首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rhabdomeres of cephalopod photoreceptors, which are built up mainly of rhodopsin and phospholipid molecules, show a very high alkaline phosphatase activity. The enzyme has been partially characterized in purified rhodopsin vesicle fractions of the rhabdomeres by the following kinetic data: pH optimum 8.7; activation energy 9100 cal·m?1; Vmax = 2.5 μmol·min?1·mg?1; Km = 1.5·10?4M; its activity depends on Mg2+. There is good evidence that the alkaline phosphatase is a membrane-bound enzyme with receptor sites presumably located on the inside of the membrane. This enzyme has not been purified but its high activity compared to that of other known alkalin phosphatases (see Table I) indicates that each mirovillus, the structural unit of the rhabdomere, contains 1–20 enzyme molecules. This finding supports the hypothesis that the alkaline phosphatase is involved in the biochemical amplification process of excitation, or adaptation.  相似文献   

2.
Chicken liver dihydrofolate reductase purified to apparent homogeneity by affinity chromatography contains tightly bound dihydrofolate. The most effective method for removal of the bound substrate is by electrofocusing. This procedure also removes previously unsuspected contaminants. In addition, the isoelectric profile revealed as many as four distinct peaks of enzyme activity. The major peak (pI = 8.4) represents 60–75% of the total activity, is devoid of bound substrate, and exhibits an A280A260 ratio approaching 1.9 and a specific activity of 14 units/mg. The peak of activity at the isoelectric point of 7.4 contains bound dihydrofolate. The major isoelectric band is shown to be homogeneous by the usual criteria. Notable features of the amino acid composition include a single cysteine, three tryptophans, and an excess of acidic residues. The N-terminal residue is valine. The molecular weight as determined by sedimentation equilibrium is 22,474. The s20,w0 is 2.07. A frictional coefficient of 1.2 indicates that the enzyme approximates a sphere. Circular dichroism measurements suggest a low α-helical content and a high degree of β-structure. The molar extinction coefficient was determined to be 28,970.  相似文献   

3.
A simple and rapid method for the purification to homogeneity of ferredoxin-NADP+ oxidoreductase (EC 1.18.1.2) from the nitrogen-fixing filamentous cyanobacterium Anabaena sp. strain 7119 is described. A crude extract prepared by solubilizing the cells with a detergent was first partially purified on a DEAE-cellulose column and then chromatographed on 2′,5′-ADP-Sepharose 4B. Ligand-bound ferredoxin-NADP+ oxidoreductase was eluted by a linear gradient of NaCl. The overall procedure provided an enzyme purified about 400-fold with a yield of 60 to 70%. The final enzyme preparation exhibited a specific activity of 120 units/mg protein and an absorbance ratio A280A458 of 8.26. The enzyme protein migrated as a single band when subjected to polyacrylamide gel electrophoresis and chromatographed as a single isoelectric species under chromatofocusing.  相似文献   

4.
The dependence on pH of the kinetic parameters for the hydrolysis of phenyl acetate catalyzed by pig liver carboxylesterase was examined for purified high-isoelectric point and low-isoelectric point fractions of enzyme that were separated by isoelectric focusing. The values of kcat are half-maximal at pH 4.3 and 5.1 for the high- and low-isoelectric point forms, respectively, and show a shallow dependence on pH with a value of n = 0.5. The absence of a change in the pH dependence of kcat for the high-isoelectric point enzyme in the presence of high concentrations of methanol, which reacts with the acetyl-enzyme intermediate to give methyl acetate, provides evidence that the pH dependence is not caused by a change in rate-determining step. This means that if an imidazole group is involved in catalysis its pK must be perturbed downward by 2–3 units. The pH dependence of kcatKm is biphasic with apparent pK values for dissociations of the free enzyme near 7 and 4 for both the high- and low-isoelectric point enzymes. Inhibition by a second molecule of substrate and by methanol are strongest for high-pH forms of the enzyme.  相似文献   

5.
6.
The acid phosphatase isolated from sweet potato tubers by us is unique Mn(III)-containing enzyme which hydrolyzes phosphomonoesters and nucleotide phosphates. The present 31P and 17O NMR studies of the Mn(III)-containing acid phosphatase solved two important problems. The broadening of the phosphate 31P resonance signal in the 1:1 enzyme-substrate system shows evidence for direct metal-phosphate interaction in the Mn(III)-containing acid phosphatase. In addition, the 17O NMR evidence for oxygen exchange from water into inorganic phosphate strongly indicates that the Mn(III)-containing acid phosphatase catalyzes an apparent transition state displacement and P-O cleavage as follows: ROPO3= + H17OHROH + H17OPO3=.  相似文献   

7.
The reactivities of the nitro analogs of the substrates of adenylosuccinate synthetase and adenylosuccinate lyase, the enzymes which catalyze the penultimate and last step, respectively, in the pathway for AMP biosynthesis have been examined. Alanine-3-nitronate, an aspartate analog, was a substrate for the synthetase from Azotobacter vinelandii, having a kcatKm which was ~30% that for aspartate. The product of this reaction was N6-(l-1-carboxy-2-nitroethyl)-AMP. Of nine other substrate analogs tested, only cysteine sulfinate (having 5.5% of the activity of aspartate) was reactive. These results demonstrate the strict requirement of the synthetase for a negatively charged substituent, with a carboxylate-like geometry, at the β-carbon of the α-amino acid substrate. The lyase, purified to homogeneity from brewer's yeast by a new procedure, did not utilize N6-(l-1-carboxy-2-nitroethyl)-AMP as a substrate. However, the nitronate form of this analog was a good inhibitor of the lyase (KmKi = 28 when compared to adenylosuccinate), suggesting that it mimics a carbanionic intermediate in the reaction pathway. The avid binding of bromphenol blue by the lyase (i = 0.95 μM) was used for active site titrations and for displacement of the enzyme, in the purification protocol, from blue Sepharose.  相似文献   

8.
Isolation and characterization of isocitrate lyase of castor endosperm   总被引:1,自引:0,他引:1  
Isocitrate lyase (threo-DS-isocitrate glyoxylate-lyase, EC 4.1.3.1) has been purified to homogeneity from castor endosperm. The enzyme is a tetrameric protein (molecular weight about 140,000; gel filtration) made up of apparently identical monomers (subunit molecular weight about 35,000; gel electrophoresis in the presence of sodium dodecyl sulfate). Thermal inactivation of purified enzyme at 40 and 45 °C shows a fast and a slow phase, each accounting for half of the intitial activity, consistent with the equation: At = A02 · e?k1t + A02 · e?k2t, where A0 and At are activities at time zero at t, and k1 and k2 are first-order rate constants for the fast and slow phases, respectively. The enzyme shows optimum activity at pH 7.2–7.3. Effect of [S]on enzyme activity at different pH values (6.0–7.5) suggests that the proton behaves formally as an “uncompetitive inhibitor.” A basic group of the enzyme (site) is protonated in this pH range in the presence of substrate only, with a pKa equal to 6.9. Successive dialysis against EDTA and phosphate buffer, pH 7.0, at 0 °C gives an enzymatically inactive protein. This protein shows kinetics of thermal inactivation identical to the untreated (native) enzyme. Full activity is restored on adding Mg2+ (5.0 mm) to a solution of this protein. Addition of Ba2+ or Mn2+ brings about partial recovery. Other metal ions are not effective.  相似文献   

9.
《FEBS letters》1985,193(2):185-188
The enzyme 6-phosphogluconolactonase (EC 3.1.1.31) is present at high levels in Zymomonas mobilis cells. A simple procedure for its isolation involving dye-ligand chromatography and gel filtration has resulted in a 500-fold purification with high recovery. The purified enzyme is a monomer of 26 kDa, and has a high catalytic efficiency with kcatKm of 9 × 107 M−1 s−1 at 25° C. Two assay procedures for the enzyme are compared, and a simple method of obtaining a solution of 6-phosphoglucono-δ-lactone relatively free of other metabolites is presented.  相似文献   

10.
Phosphate transporter of bovine heart mitochondria was purified by solubilization of submitochondrial particles with octylglucoside and fractionation of the extract with ammonium sulfate. After reconstitution into liposomes the purified protein catalyzed phosphate transport which was sensitive to mersalyl and other SH reagents. Transport measured either as PiOH or PiPi exchange was proportional to protein concentration and time. The PiOH but not the PiPi exchange was stimulated several fold by valinomycin plus nigericin in the presence of K+. The reconstituted system provides a suitable assay during purification of the mitochondrial phosphate transporter.  相似文献   

11.
A water-soluble Mg2+-ATPase previously reported (White, M.D. and Ralston, G.B. (1976) Biochim. Biophys. Acta 436, 567–576) has been purified from human erythrocyte membranes. The purified enzyme has a molecular weight of 575 000; the apparent minimum molecular weight was 100 000, corresponding to a soluble protein of the component 3 region. The Km value for ATP was 1 mM and apparent Km for Mg2+ was 3.6 mM. By means of histochemical activity staining in acrylamide gels it was shown that the purified ATPase preparation could be inhibited by Cd2+ and Zn2+ salts, p-chloromercuribenzoate and N-ethylmaleimide, known inhibitors of membrane endocytosis.  相似文献   

12.
The uptake of d-glucose, 2-aminoisobutyric acid and glycine was studied with intestinal brush border membrane vesicles of a marine herbivorous fish: Boops salpa. The uptake of these three substances is stimulated by an Na+ electrochemical gradient (CoutCin). For glucose, an increase of the electrical membrane potential generated by a concentration gradient of the liposoluble anion, SCN?, increases the Na+-dependent transport. This responsiveness to the membrane potential was confirmed by valinomycin. Differently from glucose, uptake of glycine and 2-aminoisobutyric acid requires, besides the Na+ gradient, the presence of Cl? on the external side of the vesicles. In the absence of Cl?, amino acid uptake is not stimulated by the Na+ gradient and is not influenced by an electrical membrane potential generated by SCN? gradient (Cout>Cin) or by a K+ diffusion potential (Cin>Cout). This Cl? requirement differs from the Na+ requirement, since a Cl? gradient (Cout>Cin) does not result in an accumulation of glycine or 2-aminoisobutyric acid similar to that produced by an Na+ gradient.  相似文献   

13.
By using radioactive decanal the direct transformation of this aldehyde to decanoic acid, with a quantum yield of 0.13, has been demonstrated. A mechanism analogous to that of other better understood bioluminescent reactions is proposed, leading to a product, as yet unisolated from the enzymic reaction, whose fluorescence spectrum is an excellent match for that of the in vivo luminescence.The extensive examination1,2,3 of the isolated bacterial luminescence system has resulted in the accepted outline shown. We wish to modify it, in accordance with the previous evidence, by suggesting that ’intermediates I and II‘ in Hastings' terminology2 are the same enzyme bound FMNH2 moiety.
FMN2 enzyme?enzyme FMNH2
enzyme FMNH2O2enzyme FMN H2O2M
enzyme FMNH2 RCHO?covalent complex
covalent complex O2P1 RCO2H
P1 P+hv P??H2OFMN
A lively controversy has surrounded the attempts to determine whether aldehyde exerts a purely catalytic role2 or is transformed in the reaction.4 If the aldehyde reacts, then the simplest product is the corresponding carboxylic acid, perhaps formed via the peracid. The most likely alternative reaction would involve enolistation and oxidation at the α-methylene group. We examined the second alternative fairly carefully, and found no evidence for it. We do not wish to report these results in detail at present, since we have now established that the acid corresponding to that formed in a normal autoxidation of the aldehyde is the product. Some indication of the nature of the products of the reaction is available.5Since the amount of product in the reaction is restricted to a very low level by the concentrations required, we labelled decanal with tritium at C-2 and thus were able to record the yield with some precision. Although recent work6 strongly implies that acid is formed stoichiometrically, the direct measurement of the quantum yield with respect to acid formation is necessary before a mechanism can be written. We have suggested a mechanism compatible with observations in this system, analogous to all cases of bioluminescence for which a mechanism is reasonably well established. This mechanism also leads to a product excited state with excellent agreement around pH7 in fluorescence wavelength to that of the in vivo luminescence.  相似文献   

14.
Quercetin inhibited a dog kidney (Na+ + K+)-ATPase preparation without affecting Km for ATP or K0.5 for cation activators, attributable to the slowly-reversible nature of its inhibition. Dimethyl sulfoxide, a selector of E2 enzyme conformations, blocked this inhibition, while the K+-phosphatase activity was at least as sensitive to quercetin as the (Na+ + K+)-ATPase activity, all consistent with quercetin favoring E1 conformations of the enzyme. Oligomycin, a rapidly-reversible inhibitor, decreased the Km for ATP and the K0.5 for cation activators, and its inhibition was also diminished by dimethyl sulfoxide. Although oligomycin did not inhibit the K+-phosphatase activity under standard assay conditions, a reaction presumably catalyzed by E2 conformations, its effects are nevertheless accommodated by a quantitative model for that reaction depicting oligomycin as favoring E1 conformations. The model also accounts quantitatively for effects of both dimethyl sulfoxide and oligomycin on Vmax, Km for substrate, and K0.5 for K+, as well as for stimulation of phosphatase activity by both these reagents at low K+ but high Na+ concentrations.  相似文献   

15.
16.
Initial rate, product inhibition, and isotope rate kinetic studies of pig heart mitochondrial and supernatant malate dehydrogenases, acting upon the nonphysiological substrates, meso-tartrate and 2-keto-3-hydroxysuccinate, are reported. The measured spontaneous keto-enol equilibrium for 2-keto-3-hydroxysuccinate in 0.05 m Tris-acetate (pH 8.0) at 25 °C favors the enol form, dihydroxyfumarate, with an apparent equilibrium constant of 0.036. The enzyme-catalyzed reaction favors meso-tartrate with an apparent equilibrium constant of 1.25 × 10?6, M?1 at pH 8.0. The mechanism apparently remains ordered bi bi for both enzymes when these nonphysiological substrates are used, and the chemical-converting hydride transfer step becomes more rate limiting for both enzymes. This conclusion is supported by VHVD and (VHKH)VDKD values of 2.6 and 3.1, respectively, for the mitochondrial enzyme and 1.9 and 2.9, respectively, for the supernatant enzyme.  相似文献   

17.
18.
An α1-mantitrypsin-like material has been purified to homogeneity from the soluble fraction of normal human liver by procedures adapted from those employed for plasma α1-antrypsin. The liver material, in contrast to a previous report1 has the same molecular weight as the corresponding normal plasma α1-antrypsin. The subunit structure, immunoelectrophoretic and immunological properties of the liver glycoprotein are identical to those of normal plasma α1-antrypsin. Amino acid and carbohydrate compositions of the liver material are similar to those of α1-antrypsin obtained from the plasma. The α1-antrypsin-like material has also been isolated and purified from the microsomal fraction of liver It has the same molecular weight and immunological properties as glycoprotein obtained from the cytosol. Although inhibitors of lysosmal proteases were added during the homogenization of the liver, the purified glycoprotein is devoid of trypsin-inhibitory capacity. The loss of inhibitory activity could be due to extensive cellular autolysis before autopsy.  相似文献   

19.
The transport of sucrose by selected mutant and wild-type cells of Streptococcus mutans was studied using washed cocci harvested at appropriate phases of growth, incubated in the presence of fluoride and appropriately labelled substrates. The rapid sucrose uptake observed cannot be ascribed to possible extracellular formation of hexoses from sucrose and their subsequent transport, formation of intracellular glycogen-like polysaccharide, or binding of sucrose or extracellular glucans to the cocci. Rather, there are at least three discrete transport systems for sucrose, two of which are phosphoenolpyruvate-dependent phosphotransferases with relatively low apparent Km values and the other a non-phosphotransferase (non-PTS) third transport system (termed TTS) with a relatively high apparent Km. For strain 6715-13 mutant 33, the Km values are 6.25·10?5 M, 2.4·10?4 M, and 3.0·10?3 M, respectively; for strain NCTC-10449, the Km values are 7.1·10?5 M, 2.5·10?4 M and 3.3·10?3 M, respectively. The two lower Km systems could not be demonstrated in mid-log phase glucose-adapted cocci, a condition known to repress sucrose-specific phosphotransferase activity, but under these conditions the highest Km system persists. Also, a mutant devoid of sucrose-specific phosphotransferase activity fails to evidence the two high affinity (low apparent Km) systems, but still has the lowest affinity (highest Km) system. There was essentially no uptake at 4°C indicating these processes are energy dependent. The third transport system, whose nature is unknown, appears to function under conditions of sucrose abundance and rapid growth which are known to repress phosphoenolpyruvate-dependent sucrose-specific phosphotransferase activity in S. mutans. These multiple transport systems seem well-adapted to S. mutans which is faced with fluctuating supplies of sucrose in its natural habitat on the surfaces of teeth.  相似文献   

20.
The Michaelis-Menten parameters, JM and Km of the initial 1-min fluxes of uptake of l-phenylalanine and of α-aminoisobutyric acid were determined for extracellular concentrations of Na+ ranging from 0.5 to 110 mequiv/l for Ehrlich ascites tumor cells. The maximal initial flux, JM, decreased with decrease in extracellular Na+ for both α-aminoisobutyric acid and phenylalanine but the Km for α-aminoisobutyric acid increased markedly as the Na+ concentration fell whereas the Km for phenylalanine decreased. Cycloleucine behaved like phenylalanine.The data provides strong evidence that the Na+-independent flux of phenylalanine is an exchange diffusion flux that can be varied by changing the intracellular level of amino acids such as phenylalanine. For phenylalanine, cyclolcucine, and methionine this exchange diffusion flux appears to be additive with the Na+-dependent initial flux. α-Aminoisobutyric acid also has an exchange diffusion that is Na+-independent but it has a high Km and is not additive with the Na+-dependent flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号