any methylcitrate synthase activity. A unique feature of the enzyme, in contrast to citrate synthases from both eukaryotes and prokaryotes, was a lack of stimulation by K+ ions. Similar citrate synthase sequences were detected in a diversity of other Geobacteraceae members. This first characterization of a eukaryotic-like citrate synthase from a prokaryote provides new insight into acetate metabolism in Geobacteraceae members and suggests a molecular target for tracking the presence and activity of these organisms in the environment.  相似文献   

13.
Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds.  相似文献   

14.
15.
16.
Numerous terpenoid compounds are present in copious amounts in the oleoresin produced by conifers, especially following exposure to insect or fungal pests. CDNA clones for many terpene synthases responsible for the biosynthesis of these defense compounds have been recovered from several conifer species. Here, the use of three terpene synthase sequences as heterologous probes for the discovery of related terpene synthase genes in Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco (Pinaceae), is reported. Four full-length terpene synthase cDNAs were recovered from a methyl jasmonate-induced Douglas-fir bark and shoot cDNA library. These clones encode two multi-product monoterpene synthases [a (-)-alpha-pinene/(-)-camphene synthase and a terpinolene synthase] and two single-product sesquiterpene synthases [an (E)-beta-farnesene synthase and a (E)-gamma-bisabolene synthase].  相似文献   

17.
18.
Cyanobacteria are a rich source of natural products and are known to produce terpenoids. These bacteria are the major source of the musty-smelling terpenes geosmin and 2-methylisoborneol, which are found in many natural water supplies; however, no terpene synthases have been characterized from these organisms to date. Here, we describe the characterization of three sesquiterpene synthases identified in Nostoc sp. strain PCC 7120 (terpene synthase NS1) and Nostoc punctiforme PCC 73102 (terpene synthases NP1 and NP2). The second terpene synthase in N. punctiforme (NP2) is homologous to fusion-type sesquiterpene synthases from Streptomyces spp. shown to produce geosmin via an intermediate germacradienol. The enzymes were functionally expressed in Escherichia coli, and their terpene products were structurally identified as germacrene A (from NS1), the eudesmadiene 8a-epi-α-selinene (from NP1), and germacradienol (from NP2). The product of NP1, 8a-epi-α-selinene, so far has been isolated only from termites, in which it functions as a defense compound. Terpene synthases NP1 and NS1 are part of an apparent minicluster that includes a P450 and a putative hybrid two-component protein located downstream of the terpene synthases. Coexpression of P450 genes with their adjacent located terpene synthase genes in E. coli demonstrates that the P450 from Nostoc sp. can be functionally expressed in E. coli when coexpressed with a ferredoxin gene and a ferredoxin reductase gene from Nostoc and that the enzyme oxygenates the NS1 terpene product germacrene A. This represents to the best of our knowledge the first example of functional expression of a cyanobacterial P450 in E. coli.  相似文献   

19.
Diterpenoid biosynthesis has been extensively studied in plants and fungi, yet cloning and engineering diterpenoid pathways in these organisms remain challenging. Bacteria are emerging as prolific producers of diterpenoid natural products, and bacterial diterpene synthases are poised to make significant contributions to our understanding of terpenoid biosynthesis. Here we will first survey diterpenoid natural products of bacterial origin and briefly review their biosynthesis with emphasis on diterpene synthases (DTSs) that channel geranylgeranyl diphosphate to various diterpenoid scaffolds. We will then highlight differences of DTSs of bacterial and higher organism origins and discuss the challenges in discovering novel bacterial DTSs. We will conclude by discussing new opportunities for DTS mechanistic enzymology and applications of bacterial DTS in biocatalysis and metabolic pathway engineering.  相似文献   

20.
A large number of diterpenes have been isolated from Euphorbiaceae plants, many of which are of interest due to toxicity or potential therapeutic activity. Specific Euphorbiaceae diterpenes of medical interest include the latent HIV-1 activator prostratin (and related 12-deoxyphorbol esters), the analgesic resiniferatoxin, and the anticancer drug candidate ingenol 3-angelate. In spite of the large number of diterpenes isolated from these plants and the similarity of their core structures, there is little known about their biosynthetic pathways. Other than the enzymes involved in gibberellin biosynthesis, the only diterpene synthase isolated to date from the Euphorbiaceae has been casbene synthase, responsible for biosynthesis of a macrocyclic diterpene in the castor bean (Ricinus communis). Here, we have selected five Euphorbiaceae species in which to investigate terpene biosynthesis and report on the distribution of diterpene synthases within this family. We have discovered genes encoding putative casbene synthases in all of our selected Euphorbiaceae species and have demonstrated high-level casbene production through expression of four of these genes in a metabolically engineered strain of Saccharomyces cerevisiae. The only other diterpene synthase found among the five plants was a neocembrene synthase from R. communis (this being the first report of a neocembrene synthase gene). Based on the prevalence of casbene synthases, the lack of other candidates, and the structure of the casbene skeleton, we consider it likely that casbene is the precursor to a large number of Euphorbiaceae diterpenes. Casbene production levels of 31 mg/L were achieved in S. cerevisiae and we discuss strategies to further increase production by maximizing flux through the mevalonate pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号