首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma lipoproteins of d < 1.063 g/ml from rabbits fed a diet containing 1% cholesterol for 4 days showed changes in concentration and rates of flotation as determined by analytical ultracentrifugation. A marked increase in cholesteryl ester content of lipoprotein with d < 1.019 g/ml was the most prominent change in rabbits fed the diet for 21 days. Gel electrophoresis and immunochemical procedures demonstrated that in control and hypercholesterolemic rabbits there were some common apolipoproteins found in all lipoproteins with density < 1.063 g/ml. In control rabbits, there were also apolipoproteins specific to the lipoprotein fraction with d < 1.019 and to the fraction with d 1.019-1.063 g/ml. However, in rabbits fed the hypercholesterolemic diet for 21 days, the apolipoproteins characteristic of fraction 1.019-1.063 were the most abundant in the fraction with d < 1.019 g/ml. Liver slices from rabbits fed the high cholesterol diet for 7 and 21 days incorporated more l-[(14)C]leucine into very low density and low density lipoproteins than controls. The results suggest that cholesterol feeding leads to an increase in biosynthesis of lipoproteins with d < 1.063 g/ml. The newly synthesized lipoprotein contains apolipoproteins similar to those found in controls but with a higher lipid-to-protein ratio. From the apoprotein composition, it is concluded that the very low density fraction present in cholesterol-fed animals is more structurally related to low density lipoproteins than to the very low density lipoproteins isolated from control animals.  相似文献   

2.
[14C]Cholesteryl ester was directly incorporated into human plasma low-density lipoproteins (LDL) for the purpose of preparing a tracer substrate for investigation of the cholesteryl ester transfer reaction between plasma lipoproteins. The radiolabeled cholesteryl oleate was sonicated with egg phosphatidylcholine to form cholesteryl ester-containing liposomes. The liposomes were incubated with plasma fraction of density greater than 1.006 at 37 degrees C in the presence of dithionitrobenzoic acid. When the distribution of the radiolabeled cholesteryl ester was equilibrated among liposomes and lipoprotein fractions, the mixture was applied to an affinity chromatography column of dextran sulfate-cellulose (LA01) (Arteriosclerosis 4, 276-282). LDL was eluted by increasing the NaCl concentration and was finally isolated as a floating fraction by ultracentrifugation at a solvent density of 1.063 (adjusted with NaCl). The chemical composition, electrophoretic mobility and density of the labeled LDL were consistent with those of the native LDL. Radioactivity in this preparation was present exclusively in cholesteryl ester. Apolipoprotein B100 was preserved intact throughout the procedure. When the rate of cholesteryl ester transfer was measured between LDL and high-density lipoproteins by using this labeled LDL, the kinetics was consistent with the equilibrium transfer model, but the apparent rate measured was slightly higher than that measured with the labeled LDL prepared by the method using the intrinsic cholesterol esterification reaction of plasma.  相似文献   

3.
Confluent monolayers of the human hepatoblastoma-derived cell line, Hep G2, were incubated in serum-free medium. Conditioned medium was ultracentrifugally separated into d less than 1.063 g/ml and d 1.063-1.20 g/ml fractions since very little VLDL was observed. The d less than 1.063 g/ml fraction was examined by electron microscopy; it contained particles of 24.5 +/- 2.3 nm diameter, similar in size to plasma LDL; a similar size was demonstrated by nondenaturing gradient gel electrophoresis. These particles possessed apoB-100 only. The d less than 1.063 g/ml fraction had a lipid composition unlike that of plasma LDL; unesterified cholesterol was elevated, there was relatively little cholesteryl ester, and triglyceride was the major core lipid. The d 1.063-1.20 g/ml fraction was heterogeneous in size and morphology. Electron microscopy revealed discoidal particles (14.9 +/- 3.2 nm long axis and 4.5 +/- 0.2 nm short axis) as well as small spherical ones (7.6 +/- 1.4 nm diameter). Nondenaturing gradient gel electrophoresis consistently showed the presence of peaks at 13.4 11.9, 9.7, and 7.4 nm. The latter peak was conspicuous and probably corresponded to the small spherical structures seen by electron microscopy. Unlike plasma HDL, Hep G2 d 1.063-1.20 g/ml lipoproteins contained little or no stainable material in the (HDL3a)gge region by gradient gel electrophoresis. Hep G2 d 1.063-1.20 g/ml lipoproteins differed significantly in composition from their plasma counterparts; unesterified cholesterol and phospholipid were elevated and the mole ratio of unesterified cholesterol to phospholipid was 0.8. Cholesteryl ester content was extremely low. ApoA-I was the major apolipoprotein, while apoE was the next most abundant protein; small quantities of apoA-II and apoCs were also present. Immunoblot analysis of the d 1.063-1.20 g/ml fraction after gradient gel electrophoresis showed that apoE was localized in the larger pore region of the gel (apparent diameter greater than 12.2 nm); the apoA-I distribution in this fraction was very broad (7.1-12.2 nm), and included a distinct band at 7.4 nm. Immunoblotting after gradient gel electrophoresis of concentrated medium revealed that a significant fraction of apoA-I in the uncentrifuged medium was in a lipid-poor or lipid-free form. This cell line may be a useful model for investigating the metabolism of newly formed HDL.  相似文献   

4.
Rabbits fed a cholesterol-free semi-synthetic wheat-starch-casein diet had a high plasma cholesterol concentration; most of the cholesterol was associated with low-density lipoproteins (LDL). Chemical analyses of plasma lipoproteins revealed that very-low-density lipoproteins (VLDL), intermediate lipoproteins and LDL from casein-fed rabbits contained more cholesteryl ester than that of lipoproteins isolated from chow-fed animals. The fatty acid composition of cholesteryl esters of plasma lipoproteins showed that there were higher contents of oleic acid than linoleic acids in lipoproteins from casein-fed rabbits. Lipoproteins isolated from liver perfusates of casein-fed rabbits had higher cholesteryl oleate content than lipoproteins from chow-fed rabbit liver perfusates. There was a marked increase in secretion of apolipoproteins from perfused livers of casein-fed rabbits. We conclude that the high levels of plasma cholesterol in casein-fed rabbits are of hepatic origin and that one of the hypercholesterolemic actions of dietary casein in rabbits is the induction of hepatic synthesis and secretion of cholesteryl-ester-rich lipoproteins.  相似文献   

5.
Turnover of individual classes of cholesteryl esters (classified on the basis of the degree of unsaturation of the fatty acid moiety) in rat plasma lipoproteins and liver was studied after the administration of mevalonic acid-5-(3)H and mevalonic acid-2-(14)C. The relative turnover rate was greatest in the d < 1.019 lipoproteins, with monoenes > saturated = dienes > tetraenes. In the d > 1.063 lipoproteins, all cholesteryl esters had slower turnover rates, but tetraenes = pentaenes > dienes > monoenes = saturated. Comparisons of specific activities of individual cholesteryl ester classes of liver subcellular fractions and lipoproteins suggest that the d < 1.019 lipoprotein cholesteryl esters are synthesized from newly synthesized cholesterol in the liver and are rapidly released into this lipoprotein. Tetraenoic cholesteryl esters, however, may originate from esterification of free cholesterol in plasma. Tetraenoic esters are formed from cholesterol in plasma during incubation or ultracentrifugation unless a thiol-reacting or alkylating agent is added. Failure to add such a reagent to plasma results in erroneous specific activities. In the adrenal, relative rates of synthesis of cholesteryl esters are monoenes = dienes > tetraenes > trienes = pentaenes > saturated. It is concluded that cholesteryl ester turnover in the rat, as opposed to man, is determined not only by the particular lipoprotein class but also by the fatty acid moiety of the ester.  相似文献   

6.
When [3H]cholesteryl ester-labeled low density (LDL) and intermediate density lipoproteins (IDL) from a normotriglyceridemic, hypercholesterolemic rabbit were injected into severely hypertriglyceridemic, hypercholesterolemic rabbits, 60% of the label appeared in very low density lipoproteins (VLDL) at 3 hr. A similar experiment showed that 40% of injected 131I-protein-labeled LDL appeared in the IDL fraction at 4 hr. Taken together, these data suggest that the exchange of LDL cholesteryl ester for VLDL triglyceride results in a density shift of injected LDL to the IDL density range. Furthermore, the percent of injected 131I-labeled LDL from normotriglyceridemic rabbits that appeared in the IDL fraction increased in rabbits with increasing levels of plasma triglyceride. This LDL density shift was reproduced in vitro by incubating iodinated LDL from normotriglyceridemic, hypercholesterolemic rabbits with concentrations of VLDL from hypertriglyceridemic, hypercholesterolemic rabbits similar to those in plasma. With such a system, it was shown that the percentage of LDL that appeared in the IDL fraction increased with time, was enhanced fourfold by the addition of plasma lipid transfer protein, increased with increasing molar ratio of triglyceride to cholesteryl ester in VLDL, but apparently did not increase with increasing VLDL particle number. These studies suggest that a pronounced decrease in density of lipoproteins that would normally appear in the LDL density range, resulting from loss of cholesteryl ester in exchange for VLDL triglyceride, may explain, at least in part, the reduced LDL levels in severe hypertriglyceridemia.  相似文献   

7.
The effects of cholestyramine and of clofibrate on the turnover rates of individual cholesteryl esters in whole human plasma and in each of the three classes of plasma lipoproteins have been studied. Four hyperlipidemic patients (two under treatment with each of the two drugs) were injected intravenously with cholesterol-(14)C, and serial plasma samples were collected after 3-4 hr, 8 hr, 24 hr, and 4-5 days. The plasma samples were separated into three classes of lipoproteins by ultracentrifugation. The cholesteryl esters and free cholesterol were isolated from each sample, and the specific radioactivity of the free and esterified cholesterol was determined. The specific radioactivity of each individual cholesteryl ester was then determined for each sample, by separately measuring the distribution of cholesterol mass and of radioactivity among four different cholesteryl ester groups, namely the saturated, mono-, di-, and tetra-unsaturated esters. In all subjects the plasma cholesteryl esters were metabolically heterogeneous, and could be divided into three pools corresponding to the three classes of plasma lipoproteins. High density lipoprotein (d > 1.063) cholesteryl esters showed the greatest fractional turnover rate, and low density lipoprotein (d 1.019-1.063) cholesteryl esters showed the smallest fractional turnover rate. In each subject the cholesteryl ester composition of the three classes of plasma lipoprotein was almost identical. Within each lipoprotein, and in whole plasma, all the different individual cholesteryl esters were found to turn over at the same fractional rate. In all respects these results were similar to those previously obtained with normal subjects. The results suggest that neither drug has a strongly selective effect on the turnover of one particular cholesteryl ester, or on the turnover or composition of the cholesteryl esters in one particular plasma lipoprotein.  相似文献   

8.
It is possible to detect among New Zealand rabbits some animals (A. N.Z.) whose plasma lipoproteins patterns are quite different from those of normal rabbits (N.N.Z.). The differences involve VLDL (< 1.006), LDL1 (1.006–1.019), LDL2 (1.019–1.063), HDL (1.063–1.210), VHDL (> 1.210) and plasma cholesterol, triglycerides and phospholipids. This lipoprotein pattern seems to resemble human type IIb hyperlipoproteinaemia. A rapid screening procedure for detecting these animals is proposed.  相似文献   

9.
Whole serum obtained from hypercholesterolemic rhesus monkeys was found to stimulate cholesterol esterification and cholesteryl ester accumulation in rhesus monkey arterial smooth muscle cells in culture to a significantly greater extent than normocholesterolemic serum. This was true even when the cholesterol concentration of the culture medium was equalized. Isolation and characterzation of the low density lipoproteins (LDL) from rhesus monkeys indicated that the LDL from hypercholesterolemic animals was 33% larger than LDL from normocholesterolemic animals due principally to an increase in the amount of cholesteryl ester per molecule. As a result, LDL from hypercholesterolemic animals transported over 50% more cholesterol per molecule than did normal LDL. The LDL of altered composition from hypercholesterolemic animals, when added to smooth muscle cells in culture, was nearly twice as effective in stimulating cholesterol esterification and cholesteryl ester accumulation than was LDL of normal composition. Results suggest that at least part of the exaggerated ability of whole hypercholesterolemic serum to stimulate the esterification and accumulation of cholesterol in cells in culture is due to the presence of LDL of altered composition.  相似文献   

10.
Feeding rabbits 500 mg of cholesterol daily for 4 to 15 days greatly increased the concentration of esterified cholesterol in lipoproteins of d less than 1.006 g/ml. The origin of hypercholesterolemic very low density lipoproteins was investigated by monitoring the degradation of labeled lymph chyomicrons administered to normal and cholesterol-fed rabbits. Chylomicrons were labeled in vivo by feeding either 1) [3H]cholesterol and [14C]oleic acid or 2) [14C]cholesterol and [3H]retinyl acetate. After intravenous injection of labeled chylomicrons to recipient rabbits, [14C]triglyceride hydrolysis was equally rapid in normal and cholesterol-fed animals. Normal rabbits rapidly removed from plasma both labeled cholesteryl and retinyl esters, whereas cholesterol-fed rabbits retained nearly 50% of doubly labeled remnants in plasma 25 min after chylomicron injection. Ultracentrifugal separation of plasma into subfractions of very low density lipoproteins showed that chylomicron remnants in cholesterol-fed animals are found among all subclasses of very low density lipoproteins. Analysis of cholesteryl ester specific activity-time curves for the very low density lipoproteins subfraction from hypercholesterolemic plasma showed that nearly all esterified cholesterol in large very low density lipoproteins and approximately 30% of esterified cholesterol in small very low density lipoproteins was derived from chylomicron degradation. Apparently, nearly two-thirds of the esterified cholesterol in total very low density lipoproteins from moderately hypercholesterolemic rabbits is of dietary origin.  相似文献   

11.
High density lipoproteins (HDL), doubly labeled with [3H]cholesteryl oleate and cholesteryl [14C]oleate, were reinjected to study HDL cholesteryl ester metabolism in African green monkeys. The transfer of labeled HDL cholesteryl ester to low density lipoprotein (LDL) was rapid and equilibration of the [3H]cholesteryl oleate and cholesteryl [14C]oleate specific activities in LDL and HDL occurred within 90 min after reinjection. The apparent rates of disappearance from the circulation of the two moieties of the cholesteryl ester were different. In the same four animals, the residence time for the turnover of plasma [3H]cholesterol averaged 6.1 days while the residence time for the removal of cholesteryl [14C]oleate from plasma was approximately 2.1 days. These results suggest that for some lipoprotein cholesteryl esters removed from plasma, the cholesterol moiety subsequently reappeared in plasma. The difference between the rate of decay of the 14C-labeled fatty acid moiety, which represents all of the cholesteryl ester removed from plasma (0.48 pools/day) and the decay of the 3H-labeled cholesterol moiety, which represents the sum of cholesteryl ester removal and cholesterol reappearance (0.16 pools/day), is the fraction of the cholesteryl ester pool recycled per day (0.32 pools/day or 22.5 mg/kg per day). In other words, approximately 68% of the cholesterol moiety that was removed from plasma as cholesteryl oleate reappeared in the plasma cholesterol pool. These studies support the concept that an efficient reutilization cycle for plasma cholesterol occurs, i.e., the cholesteryl ester molecule can exit and the cholesterol moiety can re-enter plasma without effective equilibration of the cholesterol moiety with extravascular cholesterol pools.  相似文献   

12.
We studied cholesterol synthesis from [14C]acetate, cholesterol esterification from [14C]oleate, and cellular cholesterol and cholesteryl ester levels after incubating cells with apoE-free high density lipoproteins (HDL) or low density lipoproteins (LDL). LDL suppressed synthesis by up to 60%, stimulated esterification by up to 280%, and increased cell cholesteryl ester content about 4-fold. Esterification increased within 2 h, but synthesis was not suppressed until after 6 h. ApoE-free HDL suppressed esterification by about 50% within 2 h. Cholesterol synthesis was changed very little within 6 h, unless esterification was maximally suppressed; synthesis was then stimulated about 4-fold. HDL lowered cellular unesterified cholesterol by 13-20% within 2 h and promoted the removal of newly synthesized cholesterol and cholesteryl esters. These changes were transient; by 24 h, both esterification and cellular unesterified cholesterol returned to control levels, and cholesteryl esters increased 2-3-fold. HDL core lipid was taken up selectively from 125I-labeled [3H]cholesteryl ester- and ether-labeled HDL. LDL core lipid uptake was proportional to LDL apoprotein uptake. The findings suggest that 1) the cells respond initially to HDL or LDL with changes in esterification, and 2) HDL mediates both the removal of free cholesterol from the cell and the delivery of HDL cholesteryl esters to the cell.  相似文献   

13.
Male golden hamsters were rendered hypercholesterolemic by feeding diets enriched with cholesterol and fat. In the first series of experiments, 5% butter and 1% cholesterol were added to a chow diet and plasma cholesterol levels were maintained at 350–390 mg/dl over the entire experimental period. Groups of hamsters and their age controls consuming the chow diet, were killed after 7, 15 and 20 months when the aorta was examined for atherosclerosis by determination of cholesterol mass. In the controls, aortic total cholesterol (TC) increased with age by 28% and esterified cholesterol increased to 11% of TC. In the hypercholesterolemic animals aortic TC was only 28% higher than in the controls and cholesteryl ester was also 11.5% of TC. In the second series, one group of hamsters were fed a semi-purified diet deficient in vitamin E, containing 1% cholesterol and 10% lard; a second group received the same diet, but supplemented with vitamin E. Controls consumed local chow. After 7 months on the vitamin E deficient diet plasma α-tocopherol was 0.05 mg/l, in those supplemented with vitamin E it was 20 mg/l, while in the controls it was 3.3 mg/l. Plasma thiobarbituric acid reactive substances (TBARS) were higher in the vitamin E deficient group and there was a greater propensity of lipoproteins (d < 1.063 g/ml to peroxidation in vitro than in the vitamin E supplemented group. Plasma cholesterol was 366 mg/dl in the vitamin E deficient, 336 mg/dl in the vitamin E supplemented group, and 64 mg/dl in controls. Aortic cholesterol was 79.1 in vitamin E supplemented and 84.4 μg/ 10 mg dry weight in vitamin E deficient hamsters. In both series of experiments, HDL amounted to 36–41% of plasma TC in the hypercholesterolemic animals and 59–62% in the controls. In conclusion: the hamster appears to be quite resistant to atherosclerosis in face of sustained hypercholesterolemia, even in the presence of increased peroxidative stress caused by vitamin E deficiency. This relative resistance could be related to commensurate increase in plasma HDL which was observed in both series of experiments. Since vitamin E deficiency did not enhance aortic cholesteryl ester deposition, the protective effect of HDL seems to be related to its role in reverse cholesterol transport, rather than in prevention of peroxidation.  相似文献   

14.
The concentration and activity of cholesteryl ester transfer protein (CETP) is increased in plasma in hypercholesterolemic humans and in experimental animals fed cholesterol. While the concentration of lipoproteins appears to be the major determinant of CETP activity, we have found previously that dietary measures and pharmacologic agents that alter their lipid composition reduce the activity of CETP in plasma (CET). Since vitamin E is lipophilic and is incorporated into lipoproteins, we have examined the question of whether it too attenuates CET in cholesterol-fed New Zealand White rabbits prior to and 14 weeks after treatment with differing doses (5, 15, 30, 45 mg/kg) of vitamin E. Plasma triglycerides (TG), cholesterol (TC) and phospholipids (Lys, Sph, Lec, PI, PE) all increased significantly to a comparable degree in the rabbits fed cholesterol compared to those fed chow (p < 0.05; p < 0.01); the levels achieved were similar in the vitamin E-treated and untreated groups. As was observed with plasma lipids, cholesteryl ester transfer (CET) was accelerated to the same degree in each of the cholesterol-fed groups independent of whether they received vitamin E compared to chow-fed controls (p < 0.01) and the distribution of cholesterol in apo-B containing lipoproteins (VLDL, IDL, and LDL) was similar in the vitamin E-treated and untreated groups. These findings indicate that vitamin E has no discernible effect on CET when cholesterol levels are markedly elevated.  相似文献   

15.
The catabolism of human and rat 125I-labelled very low density lipoproteins (VLDL) was compared by perfusing the lipoproteins through beating rat hearts. Triacylglycerol was removed from the VLDL to a greater extent than the protein moiety, leaving remnants containing relatively more apo-B and less apo-C. The change in apo-C content of the remnants correlated with the loss of triacylglycerol. The extent of removal of triacylglycerol from the rat and human VLDL was similar and in most cases appeared to saturate the heart lipoprotein lipase. The remnants were slightly smaller in size than the VLDL, and included particles which appeared to be partially emptied. In addition to remnants of d less than 1.019 g/ml, iodinated lipoproteins derived from rat and human VLDL were recovered at d 1.019-1.063 and 1.063-1.21 g/ml. The former contained largely cholesterol and cholesteryl esters, while phospholipids were the dominant lipid in the latter. An average of 40% of the 125I-labelled apoprotein lost from the VLDL was associated with the perfused hearts. Very little d 1.019-1.063 g/ml lipoprotein was produced from low (physiological) concentrations of rat VLDL, most of the lipoprotein being removed by the heart. However, lipoproteins of density 1.019-1.063 g/ml were formed from human VLDL at all concentrations in the perfusate, as well as from higher concentrations of the rat VLDL. Agarose gel filtration of lipoproteins following heart perfusion with human VLDL revealed large aggregates containing particles which resemble low density lipoproteins (LDL) in electron microscopic appearance and apoprotein composition, since they contain largely apo-B. These data suggest that at normal concentrations rat VLDL are almost completely catabolised and taken up by the heart without the formation of LDL, while LDL is produced from human VLDL at all concentrations.  相似文献   

16.
The mass efflux of free and esterified cholesterol was studied in skin fibroblasts loaded with cholesterol by incubation with low density lipoproteins (LDL) isolated from normal or hypercholesterolemic cynomolgus monkeys. Cells incubated with hypercholesterolemic LDL accumulated 2-3 times more cholesteryl ester than did cells incubated with the same amount of normal LDL. Cholesteryl oleate was the principal cholesteryl ester species to accumulate in cells incubated with both normal and hypercholesterolemic LDL. Efflux of this accumulated cholesterol was absolutely dependent on the presence of a cholesterol acceptor in the culture medium. Lipoprotein-deficient serum (LPDS) was the most potent promoter of cholesterol efflux tested, with maximum efflux occurring at LPDS concentrations greater than 1.5 mg protein/ml. Upon addition of efflux medium containing LPDS, there was a reduction in both the free and esterified cholesterol concentration of the cells. Greater than 90% of the cholesteryl esters that were lost from the cells appeared in the culture medium as free cholesterol, indicating that hydrolysis of cholesteryl esters preceded efflux. Efflux was not inhibited by chloroquine, however, suggesting a mechanism independent of lysosomes. Loss of cellular free cholesterol was maximum by 6 hr and changed very little thereafter up to 72 hr. Cholesteryl ester loss from cells decreased in a log linear fashion for efflux periods of 6-72 hr, with an average half-life for cholesteryl ester efflux of 30 hr, but with a range of 20-50 hr, depending upon the specific cell line. The rate of efflux of cellular cholesteryl esters was similar for cells loaded with normal or hypercholesterolemic LDL. In cells loaded with cholesteryl esters, cholesterol synthesis was suppressed and cholesterol esterification and fatty acid synthesis were enhanced. During efflux, cholesterol synthesis remained maximally suppressed while cholesterol esterification decreased for the first 24 hr of efflux, then plateaued at a level approximately 5-fold higher than control levels, while fatty acid synthesis was slightly stimulated. There was little difference in the rate of efflux of individual cholesteryl ester species. There was, however, the suggestion that reesterification of cholesterol principally to palmitic acid occurred during efflux. Since the rate of cellular cholesteryl ester efflux was similar regardless of whether the cells had been loaded with cholesterol by incubation with normal LDL or hypercholesterolemic LDL, the greater accumulation of cholesterol in cells incubated with hypercholesterolemic LDL cannot be explained by differences in rates of efflux.-St. Clair, R. W., and M. A. Leight. Cholesterol efflux from cells enriched with cholesteryl esters by incubation with hypercholesterolemic monkey low density lipoprotein.  相似文献   

17.
Three fractionation procedures (immunoaffinity chromatography, two-dimensional nondenaturing electrophoresis, and heparin-agarose affinity chromatography) have been compared in determining the kinetics of free and ester cholesterol transfer in normolipemic native plasma. Similar results were obtained in each case. Cell-derived free cholesterol is initially enriched in high density lipoproteins (HDL) (mainly HDL without apoE); at longer time periods (greater than 10 min) greater proportions are observed in very low density lipoproteins (VLDL) and low density lipoproteins (LDL). The major part of cholesteryl ester (about 90%) was retained in HDL, while VLDL and LDL, which contained about 75% of total cholesteryl ester mass, received only about 10% of cell-derived cholesteryl ester. Within HDL, almost all cholesteryl ester was in the apoE-free fraction. These data provide evidence that lipoprotein free and esterified cholesterol are not at chemical equilibrium in normal plasma, and that cell-derived cholesterol is preferentially directed to HDL. The techniques used had a comparable effectiveness for the rapid fractionation of labile lipoprotein lipid radioactivity.  相似文献   

18.
A defect in mobilization of cholesteryl esters in rabbit macrophages   总被引:1,自引:0,他引:1  
Macrophages provide an important way for cholesteryl esters to accumulate in tissues in pathologic amounts. We studied cholesteryl ester metabolism in thioglycollate-induced peritoneal macrophages obtained from normocholesterolemic and hypercholesterolemic rabbits. The macrophage preparations from normocholesterolemic rabbit (MN cells) had 26 nmol esterified cholesterol/mg cellular protein, incorporated 1 nmol of labeled oleate into cholesteryloleate/2 h per mg cellular protein and had an acyl-coenzyme A:cholesterol acyltransferase activity of 22 pmol cholesterylpalmitate formed/min per mg protein in isolated membranes. The macrophage preparations from hypercholesterolemic rabbits (MHC cells) contained a 12-fold greater mass of cholesteryl ester, had an 8-times higher rate of formation of cholesteryloleate, and had 3-times more acyl-coenzyme A:cholesterol acyltransferase activity in the isolated membranes. When a cholesterol acceptor (10% fetal bovine serum or 10 mg of lipid-free fetal bovine serum protein) was added to the culture medium of rabbit MHC cells, the MHC cells retained more than 70% of their cholesteryl esters after 48 h of incubation. In contrast, when a cholesterol acceptor (10% fetal bovine serum) was added to the medium of thioglycollate-induced, cholesterol-enriched macrophages from mice, the mice macrophages retained only 19% of their cholesteryl esters after 48 h of incubation. The limited capacity of rabbit macrophages to release unesterified cholesterol from stored cytoplasmic cholesteryl esters to an exogenous acceptor may be related to the propensity of rabbits to develop atherosclerotic lesions.  相似文献   

19.
The cholesteryl ester content of plasma low density lipoproteins (LDL) in monkeys has previously been shown to be related to the rate of hepatic cholesterol secretion and cholesteryl ester content of newly secreted lipoproteins in the isolated perfused liver. In the present studies, African green monkeys were fed diets containing cholesterol and 40% of calories as either butter or safflower oil in order to determine the effects of saturated versus polyunsaturated dietary fat on hepatic lipoprotein secretion. The rate of cholesterol accumulation in liver perfusates was correlated with the size of the donor's plasma LDL, but for any rate, a smaller plasma LDL was found in donor animals of the safflower oil group than in those of the butter group. Hepatic very low density lipoproteins (VLDL) were smaller in the safflower oil group but contained more cholesteryl ester and fewer triglyceride molecules per particle than those from the butter group. Livers from the safflower oil group contained more cholesteryl ester and less triglyceride than those from the butter group. The cholesteryl ester percentage composition of hepatic VLDL resembled that of the liver in each group. The data show that dietary polyunsaturated fat decreased plasma LDL size even though it increased the cholesteryl ester content of lipoproteins secreted by the liver. Therefore, intravascular formation of plasma LDL from hepatic precursor lipoproteins appears to include the removal of relatively greater amounts of cholesteryl esters from the precursor lipoproteins in polyunsaturated fat-fed animals.  相似文献   

20.
AimsHuman plasma lipoproteins are known to contain various glycan structures whose composition and functional importance are starting to be recognized. We assessed N-glycosylation of human plasma HDL and LDL and the role of their glycomes in cellular cholesterol metabolism.MethodsN-glycomic profiles of native and neuraminidase-treated HDL and LDL were obtained using HILIC-UHPLC-FLD. Relative abundance of the individual chromatographic peaks was quantitatively expressed as a percentage of total integrated area and N-glycan structures present in each peak were elucidated by MALDI-TOF MS. The capacity of HDL to mediate cellular efflux of cholesterol and the capacity of LDL to induce cellular accumulation of cholesteryl esters were evaluated in THP-1 cells.ResultsHILIC-UHPLC-FLD analysis of HDL and LDL N-glycans released by PNGase F resulted in 22 and 18 distinct chromatographic peaks, respectively. The majority of N-glycans present in HDL (~70%) and LDL (~60%) were sialylated with one or two sialic acid residues. The most abundant N-glycan structure in both HDL and LDL was a complex type biantennary N-glycan with one sialic acid (A2G2S1). Relative abundances of several N-glycan structures were dramatically altered by the neuraminidase treatment, which selectively removed sialic acid residues. Native HDL displayed significantly greater efficacy in removing cellular cholesterol from THP-1 cells as compared to desialylated HDL (p < 0.05). Cellular accumulation of cholesteryl esters in THP-1 cells was significantly higher after incubations with desialylated LDL particles as compared to native LDL (p < 0.05).ConclusionsN-glycome of human plasma lipoproteins reveals a high level of diversity, which directly impacts functional properties of the lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号