首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theory is presented on the solubility of proteins, in the hydrated as well as in the dry state, and in water as well as in organic solvents. To this effect, colloidal stability is assimilated with the solubility of the proteins, considered as hydrated entities. By means of a surface thermodynamic approach it can be shown that an increase in size of a hydrated protein must lead to insolubility, even in the absence of any change in a protein's surface properties. This can be substantiated experimentally by comparing the surface properties of immune complexes with those of their constituent immunoglobulins, as well as by comparing some of the properties of intact tobacco mosaic virus with those of its monomeric capsid subunits. Insolubilization of proteins by means of charge interactions as well as by dehydration is studied; an explanation is given of why precipitation caused by charge interactions is more likely to lead to partial irreversible denaturation than precipitation caused by protein-protein interactions brought about by partial dehydration (e.g., by “salting-out”). A link is established between the smallness (or even the negative value) of the interfacial tension between given proteins and various solvents and their solubility in these solvents. The energy of hydration of proteins can also be measured, and the differences between the free energies of interaction of dried and hydrated proteins with water point toward the additional processes underlying the solubilization, i.e., toward the conformational change of a protein in the process of becoming hydrated. The parameter of conformational change of a protein, while becoming hydrated, appears to be more closely linked to its degree of hydration than to its hydration energy.  相似文献   

2.
H B Steen 《Cytometry》1992,13(8):822-830
The sensitivity and resolution of flow cytometers are functions of the signal produced by a given particle as well as by the noise in the presence of which the signal is detected. The noise is primarily due to the fact that emission of light as well as its detection by photoelectric devises are stochastic processes. This fact leads to equations describing how resolution and sensitivity are limited by the magnitude of the signal, the background, and the photoelectron quantum yield of the detector. The equations are pointing to a method by which the signal and noise of a flow cytometer can be measured in absolute terms, as well as a way to determine fluorescence sensitivity without having to extrapolate to the noise level. The equations appear to be validated when applied to measuring data obtained with two different flow cytometers.  相似文献   

3.
Ontologies are a formal, computer-compatible method for representing scientific knowledge about a given domain. They provide a standardized vocabulary, taxonomy and set of relations between concepts. When formatted in a standard way, they can be read and reasoned upon by computers as well as by humans. At the 2019 International Conference on the Use of Computers in Radiation Therapy, there was a session devoted to ontologies in radiation therapy. This paper is a compilation of the material presented, and is meant as an introduction to the subject. This is done by means of a didactic introduction to the topic followed by a series of applications in radiation therapy. The goal of this article is to provide the medical physicist and related professionals with sufficient background that they can understand their construction as well as their practical uses.  相似文献   

4.
Gln is transported into rat brain synaptic and non-synaptic mitochondria by a protein catalyzed process. The uptake is significantly higher in synaptic than in non-synaptic mitochondria. The transport is inhibited by the amino acids Glu, Asn and Asp, and by the TCA cycle intermediates succinate, malate and 2-OG. The inhibition by 2-OG is counteracted by AOA and is therefore assumed to be due to transamination of 2-OG, whereby Glu is formed. This presumes that Glu also binds to an inhibitory site on the matrix face of the inner membrane. The transport is complex and cannot be explained by the simple uniport mechanism which has been proposed for renal (Schoolwerth and LaNoue, 1985), and liver mitochondria (Soboll et al., 1991). Thus, Gln transport is stimulated by respiration and by the proton electrochemical gradient. Since it is indicated that both the neutral Gln zwitterion and the Gln anion are transported, there are probably different uptake mechanisms, but not necessarily different carriers. Gln may be transported by an electroneutral mechanism as a proton compensated anion, as well as electrophoretically as a zwitterion with a proton, and probably also by diffusion as a zwitterion. The properties of the brain mitochondrial Gln uptake mechanisms are also not identical with those of a purified renal Gln transporter. It is possible that the Gln transport is controlled by more than one protein, which may be situated on distinct species in a heterogeneous mitochondrial population. Since Gln is assumed to participate in energy production as well as in the synthesis of nucleic acid components and proteins in brain mitochondria, the control of Gln uptake in these organelles may be important.  相似文献   

5.
6.
Cadmium-induced changes in the growth and oxidative metabolism of pea plants   总被引:71,自引:0,他引:71  
The effect of growing pea (Pisum sativum L.) plants with CdCl(2) (0-50 microM) on different plant physiological parameters and antioxidative enzymes of leaves was studied in order to know the possible involvement of this metal in the generation of oxidative stress. In roots and leaves of pea plants Cd produced a significant inhibition of growth as well as a reduction in the transpiration and photosynthesis rate, chlorophyll content of leaves, and an alteration in the nutrient status in both roots and leaves. The ultrastructural analysis of leaves from plants grown with 50 microM CdCl(2), showed cell disturbances characterized by an increase of mesophyll cell size, and a reduction of intercellular spaces, as well as severe disturbances in chloroplast structure. Alterations in the activated oxygen metabolism of pea plants were also detected, as evidenced by an increase in lipid peroxidation and carbonyl-groups content, as well as a decrease in catalase, SOD and, to a lesser extent, guaiacol peroxidase activities. Glutathione reductase activity did not show significant changes as a result of Cd treatment. A strong reduction of chloroplastic and cytosolic Cu,Zn-SODs by Cd was found, and to a lesser extent of Fe-SOD, while Mn-SOD was only affected by the highest Cd concentrations. Catalase isoenzymes responded differentially, the most acidic isoforms being the most sensitive to Cd treatment. Results obtained suggest that growth of pea plants with CdCl(2) can induce a concentration-dependent oxidative stress situation in leaves, characterized by an accumulation of lipid peroxides and oxidized proteins as a result of the inhibition of the antioxidant systems. These results, together with the ultrastructural data, point to a possible induction of leaf senescence by cadmium.  相似文献   

7.
Yeast, as well as higher eukaryotes, are induced to increase thermal resistance (thermotolerance) by prior exposure to a heat stress. Prior exposure to an acute dose of either 60Co gamma or 254-nm ultraviolet radiation, at sublethal or fractionally lethal doses, is shown to cause a marked increase in the resistance of Saccharomyces cerevisiae to killing by heat. Following a radiation exposure, thermal resistance increased with time during incubation in nutrient medium, and the degree of resistance reached was proportional to the dose received. Partial induction by radiation followed by maximum induction by heat did not produce an additive response when compared to a maximum induction by heat alone, suggesting that the same process was induced by both heat and radiation. Irradiation with 254-nm uv light followed by an immediate, partial photoreversal of the pyrimidine dimers with long-wavelength uv light resulted in a reduced level of resistance compared to cells not exposed to the photoreversal light, indicating that the cells specifically recognized pyrimidine dimers as a signal to increase their thermal resistance. Exposure to 254-nm uv or ionizing radiation induced thermal resistance in mutants defective in either excision repair (rad3, uv-sensitive) or recombinational repair (rad52, gamma-sensitive), suggesting that recognition and repair of DNA damage by these systems are not a part of the signal which initiates an increase in resistance to heat. The amount of induction, per unit dose, was greater in the DNA repair-deficient mutants than in the wild-type cells, suggesting that an increase in the length of time during which damage remains in the DNA results in an increase in the effectiveness of the induction. These data indicate that types of DNA damage as diverse as those produced by ionizing radiation and by ultraviolet light are recognized as a signal by the yeast cell to increase its thermal resistance. It is therefore suggested that heat-induced alterations in DNA or in DNA-dependent chromosomal organization may be the signal for heat induction of thermotolerance in this and other eukaryotes.  相似文献   

8.
ChrCrx (6-hydroxy-2, 5, 7, 8-tetramethyl-chroman-2-carboxylic acid) is a water-soluble analog in which 4', 8', 12'-trimethyltridecyl chain is deleted from an alpha-tocopherol molecule known as a hydrophobic antioxidant. Cell viability of human skin epidermal keratinocytes HaCaT was lowered by treatment with tert-butylhydroperoxide (t-BuOOH) of 50 microM for 48 h, designated as a subacute cytotoxicity, which was prevented by previous administration with ChrCrx in a dose-dependent manner as estimated by mitochondrial function-based WST-1 assay and cell morphological microscopy. In contrast an acute cytotoxicity due to treatment with t-BuOOH as dense as 200 microM for a period as short as 2 h could be also prevented with ChrCrx that was administered before and after, but was eliminated during, treatment with t-BuOOH. In contrast alpha-tocopherol was not cytoprotective against t-BuOOH. DNA strand cleavages were induced with t-BuOOH in the keratinocytes, and could be prevented by ChrCrx more effectively than alpha-tocopherol as assayed by TUNEL stain. The intracellular reactive oxygen species (ROS) was accumulated in a manner dependent on periods of t-BuOOH treatment in the cytoplasm more abundantly rather than the nucleus of keratinocytes, and was markedly diminished by ChrCrx as shown by fluorography using the redox indicator dye. Thus t-BuOOH-induced cell injuries and DNA cleavages of the keratinocytes can be prevented at least in part through efficient diminishment of ROS generated in the cytoplasm, to which the preferred distribution of ChrCrx may be advantageous over to the nucleus or membrane owing to its molecular hydrophilicity relative to alpha-tocopherol.  相似文献   

9.
Taurine demonstrates multiple cellular functions including a central role as a neurotransmitter, as a trophic factor in CNS development, in maintaining the structural integrity of the membrane, in regulating calcium transport and homeostasis, as an osmolyte, as a neuromodulator and as a neuroprotectant. The neurotransmitter properties of taurine are illustrated by its ability to elicit neuronal hyperpolarization, the presence of specific taurine synthesizing enzyme and receptors in the CNS and the presence of a taurine transporter system. Taurine exerts its neuroprotective functions against the glutamate induced excitotoxicity by reducing the glutamate-induced increase of intracellular calcium level, by shifting the ratio of Bcl-2 and Bad ratio in favor of cell survival and by reducing the ER stress. The presence of metabotropic taurine receptors which are negatively coupled to phospholipase C (PLC) signaling pathway through inhibitory G proteins is proposed, and the evidence supporting this notion is also presented.  相似文献   

10.
Methanesulfonic acid is a very stable strong acid and a key intermediate in the biogeochemical cycling of sulfur. It is formed in megatonne quantities in the atmosphere from the chemical oxidation of atmospheric dimethyl sulfide (most of which is of biogenic origin) and deposited on the Earth in rain and snow, and by dry deposition. Methanesulfonate is used by diverse aerobic bacteria as a source of sulfur for growth, but is not known to be used by anaerobes either as a sulfur source, a fermentation substrate, an electron acceptor, or as a methanogenic substrate. Some specialized methylotrophs (including Methylosulfonomonas, Marinosulfonomonas, and strains of paragraph signHyphomicrobium and Methylobacterium) can use it as a carbon and energy substrate to support growth. Methanesulfonate oxidation is initiated by cleavage catalysed by methanesulfonate monooxygenase, the properties and molecular biology of which are discussed.  相似文献   

11.
Baculovirus p35 increases pancreatic beta-cell resistance to apoptosis   总被引:4,自引:0,他引:4  
beta-cells die by apoptosis in type 1 diabetes as a result of autoimmune attack mediated by cytokines, and in type 2 diabetes by various perpetrators including human islet amyloid polypeptide (hIAPP). The cascade of apoptotic events induced by cytokines and hIAPP is mediated through caspases and reactive oxygen species. The baculovirus p35 protein is a potent anti-apoptotic agent shown to be effective in a variety of species and able to inhibit a number of apoptotic pathways. Here, we aimed at determining the protective potential of p35 in beta-cells exposed to cytokines and hIAPP, as well as the effects of p35 on beta-cell function. The p35 gene was introduced into betaTC-tet cells, a differentiated murine beta-cell line capable of undergoing inducible growth-arrest. Both proliferating and growth-arrested cells expressing p35 manifested increased resistance to cytokines and hIAPP, compared with control cells, as judged by cell viability, DNA fragmentation, and caspase-3 activity assays. p35 was significantly more protective in growth-arrested, compared with proliferating, cells. No significant differences were observed in proliferation and insulin content between cells expressing p35 and control cells. In contrast, p35 manifested a perturbing effect on glucose-induced insulin secretion. These findings suggest that p35 could be incorporated as part of a multi-pronged approach of immunoprotective strategies to provide protection from recurring autoimmunity for transplanted beta-cells, as well as in preventive gene therapy in type 1 diabetes. p35 may also be protective from beta-cell damage caused by hIAPP in type 2 diabetes.  相似文献   

12.
The partitioning of trace metals and hydrophobic organic contaminants to phytoplankton determines their toxicity as well as their fate and transport in aquatic ecosystems. Accurate impact assessments, therefore, depend on a good understanding of the factors regulating the sorption of these compounds to biotic particles. The accumulation of chlorinated organic compounds in phytoplankton is generally considered as being due solely to physical sorption, described by reversible equilibrium models based on Langmuir or Freundlich isotherms. On the other hand, the uptake of trace metals is a two phase process: a fast sorption component viewed as an ionexchange or a covalent bonding process with cell surface ligands, followed by an intracellular transport phase that is dependent on cellular metabolic activity. The uptake of inorganic and hydrophobic organic pollutants and their bioaccumulation are influenced in a complex manner by duration of exposure and cell density, by environmental factors such as pH, the concentration of cations and of dissolved and colloidal organic matter, as well as by phytoplankton physiological condition. High concentrations of H+, Ca2+, and Mg2+ ions will reduce trace metal sorption by directly competing for uptake sites on the cell's surface, whereas the presence of dissolved organic carbon such as natural and synthetic chelators and phytoplankton exudates will reduce the bioavailability of both trace metals and hydrophobic organic contaminants. Thus, the impact of toxic contaminants on phytoplankton may be determined as much by the factors influencing uptake and partitioning as by the potency of the toxicants and interspecies differences in sensitivity. Recommendations for improving toxicity assessments are presented.  相似文献   

13.
Chimpanzees of the Mahale Mountains, Tanzania were discovered to show an expressive gesture using leaves, termed as “leaf-clipping display”. This behavioural signal is directed by an adult male to an estrous female as a possessive behaviour, or by an adolescent male as a courtship display, or by an estrous female to an adolescent male also as a solicitation of copulation. The signal also is used toward human observers as a signal of food-demanding. This behaviour pattern might originate in a displacement tool-making behaviour in conflict situations. The leaf-clipping display has not been observed in any other chimpanzee populations studied, and may probably be one example of the tradition drift in wild chimpanzees.  相似文献   

14.
Melatonin is a hormone-like substance that has a variety of beneficial properties as regulator of the circadian rhythm and as anti-inflammatory and anti-cancer agent. The latter activity can be linked with the ability of melatonin to protect DNA against oxidative damage. It may exert such action either by scavenging reactive oxygen species or their primary sources, or by stimulating the repair of oxidative damage in DNA. Since such type of DNA damage is reflected in oxidative base modifications that are primarily repaired by base-excision repair (BER), we tried to investigate in the present work whether melatonin could influence this DNA-repair system. We also investigated the ability of melatonin to inactivate hydrogen peroxide, a potent source of reactive oxygen species. Melatonin at 50 microM and its direct metabolite N(1)-acetyl-N(2)-formyl-5-methoxykynuramine reduced DNA damage induced by hydrogen peroxide at approximately the same ratio. Melatonin stimulated the repair of DNA damage induced by hydrogen peroxide, as assessed by the alkaline comet assay. However, melatonin at 50 microM had no impact on the activity in vitro of three glycosylases playing a pivotal role in BER: Endo III, Fpg and ANPG 80. On the other hand, melatonin chemically inactivated hydrogen peroxide, reducing its potential to damage DNA. And finally, melatonin did not influence the repair of an a-basic (AP) site by cellular extracts, as was evaluated by a functional BER assay in vitro. In conclusion, melatonin can have a protective effect against oxidative DNA damage by chemical inactivation of a DNA-damaging agent as well as by stimulating DNA repair, but key factors in BER, viz. glycosylases and AP-endonucleases, do not seem to be affected by melatonin. Further study with other components of the BER machinery and studies aimed at other DNA-repair systems are needed to clarify the mechanism underlying the stimulation of DNA repair by melatonin.  相似文献   

15.
A protein that was initially known only as a minor spot in two-dimensional electrophoresis patterns of serum obtained from certain psoriasis patients, particularly those with a pustular component to their disease, has been purified by two stages of ion-exchange displacement chromatography on DEAE-Sephacel at different pH levels, followed by elution chromatography on hydroxylapatite. The purification was followed by examining the column fractions directly by two-dimensional gel electrophoresis. The capacity of the displacement system, which utilized carboxymethyldextrans as displacers, was very high; 6 ml of dialyzed serum applied to a 7-ml column in the initial stage resulted in a very substantial enrichment of the target protein. The second displacement stage yielded a highly purified product, contaminated only by A-1 lipoprotein. The latter was removed by hydroxylapatite chromatography. The purified protein was subsequently identified as Gc-2 globulin, a vitamin D-binding protein, by immunological procedures. The results demonstrate the effectiveness of ion-exchange displacement chromatography in focusing resolving power on the relatively narrow range of affinities represented by the target protein and its immediate neighbors in a chromatogram, as well as the applicability of the system to the isolation of a protein known only by its position in a two-dimensional electrophoretic pattern.  相似文献   

16.
The ALK2 gene, encoding one of the n-alkane-hydroxylating cytochromes P450 in Candida maltosa, is induced by n-alkanes and a peroxisome proliferator, clofibrate. Deletion analysis of this gene's promoter revealed two cis-acting elements-an n-alkane-responsive element (ARE2) and a clofibrate-responsive element (CRE2)-that partly overlap in sequence but have distinct functions. ARE2-mediated activation responded to n-alkanes but not to clofibrate and was repressed by glucose. CRE2-mediated activation responded to polyunsaturated fatty acids and steroid hormones as well as to peroxisome proliferators but not to n-alkanes, and it was not repressed by glucose. Both elements mediated activation by oleic acid. Mutational analysis demonstrated that three CCG sequences in CRE2 were critical to the activation by clofibrate as well as to the in vitro binding of a specific protein to this element. These findings suggest that ALK2 is induced by peroxisome proliferators and steroid hormones through a specific CRE2-mediated regulatory mechanism.  相似文献   

17.
We compared several responses in thrombin-stimulated and collagen (type I)-stimulated platelets with and without forskolin and inhibitors of autocrine stimulation (IAS: an ADP-removing system of creatine phosphate/creatine phosphokinase, Arg-Gly-Asp-Ser peptide to prevent fibrinogen/fibronectin binding to GPIIb/IIIa, SQ 29.548 as a thromboxane A2 receptor antagonist, cyproheptadine as a serotonin receptor antagonist, BN 52021 as a platelet-activating factor receptor antagonist). The pattern of tyrosine-phosphorylated proteins, the phosphorylation of lipids in the polyphosphoinositide cycle and phosphorylation of pleckstrin (P47) were studied as markers for signal-transducing responses, exposure of CD62 (P-selectin) and CD63 (Glycoprotein 53), as well as secretion of ADP + ATP and beta-N-acetyl-glycosaminidase were studied as final activation responses. Clear differences between thrombin-stimulated and collagen-stimulated platelets were observed. First, practically all protein-tyrosine phosphorylation induced by thrombin was inhibited by IAS, while a partial inhibition was observed for collagen; the phosphorylation due to collagen alone was apparently stimulated by elevation of cAMP. Secondly, the other responses to thrombin were inhibited by increased levels of cAMP, independent of autocrine stimulation. In contrast, only the autocrine part of the collagen-induced responses was inhibited by elevation of cAMP. Thus, the inhibition by elevated cAMP seen in collagen-stimulated platelets seems to be due to removal of the G-protein-mediated activation from secreted autocrine stimulators either by IAS or forskolin. The remaining activity is a pure collagen effect which is not affected by elevated levels of cAMP.  相似文献   

18.
Raman spectroscopy is applied in this work to study the adsorption of poly(ethyleneimine) (PEI) on Ag nanoparticles obtained by reduction with citrate, as well as to the study of the interaction between PEI and a plasmid. The surface-enhanced Raman spectroscopy (SERS) affords important information about the interaction and orientation of the polymer on the particles. In particular we have found that this polymer interacts with the surface through their amino groups in an interaction which also involves a change in the protonation state of amino groups as well as an increase of the chain order. This interaction implies a charge-transfer effect as deduced from the strong resonant effect in Raman spectra obtained at different excitation wavelengths. The complex formed by PEI and a plasmid, obtained by encoding the HBV (hepatitis B virus) genome inside the EcoRI restriction site of pGEM vector, was also studied by SERS. The interaction between both polymers leads to a conformational change affecting both macromolecules that can be detected by Raman at different excitation wavelengths. PEI undergoes a change to a more disordered structure as well as an increase of the number of protonated amino groups. The plasmid undergoes a structural change from A-DNA structure to B-DNA, along with a change in the superhelicity resulting in a more lineal structure when the plasmid interacts with PEI.  相似文献   

19.
A novel method for DNA quantification and specific sequence detection in a highly integrated silicon microchamber array is described. Polymerase chain reaction (PCR) mixture of only 40 nL volume could be introduced precisely into each chamber of the mineral oil layer coated microarray by using a nanoliter dispensing system. The elimination of carry-over and cross-contamination between microchambers, and multiple DNA amplification and detection by TaqMan chemistry were demonstrated, for the first time, by using our system. Five different gene targets, related to Escherichia coli were amplified and detected simultaneously on the same chip by using DNA from three different serotypes as the templates. The conventional method of DNA quantification, which depends on the real-time monitoring of variations in fluorescence intensity, was not applied to our system, instead a simple method was established. Counting the number of the microchambers with a high fluorescence signal as a consequence of TaqMan PCR provided the precise quantification of trace amounts of DNA. The initial DNA concentration for Rhesus D (RhD) gene in each microchamber was ranged from 0.4 to 12 copies, and quantification was achieved by observing the changes in the released fluorescence signals of the microchambers on the chip. DNA target could be detected as small as 0.4 copies. The amplified DNA was detected with a CCD camera built-in to a fluorescence microscope, and also evaluated by a DNA microarray scanner with associated software. This simple method of counting the high fluorescence signal released in microchambers as a consequence of TaqMan PCR was further integrated with a portable miniaturized thermal cycler unit. Such a small device is surely a strong candidate for low-cost DNA amplification, and detected as little as 0.4 copies of target DNA.  相似文献   

20.
The aim of the present study was to establish the concentrations of prilocaine, mepivacaine, and bupivacaine which are effective at blocking fast axonal transport, to determine whether prilocaine and mepivacaine offer a better prospect of dissociating conduction block and transport block in vivo than does lidocaine and whether bupivacaine offers a better prospect than etidocaine in the same context. Fast axonal transport of [3H]leucine-labeled proteins was studied in vitro in bullfrog spinal nerves and quantitated by liquid scintillation counting. Exposure of spinal nerves to 14 mM prilocaine reduced the quantity of 3H-labeled proteins which accumulated at a ligature by 86%, and exposure to 14 mM mepivacaine reduced it by 70%; 10 mM prilocaine reduced this same parameter by 54%, a degree of inhibition close to the 44% reduction caused by 14 mM lidocaine. The D(-) and L(+) stereoisomers of mepivacaine each reduced transport to the ligature by approximately 50% at a concentration of 14 mM. Bupivacaine reduced the accumulation of 3H-labeled proteins at the ligature by 49% at a 10 mM concentration (pH 6.2); its potency is close to that found for etidocaine in a previous study. Since prilocaine and mepivacaine are at least as potent as lidocaine as transport inhibitors and at blocking impulse conduction, these two anesthetics offer no advantage over lidocaine to achieve dissociation of conduction block from transport block in vivo. Bupivacaine appears to offer no advantage over etidocaine in the same context, as the two agents have a similar potency as local anesthetics and a similar potency as inhibitors of fast axonal transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号