首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatty acids are a major fuel source used to sustain contractile function in heart and oxidative skeletal muscle. To meet the energy demands of these muscles, the uptake and β-oxidation of fatty acids must be coordinately regulated in order to ensure an adequate, but not excessive, supply for mitochondrial β-oxidation. However, imbalance between fatty acid uptake and β-oxidation has the potential to contribute to muscle insulin resistance. The action of insulin is initiated by binding to its receptor and activation of the intrinsic protein tyrosine kinase activity of the receptor, resulting in the initiation of an intracellular signaling cascade that eventually leads to insulin-mediated alterations in a number of cellular processes, including an increase in glucose transport. Accumulation of fatty acids and lipid metabolites (such as long chain acyl CoA, diacylglycerol, triacylglycerol, and/or ceramide) can lead to alterations in this insulin signaling pathway. An imbalance between fatty acid uptake and oxidation is believed to be responsible for this lipid accumulation, and is thought to be a major cause of insulin resistance in obesity and diabetes, due to lipid accumulation and inhibition of one or more steps in the insulin-signaling cascade. As a result, decreasing muscle fatty acid uptake can improve insulin sensitivity. However, the potential role of increasing fatty acid β-oxidation in the heart or skeletal muscle in order to prevent cytoplasmic lipid accumulation and decrease insulin resistance is controversial. While increased fatty acid β-oxidation may lower cytoplasmic lipid accumulation, increasing fatty acid β-oxidation can decrease muscle glucose metabolism, and incomplete fatty acid oxidation has the potential to also contribute to insulin resistance. In this review, we discuss the proposed mechanisms by which alterations in fatty acid uptake and oxidation contribute to insulin resistance, and how targeting fatty acid uptake and oxidation is a potential therapeutic approach to treat insulin resistance.  相似文献   

2.
Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid composed of 22 carbon atoms and six double bonds. Because the first double bond, as counted from the methyl terminus, is at position three, DHA belongs to the so-called -3 group. In recent years, DHA has attracted much attention because of its beneficial effect on human health. At present, fish oil is the major source of DHA, but alternatively it may be produced by use of microorganisms. Marine microorganisms may contain large quantities of DHA and are considered a potential source of this important fatty acid. Some of these organisms can be grown heterotrophically on organic substrates without light. These processes can be well controlled and DHA with constant quality can be produced all year round. This paper reviews recent advances in the biotechnological production of DHA by marine microorganisms.  相似文献   

3.
4.
ω-3 fatty acid desaturase is a key enzyme for the biosynthesis of ω-3 polyunsaturated fatty acids via the oxidative desaturase/elongase pathways. Here we report the identification of three ω-3 desaturases from oomycetes, Pythium aphanidermatum, Phytophthora sojae, and Phytophthora ramorum. These new ω-3 desaturases share 55 % identity at the amino acid level with the known Δ-17 desaturase of Saprolegnia diclina, and about 31 % identity with the bifunctional Δ-12/Δ-15 desaturase of Fusarium monoliforme. The three enzymes were expressed in either wild-type or codon optimized form in an engineered arachidonic acid producing strain of Yarrowia lipolytica to study their activity and substrate specificity. All three were able to convert the ω-6 arachidonic acid to the ω-3 eicosapentanoic acid, with a substrate conversion efficiency of 54–65 %. These enzymes have a broad ω-6 fatty acid substrate spectrum, including both C18 and C20 ω-6 fatty acids although they prefer the C20 substrates, and have strong Δ-17 desaturase activity but weaker Δ-15 desaturase activity. Thus, they belong to the Δ-17 desaturase class. Unlike the previously identified bifunctional Δ-12/Δ-15 desaturase from F. monoliforme, they lack Δ-12 desaturase activity. The newly identified Δ-17 desaturases could use fatty acids in both acyl-CoA and phospholipid fraction as substrates. The identification of these Δ-17 desaturases provides a set of powerful new tools for genetic engineering of microbes and plants to produce ω-3 fatty acids, such as eicosapentanoic acid and docosahexanoic acid, at high levels.  相似文献   

5.
Fatty acid synthase (FAS) is a multifunctional homodimeric protein, and is the key enzyme required for the anabolic conversion of dietary carbohydrates to fatty acids. FAS synthesizes long-chain fatty acids from three substrates: acetyl-CoA as a primer, malonyl-CoA as a 2 carbon donor, and NADPH for reduction. The entire reaction is composed of numerous sequential steps, each catalyzed by a specific functional domain of the enzyme. FAS comprises seven different functional domains, among which the β-ketoacyl synthase (KS) domain carries out the key condensation reaction to elongate the length of fatty acid chain. Acyl tail length controlled fatty acid synthesis in eukaryotes is a classic example of how a chain building multienzyme works. Different hypotheses have been put forward to explain how those sub-units of FAS are orchestrated to produce fatty acids with proper molecular weight. In the present study, molecular dynamic simulation based binding free energy calculation and access tunnels analysis showed that the C16 acyl tail fatty acid, the major product of FAS, fits to the active site on KS domain better than any other substrates. These simulations supported a new hypothesis about the mechanism of fatty acid production ratio: the geometric shape of active site on KS domain might play a determinate role.  相似文献   

6.
7.
Food irradiation is a form of food processing to extend the shelf life and reduce spoilage of food. We examined the effects of γ radiation on the fatty acid composition, lipid peroxidation level, and antioxidative activity of soybean and soybean oil which both contain a large amount of unsaturated fatty acids. Irradiation at 10 to 80 kGy under aerobic conditions did not markedly change the fatty acid composition of soybean. While 10-kGy irradiation did not markedly affect the fatty acid composition of soybean oil under either aerobic or anaerobic conditions, 40-kGy irradiation considerably altered the fatty acid composition of soybean oil under aerobic conditions, but not under anaerobic conditions. Moreover, 40-kGy irradiation produced a significant amount of trans fatty acids under aerobic conditions, but not under anaerobic conditions. Irradiating soybean oil induced lipid peroxidation and reduced the radical scavenging activity under aerobic conditions, but had no effect under anaerobic conditions. These results indicate that the fatty acid composition of soybean was not markedly affected by radiation at 10 kGy, and that anaerobic conditions reduced the degradation of soybean oil that occurred with high doses of γ radiation.  相似文献   

8.
The surface pressures of α-tocopherol analogs, fatty acids, and their mixtures were measured in their spread monolayers at an air—water interface. The surface pressure—area isotherms for the mixed monolayers of α-tocopherol and either stearic acid, oleic acid or linoleic acid deviated positively from those calculated on the basis of the additivity rule, and the magnitude depended on the length of the phytyl side chain in α-tocopherol and on the degree of unsaturation of the fatty acid chains. Lysosome membranes of mouse liver were stabilized by addition of α-tocopherol. A decrease in the length of the phytyl side chain in α-tocopherol reduced its ability to stabilize lysosome membranes. A good correlation was obtained between the extent of stabilizing activity of α-tocopherol analogs on lysosome membranes and the degree of positive deviation of the surface pressure for their mixtures with fatty acids.  相似文献   

9.
AimsNormal human cells in culture progressively lose their capacity for replication, ending in an irreversible arrested state known as replicative senescence. Senescence has been functionally associated to the process of organismal ageing and is also considered a major tumor-suppressing mechanism. Although a great deal of knowledge has uncovered many of the molecular aspects of senescence, little is known about the regulation of lipid synthesis, particularly the biosynthesis and Δ9-desaturation of fatty acids, during the senescence process.Main methodsBy using immunoblotting and metabolic radiolabeling, we determined the senescence-associated changes in major lipogenic pathways.Key findingsThe levels of fatty acid synthase and stearoyl-CoA desaturase-1 and, consequently, the formation of monounsaturated fatty acids, were notably decreased in senescent cells when compared to proliferating (young) fibroblasts. Moreover, we detected a reduction in the de novo synthesis of phospholipids with a concomitant increase in the formation of cholesterol in senescent cells compared to young fibroblasts. Finally, it was found that exogenous fatty acids were preferentially incorporated into the triacylglycerol pool of senescent cells.SignificanceThis set of observations is the first demonstration of a profound modification in lipid metabolism, particularly fatty acid biosynthesis and desaturation, caused by the senescence process and contributes to the increasing body of evidence linking de novo lipogenesis with cellular proliferation.  相似文献   

10.
1. The fatty acid (FA) composition of Daphnia galeata and their algal food was analysed and showed many similarities, however, some significant differences were also found in the relative abundance of the FA C16 : 4ω3 and docosahexaenoic acid (DHA). Their relative abundances were much lower in daphnids than in their algal diet.
2. When daphnids were fed three distinct emulsion particles with DHA : eicosapentaenoic acid (EPA) ratios of c. 0.7, 2 and 4, the final DHA : EPA ratio in the daphnids always favoured EPA. The increase of the food DHA : EPA ratio resulted in a minor increase of DHA (to c. 2%). Feeding the animals on emulsion particles with increasing ratios of DHA : EPA, caused a minor ( c. 2%) increase of DHA level but EPA levels remained high ( c. 10%).
3. When labelled with [14C]linoleic acid and [14C]linolenic acid daphnids showed low conversion of both essential FA into C20 polyunsaturated fatty acids (PUFAs). This low conversion activity might explain the importance of C20 PUFAs as dietary compounds in the food of Daphnia.
4. The results indicate the insignificance of DHA and C16 : 4ω3 for daphnids. As EPA can be derived from C18 : 3ω3 it is not strictly essential, although it might be a significant factor in food quality for Daphnia.  相似文献   

11.
Summary Palmitate uptake by isolated, calcium-resistant cardiomyocytes was measured by using a stimulation chamber in which cell contraction can be evoked electrically. Experiments were performed in a medium containing physiological interstitial concentration of albumin (2%) and palmitate/albumin (P/A) ratios ranging from 0.03 to 2.5, and were compared to experiments with fixed P/A ratio (– 1).Initial rate of uptake (Vi) was calculated from fitted uptake vs. time curves as measured by accumulation of radioactivity in the cells from 14C-labelled palmitate. Vi-vs.-concentration curves exhibited a saturable component, if albumin concentration was kept constant. Almost no change in Vi was observed in experiments performed at constant P/A. This is in contrast to the albumin receptor hypothesis.The 14C-palmitate content of the myocytes as estimated by thin-layer-chromatography did reach a plateau at 30 s and had the same value at 30 min after administration. The cellular content of labelled palmitate could be attributed to the membrane compartment as calculated from partition coefficient (Kc) of fatty acids (FA) between albumin and membranes. With electrical stimulation Vi-vs.-palmitate concentration kinetics showed a shift in apparent Km from 62 µM (P/A – 0.22) to 23 µM (P/A = 0.08), and presence of 2,4-dinitrophenol increases Vi.Our results suggest that FA-transfer across the sarcolemmal membranes is determined by a physicochemical equilibrium between the compartments of extracellular FA-albumin complex, the membrane lipid phase, intracellular FA binding proteins and the respective aqueous phases. Consequently in cell suspensions the rate of palmitate uptake is controlled by a step of fatty acid metabolism possibly the formation of Fa CoA by the enzyme FA acyl CoA synthetase which is localized in membranes of endoplasmatic reticulum and mitochondria. This step is influenced by the metabolic state of the cells and by FA concentration in membranes.  相似文献   

12.
1,2,3,4-Tetrahydroxypentane-29-hopane (THBH) and a glycolipid derived from it are associated with ω-cyclohexane fatty acids-containing lipids in the membrane of Bacillus acidocaldarius. In order to elucidate the function of these lipids we studied mixed monolayer films and compared these with cholesterol-containing films. The hopanoids are able to condense a liquid-expanded film of di-ω-cyclohexyldodecanoylphosphatidylcholine (DCDPC). The condensing effect of THBH is smaller than that of cholesterol. Hopane glycolipid in comparison shows only little condensation. In a more condensed film, at lower temperatures, THBH slightly decreases while hopane glycolipid increases the molecular area. In egg phosphatidylcholine liposomes, 22-hydroxyhopane (diplopterol) and hopane glycolipid reduce the glycerol permeability to a smaller extent than cholesterol. In DCDPC liposomes, the effect of 22-hydroxyhopane is similar to that of cholesterol, while the hopane glycolipid shows only a weak reduction of the permeability. The results demonstrate that hepanoids have a cholesterol-like function in membranes. This function is also discussed in the context of membrane adaptation of a thermoacidophilic bacterium.  相似文献   

13.
In tritrophic interactions, plants recognize herbivore-produced elicitors and release a blend of volatile compounds (VOCs), which work as chemical cues for parasitoids or predators to locate their hosts. From detection of elicitors to VOC emissions, plants utilize sophisticated systems that resemble the plant–microbe interaction system. Fatty acid–amino acid conjugates (FACs), a class of insect elicitors, resemble compounds synthesized by microbes in nature. Recent evidence suggests that the recognition of insect elicitors by an ancestral microbe-associated defense system may be the origin of tritrophic interactions mediated by FACs. Here we discuss our findings in light of how plants have customized this defense to be effective against insect herbivores, and how some insects have successfully adapted to these defenses.  相似文献   

14.
Lactoglobulin is a natural protein present in bovine milk and common component of human diet, known for binding with high affinity wide range of hydrophobic compounds, among them fatty acids 12–20 carbon atoms long. Shorter fatty acids were reported as not binding to β‐lactoglobulin. We used X‐ray crystallography and fluorescence spectroscopy to show that lactoglobulin binds also 8‐ and 10‐carbon caprylic and capric acids, however with lower affinity. The determined apparent association constant for lactoglobulin complex with caprylic acid is 10.8 ± 1.7 × 103 M?1, while for capric acid is 6.0 ± 0.5 × 103 M?1. In crystal structures determined with resolution 1.9 Å the caprylic acid is bound in upper part of central calyx near polar residues located at CD loop, while the capric acid is buried deeper in the calyx bottom and does not interact with polar residues at CD loop. In both structures, water molecule hydrogen‐bonded to carboxyl group of fatty acid is observed. Different location of ligands in the binding site indicates that competition between polar and hydrophobic interactions is an important factor determining position of the ligand in β‐barrel. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The fatty acid profiles of Antarctic (n = 7) and non-Antarctic yeasts (n = 7) grown at different temperatures were analysed by gas chromatography–mass spectrometry. The Antarctic yeasts were enriched in oleic 18:1 (20–60 %), linoleic 18:2 (20–50 %) and linolenic 18:3 (5–40 %) acids with lesser amounts of palmitic 16:0 (<15 %) and palmitoleic 16:1 (<10 %) acids. The non-Antarctic yeasts (n = 4) were enriched in 18:1 (20–55 %, with R. mucilaginosa at 75–80 %) and 18:2 (10–40 %) with lesser amounts of 16:0 (<20 %), 16:1 (<20 %) and stearic 18:0 (<10 %) acids. By contrast, Saccharomyces cerevisiae strains (n = 3) were enriched in 16:1 (30–50 %) and 18:1 (20–40 %) with lesser amounts of 16:0 (10–25 %) and 18:0 (5–10 %) acids. Principal component analysis grouped the yeasts into three clusters, one belonging to the S. cerevisiae strains (enriched in 16:0, 16:1 and 18:1), one to the other non-Antarctic yeasts (enriched in 18:1 and 18:2) and the third to the Antarctic yeasts (enriched in 18:2 and 18:3).  相似文献   

16.
Translocation of long chain fatty acids across the plasma membrane is achieved by a concert of co-existing mechanisms. These lipids can passively diffuse, but transport can also be accelerated by certain membrane proteins as well as lipid rafts. Lipid rafts are dynamic assemblies of proteins and lipids, that float freely within the two dimensional matrix of the membrane bilayer. They are receiving increasing attention as devices that regulate membrane function in vivo and play an important role in membrane trafficking and signal transduction. In this review we will discuss how lipid rafts might be involved in the uptake process and how the candidate proteins for fatty acid uptake FAT/CD36 and the FATP proteins interact with these domains. We will also discuss the functional role of FATPs in general. To our understanding FATPs are indirectly involved in the translocation process across the plasma membrane by providing long chain fatty acid synthetase activity.  相似文献   

17.
This study investigated the effects of genotype and diet on meat fat composition and palatability obtained from Alentejana (AL) and Barrosã (BA) breeds. Herein, 20 males from each breed allocated at 11 months of age were fed ad libitum a low-forage diet or a high-forage diet and slaughtered at 18 months of age. Trained sensory panel analysis found that the longissimus lumborum (Ll) muscle from BA had higher tenderness, juiciness and overall acceptability scores than the AL breed. The highest scores for those attributes were observed in the BA breed fed the high-forage diet. Regarding the semitendinosus (St) muscle, breed was a source of variation of tenderness scores. In contrast to the Ll muscle, the highest tenderness scores for the St muscle were observed in the AL breed. The intramuscular fat (IMF) content was positively correlated with tenderness, juiciness and overall acceptability in Ll muscle and negatively correlated with flavour in the St muscle. The levels of 14:0 and 16:0, 16:1c9, 18:1c9 and 18:1c11 were positively correlated to juiciness, tenderness and overall acceptability in the Ll muscle. These correlations were not observed in the St muscle, which may be related to its low IMF content. Nonetheless, negative correlations were observed for the St muscle between flavour and 14:0, 16:0 and 18:0 FA contents.The IMF varied widely in the Ll but not in the St muscle. The latter had higher levels of 16:1c9 and trans fatty acids (∑TFA) in the BA than in the AL breed. Regarding the Ll muscle, the BA had higher amounts of 14:0, 16:0, 16:1c9, 18:0, 18:1c9, 18:1c11, saturated fatty acids (∑SFA), cis monounsaturated fatty acids (∑cis MUFA), ∑TFA and n-3 polyunsaturated fatty acids (∑n-3 PUFA) than the AL breed. The diet exerted an influence on the IMF content and on the levels of 14:0, 16:0, 16:1c9, 18:0, 18:1c9, 18:1c11, ∑SFA, ∑cis MUFA and ∑TFA in both Ll and St muscles. Moreover, the levels of ∑n-3 PUFA in the Ll muscle and 18:2n-6, 20:4n-6, ∑n-6 PUFA and ∑PUFA in the St muscle were influenced by diet. The results obtained in this study, with two Portuguese breeds, confirm that genetic background plays a major role in the determination of meat eating quality.  相似文献   

18.
The interactions of fatty acids with porcine and bovine β-lactoglobulins were measured using tryptophan fluorescence enhancement. In the case of bovine β-lactoglobulin, the apparent binding constants for most of the saturated and unsaturated fatty acids were in the range of 10?7 M at neutralpH. Bovine β-lactoglobulin displays only one high affinity binding site for palmitate with an apparent dissociation constant of 1·10?7 M. The strength of the binding was decreasing in the following way: palmitate > stearate > myristate > arachidate > laurate. Caprylic and capric acids are not bound at all. The affinity of β-lactoglobulin for palmitate decreased as thepH of the incubation medium was lowered and BLG/palmitate complex was not observed atpH's lower than 4.5. Surprisingly, chemically modified bovine β-lactoglobulin and porcine β-lactoglobulin did not bind fatty acids in the applied conditions.  相似文献   

19.
Lipase-catalyzed synthesis of vitamin C fatty acid esters   总被引:8,自引:0,他引:8  
Fatty acid esters of vitamin C (ascorbic acid) where synthesized in a mainly solid-phase system in the presence of small amounts of organic solvent (acetone or t-butanol) catalyzed by immobilized lipase B from Candida antarctica.Highest reaction rates and yields of isolated products were obtained using fatty acid vinyl esters, e.g., 6-O-palmitoyl-l-ascorbic acid was obtained in 91% isolated yield after 48 h. As vitamin C and its esters are very sensitive to oxidation, a mild extraction method for the isolation of reaction products was developed.  相似文献   

20.
The aim of the present study was to assess the effect of streptozotocin diabetes and insulin treatment on adrenic acid Δ4 desaturation and fatty acid composition of liver microsomes in Wistar rats fed a fat free semi-synthetic basal diet supplemented with 10% EPA-rich marine oil. Results showed that, in liver microsomes of hyperglycemic rats, the ratio in total lipids was elevated and desaturation of adrenic acid to n-6 docosapentaenoic acid was enhanced. Insulin treatment with 2.0 I.U./100 g body weight−1 twice a day for 3 days resulted in hypoglycemia and suppressed both the increased Δ4 n-6 desaturation and ratio. It is concluded that the Δ4 desaturation enzyme system, which is activated by experimental diabetes, is regulated by mechanisms different from those regulating Δ6 and Δ5 desaturations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号