首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatic lipase. Purification and characterization   总被引:5,自引:0,他引:5  
Hepatic lipase has been purified to homogeneity from rat liver homogenates. The purified enzyme exhibits a single band on SDS-polyacrylamide gel electrophoresis. The molecular size of the native hepatic lipase is 200 000, while on SDS-polyacrylamide gel electrophoresis the apparent minimum molecular weight of the enzyme is 53 000, suggesting that the active enzyme is composed of four subunits. The relationship between triacylglycerol, monoacylglycerol and phospholipid hydrolyzing activities of the purified rat liver enzyme was studied. All three activities had a pH optimum of 8.5. The maximal reaction rates obtained with triolein, monoolein and dipalmitoylphosphatidylcholine were 55 000, 66 000 and 2600 mumol fatty acid/mg per h with apparent Michaelis constant (Km) values of 0.4, 0.25 and 1.0 mM, respectively. Hydrolysis of triolein and monoolein probably takes place at the same site on the enzyme molecule, since competitive inhibition between these two substrates was observed, and a similar loss of hydrolytic activity occurred in the presence of diisopropylfluorophosphate. Addition of apolipoproteins C-II and C-I had no effect on the hydrolytic activity of the enzyme with the three substrates tested. However, the triacylglycerol hydrolyzing activity was inhibited by the addition of apolipoprotein C-III. Monospecific antiserum to the pure hepatic lipase has been raised in a rabbit.  相似文献   

2.
The mechanism of action of hepatic triacylglycerol lipase (EC 3.1.1.3) was examined by comparing the hydrolysis of a water-soluble substrate, tributyrin, with that of triolein by hepatic triacylglycerol lipase purified from human post-heparin plasma. The hydrolyzing activities toward tributyrin and triolein were coeluted from heparin-Sepharose at an NaCl concentration of 0.7 M. The maximal velocity of hepatic triacylglycerol lipase (Vmax) for tributyrin was 17.9 mumol/mg protein per h and the Michaelis constant (Km) value was 0.12 mM, whereas the Vmax for triolein was 76 mumol/mg per h and the Km value was 2.5 mM. The hydrolyses of tributyrin and triolein by hepatic triacylglycerol lipase were inhibited to similar extends by procainamide, NaF, Zn2+, Cu2+, Mn2+, SDS and sodium deoxycholate. Triolein hydrolysis was inhibited by the addition of tributyrin. Triolein hydrolysis was also inhibited by the addition of dipalmitoylphosphaidylcholine vesicles. In contrast, the additions of triolein emulsified with Triton X-100 and dipalmitoylphosphatidylcholine vesicles enhanced the rate of tributyrin hydrolysis by hepatic triacylglycerol lipase. In the presence of dipalmitoylphosphatidylcholine, the Vmax and Km values of hepatic triacylglycerol lipase for tributyrin were 41 mumol/mg protein per h and 0.12 mM, respectively, indicating that the enhancement of hepatic triacylglycerol lipase activity for tributyrin by dipalmitoylphosphatidycholine vesicles was mainly due to increase in the Vmax. The enhancement of hepatic triacylglycerol lipase activity for tributyrin by phospholipid was not correlated with the amount of tributyrin associated with the phospholipid vesicles. On Bio-Gel A5m column chromatography, glycerol tri[1-14C]butyrate was not coeluted with triolein emulsion, and hepatic triacylglycerol lipase activity was associated with triolein emulsion even in the presence of 2 mM tributyrin. These results suggest that hepatic triacylglycerol lipase has a catalytic site for esterase activity and a separate site for lipid interface recognition, and that on binding to a lipid interface the conformation of the enzyme changes, resulting in enhancement of the esterase activity.  相似文献   

3.
A large amount of triacylglycerol lipase activity was present in the circulating blood of normal mice, and this activity decreased with development of Sarcoma 180 inoculated intraperitoneally. Triacylglycerol lipase in plasma of both normal and tumor-bearing mice was retained on the heparin-Sepharose columns and over 90% of the activity was eluted with 0.75 M NaCl. This enzyme had similar properties to hepatic triacylglycerol lipase and hydrolyzed very-low-density lipoprotein (VLDL)-triacylglycerol. Hepatic triacylglycerol lipase in plasma of normal mice hydrolyzed tricaprin and trilaurin most readily and better than 1-monoacylglycerols with the same acyl chain length. The hydrolyzing activities decreased with increase in the acyl chain length. The activity toward triolein was also higher than that toward 1-monoolein. 1-Monomyristin was hydrolyzed better than trimyristin. In contrast, hepatic triacylglycerol lipase in plasma of mice on day 4 after tumor inoculation hydrolyzed 1-monoacylglycerols better than triacylglycerols with the same acyl chain length. Hydrolysis of triolein by hepatic triacylglycerol lipase in plasma of both normal and tumor-bearing mice was reduced in the presence of 1-monoacylglycerols in the reaction mixture. The orders of their inhibitory effects coincided with the orders of the hydrolyzing activities toward 1-monoacylglycerols.  相似文献   

4.
A thermally stable lipase (EC 3.1.1.3.) was first identified in rice (Oryza sativa) bran, and the enzyme was purified to homogeneity using octyl-Sepharose chromatography. The enzyme was purified to 7.6-fold with the final specific activity of 0.38 micromol min(-1) mg(-1) at 80 degrees C using [9,10-(3)H]triolein as a substrate. The purified enzyme was found to be a glycoprotein of 9.4 kD. Enzyme showed a maximum activity at 80 degrees C and at pH 11.0. The protein was biologically active and retained most of its secondary structure even at 90 degrees C as judged by the enzymatic assays and far-ultraviolet circular dichroism spectroscopy, respectively. Differential scanning calorimetric studies indicated that the transition temperature was 76 degrees C and enthalpy 1.3 x 10(5) Calorie mol(-1) at this temperature. The purified lipase also exhibited phospholipase A(2) activity. Colocalization of both the hydrolytic activities in reverse-phase high-performance liquid chromatography and isoelectric focusing showed that the dual activity was associated with a single protein. Further, a direct interaction between both the substrates and the purified protein was demonstrated by photoaffinity labeling, using chemically synthesized analogs of triolein and phosphatidylcholine (PC). Apparent K(m) for triolein (6.71 mM) was higher than that for PC (1.02 mM). The enzyme preferentially hydrolyzed the sn-2 position of PC, whereas it apparently exhibited no positional specificity toward triacylglycerol. Diisopropyl fluorophosphate inhibited both lipase and phospholipase activities of the purified enzyme. This enzyme is a new member from plants in the family of lipases capable of hydrolyzing phospholipids.  相似文献   

5.
The relationship between triacylglycerol and monoacylglycerol hydrolyzing activities of purified rat heart lipoprotein lipase was studied using emulsified trioleoylglycerol and micellar or albumin-bound monooleoylglycerol as substrates. The maximal reaction rates obtained with the two substrates were similar (650 and 550 nmol of fatty acid released per min per mg of protein, respectively). Addition of apolipoprotein C-II or serum increased the maximal reaction rate for the trioleolyglycerol hydrolyzing activity about four-fold, but had no effect on the monooleolyglycerol hydrolyzing activity. Hydolysis of the two substrates apparently takes place at the same active site of the enzyme since (1) mutual competitive inhibition between the substrates could be demonstrated; (2) the rate of inactivation of enzymatic activity with the two substrates in 1.2 M NaCl was the same; (3) similar losses of hydrolytic activity with tri- and monooleoylglycerol were observed in the presence of low concentrations of n-butyl (p-nitrophenyl) carbamide; (4) inhibition of both hydrolytic activities by this compound could be prevented by prior exposure of lipoprotein lipase to either substrate.  相似文献   

6.
Characterization of lysosomal acid lipase purified from rabbit liver   总被引:2,自引:0,他引:2  
Lysosomal acid lipase from rabbit liver was solubilized with digitonin and purified 25,000-fold by Bio-Gel A-1.5 m, DEAE Bio-Gel A and phenyl Sepharose column chromatographies, preparative slab gel electrophoresis and finally Affi-Gel Blue affinity column chromatography. The purified enzyme gave a single protein band on polyacrylamide gel electrophoresis both in the presence and absence of sodium dodecyl sulfate. The molecular weight of the acid lipase was estimated to be 42,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis and 40,000 by gel filtration on Bio-Gel A-0.5 m. The enzyme was a hydrophobic glycoprotein with an isoelectric point of 5.15-5.90. The purified enzyme hydrolyzed tri-, di-, and monoolein and cholesterol oleate, with apparent Vmax values of 5.41, 56.1, 21.7, and 3.25 mumol/min/mg protein, and Km values of 50, 70, 200, and 40 microM, respectively. It hydrolyzed 4-methylumbelliferyl esters with fatty acids of different lengths in the order, medium length chains greater than long chains much greater than short chains. It did not hydrolyze dipalmitoylphosphatidylcholine. Its activity was inhibited by micromolar concentrations of p-chloromercuriphenyl sulfonic acid and p-bromophenacyl bromide and millimolar concentrations of Cu2+ and diethylpyrocarbonate. The activities of the enzyme towards the five substrates listed above showed almost identical thermal stabilities, mobilities on polyacrylamide gel electrophoresis and inhibition by several inhibitors. These findings support the idea that one enzyme is involved in the hydrolysis of both acylglycerols and cholesterol esters in lysosomes.  相似文献   

7.
The substrate specificities of the phospholipase and triglyceridase activities of purified rat liver hepatic lipase were compared using lipid monolayers so that the substrates were presented to the enzyme in a controlled physical state. The rate of hydrolysis of 14C-labeled lipid at constant surface pressure in the presence of hepatic lipase and fatty acid-free bovine serum albumin at 33 degrees C was determined by monitoring the decrease of surface radioactivity. In monolayers of sphingomyelin/cholesterol (2:1, mol/mol) containing either 1 mol% triacylglycerol, 1 mol% phosphatidylethanolamine, or 10 and 20 mol% phosphatidylcholine, hepatic lipase clearly showed a preference for unsaturated over saturated lipids. In addition, with a sphingomyelin/cholesterol (2:1) monolayer containing 1 mol% of lipid substrate, hepatic lipase showed the following preference: triolein = dioleoylphosphatidylethanolamine much greater than dioleoylphosphatidylcholine; the respective rates of hydrolysis were 15.3 +/- 1.2, 14.9 +/- 0.8, and 0.5 +/- 0.1 mumol fatty acid produced/h per mg hepatic lipase. Overall, it appears that when comparing rates of hydrolysis of molecules within a given lipid class, hydrocarbon chain interactions are important. However, when comparing different lipid classes such as phosphatidylcholines and phosphatidylethanolamines, it is apparent that the polar group has a significant influence on the rate of hydrolysis. The rate of [14C]triolein hydrolysis, when mixed at surface concentrations of up to 2 mol% in a sphingomyelin/cholesterol (2:1) monolayer, was significantly faster than when triolein was present in a 1-oleyl-2-palmitylphosphatidylcholine monolayer; the rates of hydrolysis were 47.7 +/- 5.4 and 8.9 +/- 0.8 mumol fatty acid produced/h per mg hepatic lipase, respectively. The monolayer physical state and the miscibility of the substrate in the inert matrix influence the presentation of the substrate to the enzyme, thereby affecting the hydrolysis rate.  相似文献   

8.
Commercial lipase (triacylglycerol lipase, EC 3.1.1.3) of Pseudomonas cepacia (Amano) has been purified to homogeneity by a single chromatography on phenyl Sepharose. The eluted lipase crystallized spontaneously at 4°C in the eluent, containing 58–69% 2-propanol. The yield of the lipase was 87–100% and the specific activity during the hydrolysis of triolein 5800 U/mg protein. This protein has a molecular weight of 34.1 kDa as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Its purity was determined by SDS-Page and capillary zone electrophoresis to be ≥ 99%. Immobilization on Sepharose increased its stability in organic solvents. This lipase of P. cepacia differs from that of other Pseudomonas strains in respect of substrate specificity and during crystallization. It exhibits a high stability in organic solvents and supercritical carbon dioxide.  相似文献   

9.
Hepatic triacylglycerol lipase (EC 3.1.1.3) hydrolyzes water-insoluble fatty acid esters, e.g., trioleoylglycerol (lipase activity) and water-soluble fatty acid esters, e.g., tributyrin (esterase activity). Esterase activity of hepatic triacylglycerol lipase is enhanced by triolein emulsion and phospholipid vesicles [1]. The catalytic mechanism and structure of human hepatic triacylglycerol lipase isolated from human post-heparin plasma and the effect of trypsin treatment on the lipase and esterase activities of the enzyme were examined. Treatment of hepatic triacylglycerol lipase with trypsin resulted in loss of its lipase activity, but had no effect on its esterase activity. Chromatography of hepatic triacylglycerol lipase on Bio-Gel A5m showed that hepatic triacylglycerol lipase binds to dipalmitoylphosphatidylcholine vesicles. However, on chromatography of the trypsin-treated enzyme after incubation with dipalmitoylphosphatidylcholine vesicles, a part of hepatic triacylglycerol lipase that retained esterase activity was eluted separately from the dipalmitoylphosphatidylcholine vesicles. Addition of vesicles of dipalmitoylphosphatidylcholine to the trypsin-treated enzyme did not enhance its esterase activity. These results are consistent with the hypothesis that hepatic triacylglycerol lipase has a catalytic site that hydrolyzes tributyrin and a lipid interface recognition site, and that these sites are different: trypsin modified the lipid interface recognition site of the hepatic triacylglycerol lipase but not the catalytic site.  相似文献   

10.
R E Burrier  P Brecher 《Biochemistry》1984,23(22):5366-5371
Sonicated dispersions of egg yolk phosphatidylcholine and triolein as vesicles and microemulsions have been used as substrates for the assay of a purified acid lipase. Previous studies have also shown that triolein localized in the surface phase of emulsions is the preferred substrate. In this study, we examined enzyme activity following several surface modifications using both vesicles and microemulsions. When the acidic phospholipids phosphatidylserine and phosphatidic acid were incorporated into both vesicles and microemulsions at up to 10 mol % of the total phospholipid, a dose-dependent reduction in the apparent Km was observed. Using the vesicles as substrate, a dose-dependent decrease in Vmax was also observed. Agarose gel electrophoresis was used to verify suspected changes in net particle charge. Analogous inclusion of phosphatidylethanolamine, sphingomyelin, or cholesterol did not affect kinetic parameters. Addition of oleic acid to sonication mixtures produced vesicles with a decreased apparent Km and Vmax, but triolein hydrolysis in microemulsions was not significantly altered. Triolein-containing vesicles prepared by using dimyristoyl- or dipalmitoylphosphatidylcholine were hydrolyzed maximally at the gel liquid-crystalline transition temperatures of the appropriate phospholipid. Differential scanning calorimetry was used to verify the temperatures of transition in these vesicles. The results indicate that acid lipase activity is influenced by the charge or physical state of the surface phase of model substrates and suggest that degradation of core components of naturally occurring substrates such as lipoprotein may be influenced by chemical changes on the surface of these particles.  相似文献   

11.
A phospholipase C (PLC) activity that preferentially hydrolyses phosphatidylcholine to diacylglycerol and phosphorylcholine was found to be present in Tetrahymena pyriformis, strain W and most of its activity was recovered in the membrane fraction. This enzyme was extracted with 1% Triton X-100 from the membrane fraction and purified to apparent homogeneity by sequential chromatographies on Fast Q-Sepharose, hydroxyapatite HCA-100S, Mono Q and Superose 12 gel filtration columns. The purified enzyme had specific activity of 2083 nmol of diacylglycerol released/mg of protein/min for dipalmitoylphosphatidylcholine hydrolysis. Its apparent molecular mass was 128 kDa as determined by SDS-polyacrylamide gel electrophoresis and was 127 kDa by gel filtration chromatography, indicating that the enzyme is present in a monomeric form. The enzyme exhibited an optimum pH 7.0 and the apparent Km value was determined to be 166 μM for dipalmitoylphosphatidylcholine. A marked increase was observed in phosphatidylcholine hydrolytic activity in the presence of 0.05% (1.2 mM) deoxycholate. Ca2+ but not Mg2+ enhanced the activity at a concentration of 2 mM. This purified phospholipase C exhibited a preferential hydrolytic activity for phosphatidylcholine but much less activity was observed for phosphatidylinositol (~ 9%) and phosphatidylethanolamine (~ 2%).  相似文献   

12.
Two types of extracellular lipases (I and II) from Trichosporon fermentans WU-C12 were purified by acetone precipitation and successive chromatographies on Butyl-Toyopearl 650 M, Toyopearl HW-55F and Q-Sepharose FF. The molecular weight of lipase I was 53 kDa by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and 160 kDa by gel filtration, while that of lipase II was 55 kDa by SDS-PAGE and 60 kDa by gel filtration. For the hydrolysis of olive oil, the optimum pH and temperature of both the lipases were 5.5 and 35°C, respectively. The lipases showed stable activities after incubation at 30°C for 24 h in a pH range from 4.0 to 8.0. The thermostability of lipase I for 30 min at a reaction pH of 5.5 was up to 40°C, while that of lipase II under the same conditions was up to 50°C. Both lipases could hydrolyze the 1-, 2-, and 3-positions of triolein, and cleave all three ester bonds, regardless of the position in the triglyceride.  相似文献   

13.
1. Lipoprotein lipase was purified from pig myocardium by a two-step purification procedure involving (a) the formation of an enzyme-substrate complex and (b) affinity chromatography on Sepharose which contained covalently linked heparin. The purified enzyme gave in sodium dodecyl sulphate-polyacrylamide-gel electrophoresis one main band with an apparent molecular weight of 73 000. The enzyme, which was purified 70 000-fold, had a specific activity of 860 mumol of unesterified fatty acid liberated/h per mg of protein. 2. The purified enzyme hydrolysed [14C]triolein emulsions in the absence of added cofactors but its activity was increased fivefold by adding normal human serum. Of the low-density lipoprotein apoproteins only apolipoprotein CII could be substituted for serum in activating the enzyme. This lipase had maximum activity at 0.05-0.15 M-NaCl. Heparin increased the activity of the purified enzyme twofold at low concentrations, but high concentrations inhibited. The triglyceride lipase of pig myocardium thus resembles lipoprotein lipase purified from adipose tissue and from plasma, but is clearly different from pig hepatic triglyceride lipase.  相似文献   

14.
Park J  Cho SY  Choi SJ 《BMB reports》2008,41(3):254-258
Lipase was purified from squid (Todarodes pacificus) liver in an attempt to investigate the possibility of applying the enzyme for biotechnological applications. Crude extract of squid liver was initially fractionated by the batch type ion exchange chromatography. The fraction containing lipase activity was further purified with an octyl-Sepharose column. Finally, lipase was purified by eluting active protein from a non-dissociating polyacrylamide gel after zymographic analysis. Molecular weight of the purified enzyme was determined to be 27 kDa by SDS-polyacrylamide gel electrophoresis. The enzyme showed the highest activity at a temperature range of 35-40 degrees C and at pH 8.0. The activity was almost completely inhibited at 1 mM concentration of Hg(2+) or Cu(2+) ion. Partial amino acid sequence of the enzyme was also determined.  相似文献   

15.
An acid lipase was purified from rat liver lysosomes. Lipase purification involved affinity chromatography, gel filtration, and stabilization of the purified preparation using ethylene glycol and Triton X-100. A molecular weight of 67,000-69,000 was determined independently using density gradient centrifugation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gel filtration. To study enzyme action, model substrates were prepared by incorporating radiolabeled triolein into either unilamellar vesicles or microemulsions. Substrates were prepared by cosonicating aqueous dispersions of lecithin and triolein. Formation of vesicles or emulsions depended on the relative amount of each lipid and on sonication conditions. Vesicles were prepared at molar ratios between 70:1 and 26:1 (lecithin:triolein) and the microemulsion preparation at a molar ratio of 1:1. The substrate particles were of similar size (220-250 A) as determined by Bio-Gel A-15m chromatography. Hydrolysis of triolein contained in vesicles or emulsions was similar with respect to pH, temperature, and reaction products. Kinetic studies on vesicles with increasing triolein content showed progressively greater Vmax values (0-0.6 mumol/min/mg), and Vmax for the emulsion was 3.1 mumol/min/mg. Addition of human very low or low density lipoprotein produced a dose-dependent inhibition with both substrates. The results show that synthetically prepared microemulsions are stable and effective substrates for the acid lipase and indicate that surface-oriented triolein is hydrolyzed in both preparations.  相似文献   

16.
This report describes a purification procedure for a cholesteryl ester hydrolase (CEH) from female rat liver microsomes, and some structural, immunological, kinetic, and regulatory properties of the enzyme that distinguish the microsomal CEH from other hepatic cholesteryl ester-splitting enzymes. CEH was purified 12.4-fold from reisolated microsomes using sequential solubilization by sonication, polyethylene glycol precipitation, fractionation with hydroxyapatite, anion exchange chromatography, and chromatography on hydroxyapatite, with an overall yield of 3.2%. CEH activity was purified 141-fold over nonspecific esterase activity and 56-fold over triacylglycerol lipase activity. In sharp contrast with most esterases and lipases, CEH did not bind to concanavalin A-Sepharose and heparin-Sepharose. After polyacrylamide gel electrophoresis, the purified enzyme exhibited two silver-stained bands, but only the protein electroeluted from the low mobility band had CEH activity. Affinity-purified polyclonal antibodies raised to electroeluted CEH inhibited 90% of the activity of liver microsomal CEH and reacted with a 106 kDa protein band on Western blot analysis. This 106 kDa CEH contains a unique N-terminal amino acid sequence. The purified enzyme had optimal activity at pH 6 and no taurocholate requirements, and was inhibited by the serine active site inhibitor phenylmethylsulfonyl fluoride and by free sulfhydryl specific reagents. It hydrolyzed cholesteryl oleate much more efficiently than trioleine, and hydrolytic activity with p-nitrophenyl acetate was higher than with p-nitrophenyl butyrate. These results indicate that rat liver microsomes contain a bile salt-independent catalytic protein that is relatively specific for cholesteryl ester hydrolysis.  相似文献   

17.
The subcellular distributions of acidic (pH 4.5) and neutral (pH 7.5) longchain triacylglycerol lipases (glycerol ester hydrolase, EC 3.1.1.3) of pig liver have been determined. The distribution of the acidic lipase closely paralleled that of the lysosomal marker enzyme, cathepsin D. Approx. 60% of the neutral lipolytic activity resided in the soluble fraction;the distribution of this activity failed to parallel that of marker enzymes for mitochondria, lysosomes, microsomes, or plasma membranes. A method has been developed for purification of the neutral lipase from the soluble fraction by ultracentrifugation. An approximate 90-fold purification was achieved, with recovery of 16% of the initial activity. The partially purified neutral lipase exhibited a pH optimum between 7.25 and 7.5. It required 30 mM emulsified triolein for optimal activity and ceased to liberate fatty acids after 30 min of incubation. The enzymatic activity was destroyed by heating at 60 degrees C. Neutral lipase was inhibited by sodium deoxycholate, Triton X-100 and iodoacetamide. The activity was not inhibited by sodium taurocholate, EDTA, heparin and diethyl-p-nitrophenyl phosphate. Neutral lipase failed to exhibit activity in assay systems specific for lipoprotein lipase, monoolein hydrolase, tributyrinase, and methyl butyrate esterase and showed little or no capacity to hydrolyze chyle chylomicrons or plasma very low density lipoproteins. It is suggested that the function of neutral lipase may be to supply the liver with fatty acids liberated from endogenously synthesized or stored triacylglycerols.  相似文献   

18.
Lipase (triacylglycerol acylhydrolase [EC 3.1.1.3.]) was extracted from the microsomal fraction of cotyledons of dark grown seedlings of Canola (Brassica napus L. cv Westar) by treatment with Triton X-100. The enzyme was partially purified by chromatography on Sephacryl S-300 and DEAE Bio-Gel and was stable when stored at −20°C in 50% (v/v) glycerol. The lipase aggregated readily but the distribution of species present in solution could be controlled by nonionic detergents. A species with an apparent Mr of about 250,000 was obtained by gel filtration chromatography in the presence of 1% (v/v) Triton X-100. Lipase activity was optimal near neutral pH, and the reaction approached maximum velocity at a concentration of 0.5 to 1 millimolar emulsified triolein. The reaction rate responded linearly to temperature up to about 40°C and the hydrolytic process had an activation energy of 18 kilocalories per mole. Microsomal lipase lost about 20% and 80% activity when heat-treated for 1 hour at 40°C and 60°C, respectively. At appropriate concentrations, the detergents Triton X-100, n-octyl-β-d-glucopyranoside, (3-[(3-cholamidopropyl-O-dimethylammonio]-1-propanesulfonate, cetyl trimethylammonium bromide, and sodium dodecyl sulfate all inhibited lipase activity. n-Octyl-β-d-glucopyranoside, however, was stimulatory in the 2 to 8 millimolar concentration range. The inhibitory effects of Triton X-100 were reversible.  相似文献   

19.
  • 1.1. The major phospholipase A has been purified to electrophoretic homogeneity from the venom of Vipera russelli (Russell's viper).
  • 2.2. The molecular weight of the purified enzyme was estimated to be 31,000 by Sephadex G-75 gel filtration chromatography and 29,000 by SDS-polyacrylamide gel electrophoresis. The enzyme exhibited an apparent Km value of 2.3 × 10−2 M.
  • 3.3. The phospholipase A showed edema forming, indirect hemolytic and myonecrotic activities but not hemorrhagic activity.
  相似文献   

20.
To explore the interactions of triacylglycerol and phospholipid hydrolysis in lipoprotein conversions and remodeling, we compared the activities of lipoprotein and hepatic lipases on human VLDL, IDL, LDL, and HDL2. Triacylglycerol and phospholipid hydrolysis by each enzyme were measured concomitantly in each lipoprotein class by measuring hydrolysis of [14C]triolein and [3H]dipalmitoylphosphatidylcholine incorporated into each lipoprotein by lipid transfer processes. Hepatic lipase was 2-3 times more efficient than lipoprotein lipase at hydrolyzing phospholipid both in absolute terms and in relation to triacylglycerol hydrolysis in all lipoproteins. The relationship between phospholipid hydrolysis and triacylglycerol hydrolysis was generally linear until half of particle triacylglycerol was hydrolyzed. For either enzyme acting on a single lipoprotein fraction, the degree of phosphohydrolysis closely correlated with triacylglycerol hydrolysis and was largely independent of the kinetics of hydrolysis, suggesting that triacylglycerol removed from a lipoprotein core is an important determinant of phospholipid removal via hydrolysis by the lipase. Phospholipid hydrolysis relative to triacylglycerol hydrolysis was most efficient in VLDL followed in descending order by IDL, HDL, and LDL. Even with hepatic lipase, phospholipid hydrolysis could not deplete VLDL and IDL of sufficient phospholipid molecules to account for the loss of surface phospholipid that accompanies triacylglycerol hydrolysis and decreasing core volume as LDL is formed (or for conversion of HDL2 to HDL3). Thus, shedding of whole phospholipid molecules, presumably in liposomal-like particles, must be a major mechanism for losing excess surface lipid as large lipoprotein particles are converted to smaller particles. Also, this shedding phenomenon, like phospholipid hydrolysis, is closely related to the hydrolysis of lipoprotein triacylglycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号