首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The receptor tyrosine kinase RET, with a known role in embryonic development and in human pathologies, is alternatively spliced to yield at least two functional isoforms, which differ only in their carboxyl terminal. Enigma protein is a member of the PDZ-LIM family and is known to interact with the short isoform of RET/PTC2, a chimeric oncoprotein isolated from papillary thyroid carcinoma. Here, we show that Enigma also interacts in intact cells with the short isoform of RET-wt and of its pathologic mutants associated to MEN2 syndromes, RET-C634R and RET-M918T. In contrast, Enigma binds all the corresponding RET long isoforms very poorly and colocalizes with short but not long RET/PTC2 isoforms. The RET docking tyrosine for Enigma is the last but one before the divergence between the two isoforms and we demonstrated that short-isoform-specific amino acid residues +2 to +4 to this tyrosine are required for the interaction of RET/PTC2 with Enigma.  相似文献   

2.
We examined the biochemical effects of arsenic on the activities of RET proto‐oncogene (c‐RET protein tyrosine kinases) and RET oncogene (RET‐MEN2A and RET‐PTC1 protein tyrosine kinases) products. Arsenic activated c‐RET kinase with promotion of disulfide bond‐mediated dimerization of c‐RET protein. Arsenic further activated RET‐MEN2A kinase, which was already 3‐ to 10‐fold augmented by genetic mutation compared with c‐RET kinase activity, with promotion of disulfide bond‐mediated dimerization of RET‐MEN2A protein (superactivation). Arsenic also increased extracellular domain‐deleted RET‐PTC1 kinase activity with promotion of disulfide bond‐mediated dimerization of RET‐PTC1 protein. Arsenic increased RET‐PTC1 kinase activity with cysteine 365 (C365) replaced by alanine with promotion of dimer formation but not with cysteine 376 (C376) replaced by alanine. Our results suggest that arsenic‐mediated regulation of RET kinase activity is dependent on conformational change of RET protein through modulation of a special cysteine sited at the intracellular domain in RET protein (relevant cysteine of C376 in RET‐PTC1 protein). Moreover, arsenic enhanced the activity of immunoprecipitated RET protein with increase in thiol‐dependent dimer formation. As arsenic (14.2 µM) was detected in the cells cultured with arsenic (100 µM), direct association between arsenic and RET in the cells might modulate dimer formation. Thus, we demonstrated a novel redox‐linked mechanism of activation of arsenic‐mediated RET proto‐oncogene and oncogene products. J. Cell. Biochem. 110: 399–407, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Genetic analysis for germline mutations of RET proto‐oncogene has provided a basis for individual management of medullary thyroid carcinoma (MTC) and pheochromocytoma. Most of compound mutations have more aggressive phenotypes than single point mutations, but the compound C634Y/V292M variant in MTC has never been reported. Thus, we retrospectively investigated synergistic effect of C634Y and V292M RET germline mutations in family members with multiple endocrine neoplasia type 2A. Nine of 14 family members in a northern Chinese family underwent RET mutation screening using next‐generation sequencing and PCR followed by direct bidirectional DNA sequencing. Clinical features of nine individuals were retrospectively carefully reviewed. In vitro, the scratch‐wound assay was used to investigate the difference between the cells carrying different mutations. We find no patients died of MTC. All 3 carriers of the V292M variant were asymptomatic and did not have biochemical or structural evidence of disease (age: 82, 62 and 58). Among 4 C634Y mutation carriers, 2 patients had elevated calcitonin with the highest (156 pg/mL) in an 87‐year‐old male. Two carriers of compound C634Y/V292M trans variant had bilateral MTC with pheochromocytoma or lymph node metastasis (age: 54 and 41 years, respectively). Further, the compound C634Y/V292M variant had a faster migration rate than either single point mutation in vitro (P < .05). In conclusion, the V292M RET variant could be classified as ‘likely benign’ according to ACMG (2015). The compound variant V292M/C634Y was associated with both more aggressive clinical phenotype and faster cell growth in vitro than was either single mutation.  相似文献   

4.
Multiple endocrine neoplasia (MEN) type 2B mutations have been reported at methionine 918 or alanine 883 in the tyrosine kinase domain of the RET proto-oncogene. Recently, a new combination of two germline missense mutations at valine 804 and tyrosine 806 was identified in a patient with MEN 2B-like clinical phenotypes including medullary thyroid carcinoma, mucosal neuroma, and marfanoid habitus. In this case, valine 804 and tyrosine 806 were replaced with methionine and cysteine, respectively. In the present study, biological activities of RET with these new mutations were compared with those with known MEN 2A or MEN 2B mutations. The transforming activity of RET with the V804M/Y806C mutation was about 8- to 13-fold higher than that of RET with a single V804M or Y806C mutation. Like RET with the M918T or A883F MEN 2B mutation, the transforming activity of RET with the V804M/Y806C mutation was not affected by substitution of phenylalanine for tyrosine 905 that abolished the activity of RET with the MEN 2A mutation. On the other hand, substitution of phenylalanine for tyrosines 864 and 952 drastically diminished the activity of RET with the V804M/Y806C, M918T or A883F mutation, suggesting that these three mutant proteins have similar biological properties.  相似文献   

5.
Patients with Multiple Endocrine Neoplasia (MEN) type 2A are at risk for early medullary thyroid carcinoma (MTC). We performed different screening tests for MTC--a recently reported biochemical screening test using omeprazole-induced calcitonin (CT) stimulation and DNA analysis--in fifteen members of two non-consanguineous Brazilian families with MEN 2A. RET proto-oncogene analysis was carried out by direct DNA sequencing of PCR-amplified products for exons 10 and 11. Family 1 showed a germline mutation (C634Y) in three individuals; a sister and a brother with symptomatic MTC; the former also presented with pheochromocytoma and hyperparathyroidism, and her son was a nine-year-old boy of previously unknown status. Family 2 showed the C634R mutation only in the index case, who presented with cutaneous lichen amyloidosis in addition to MTC, pheochromocytoma and hyperparathyroidism. Neither her parents nor her four brothers showed this genetic abnormality, suggesting a de novo RET proto-oncogene mutation in this patient. The controls and patients presented normal basal gastrin levels and a significant increase after omeprazole. Basal CT levels were elevated in patients with MTC and undetectable in control and asymptomatic family members. No subject showed any increase in CT levels after omeprazole treatment. In conclusion, the two most frequent RET proto-oncogene mutations in MEN 2A are present in Brazilian families. In addition, the specificity of basal and omeprazole-stimulated calcitonin is rather limited, and the efficacy of the omeprazole test still needs to be systematically examined. Therefore, RET proto-oncogene analysis must be the first choice for a screening procedure to identify gene carriers in MEN 2A family members and to permit early prophylactic treatment of MTC.  相似文献   

6.
Germline mutations of the RET proto-oncogene cause three different cancer syndromes: multiple endocrine neoplasia type 2A (MEN 2A), multiple endocrine neoplasia type 2B (MEN 2B) and familial medullary thyroid carcinoma (FMTC). In the absence of biochemical and/or clinical evidence of pheochromocytoma and hyperparathyroidism, patients with MEN 2A disease display the same phenotype of FMTC disease, although prognosis and clinical management in both affected and unaffected familial members are quite different. We studied a family with hereditary MTC, whose proband was referred to us because of enlarged cervical nodes and increased calcitonin serum levels 28 years after the total thyroidectomy for MTC. Cervical node dissection was carried out and subsequently the presence of MTC metastasis was histologically confirmed. A RET genomic mutation at codon 634 (TGC-->TTC) was identified in the proband and in seven out of 19 familial members studied. Accordingly, a hereditary disease was suggested. However, the strong association of RET mutation at codon 634 with the presence of pheochromocytoma in MEN 2 disease suggested a more rigorous management in all gene carriers. Indeed, during the follow-up pheochromocytoma was subsequently identified in the proband. This finding suggests that all families with a pedigree suggestive of FMTC should be regarded at risk from MEN 2A disease, at least when a critical mutation in the RET cysteine domain is detected.  相似文献   

7.
The RET gene codes for a receptor tyrosine kinase that plays a crucial role during the development of both the enteric nervous system and the kidney. Germ line missense mutations at one of six codons specifying extracytoplasmic cysteines are responsible for two related cancer disorders as follows: multiple endocrine neoplasia type2A (MEN2A) and familial medullary thyroid carcinoma (FMTC). MEN2A and FMTC mutations result in a constitutive catalytic activity and as a consequence convert RET into a dominantly acting transforming gene. Although it has been shown that RET-MEN2 mutants activate several transduction pathways, their respective contribution to the neoplastic phenotype remains poorly understood. Over the past few years, it has become increasingly clear that the transforming ability of several viral and cellular oncoproteins depends on their capacity to activate phosphatidylinositol 3-kinase (PI3K). We now report that RET carrying a representative MEN2A mutation at Cys-634 (termed RET-MEN2A) activates PI3K and its downstream effector, the serine/threonine kinase AKT/protein kinase B. Previous studies have demonstrated that mutation of Tyr-1062, which is the intracellular docking site for Shc and Enigma on RET, abolishes the RET-MEN2A transforming activity. We provide evidence that mutation of Tyr-1062 abrogates the binding of the p85 regulatory subunit of PI3K to RET-MEN2A and the subsequent stimulation of the PI3K/AKT pathway. Furthermore, infection of rat fibroblasts with a retrovirus expressing a dominant-interfering form of PI3K suppresses RET-MEN2A-dependent transformation, whereas overexpression of AKT enhances the RET-MEN2A oncogenic potential. In summary, these data are consistent with the notion that RET-mediated cell-transforming effect is critically dependent on the activation of the PI3K/AKT pathway.  相似文献   

8.
The multiple endocrine neoplasia type 2A (MEN2A) is a monogenic disorder characterized by an autosomal dominant pattern of inheritance which is characterized by high risk of medullary thyroid carcinoma in all mutation carriers. Although this disorder is classified as a rare disease, the patients affected have a low life quality and a very expensive and continuous treatment. At present, MEN2A is diagnosed by gene sequencing after birth, thus trying to start an early treatment and by reduction of morbidity and mortality. We first evaluated the presence of MEN2A mutation (C634Y) in serum of 25 patients, previously diagnosed by sequencing in peripheral blood leucocytes, using HRM genotyping analysis. In a second step, we used a COLD-PCR approach followed by HRM genotyping analysis for non-invasive prenatal diagnosis of a pregnant woman carrying a fetus with a C634Y mutation. HRM analysis revealed differences in melting curve shapes that correlated with patients diagnosed for MEN2A by gene sequencing analysis with 100% accuracy. Moreover, the pregnant woman carrying the fetus with the C634Y mutation revealed a melting curve shape in agreement with the positive controls in the COLD-PCR study. The mutation was confirmed by sequencing of the COLD-PCR amplification product. In conclusion, we have established a HRM analysis in serum samples as a new primary diagnosis method suitable for the detection of C634Y mutations in MEN2A patients. Simultaneously, we have applied the increase of sensitivity of COLD-PCR assay approach combined with HRM analysis for the non-invasive prenatal diagnosis of C634Y fetal mutations using pregnant women serum.  相似文献   

9.
Germ-line mutations of the RET proto-oncogene cause three different cancer syndromes: multiple endocrine neoplasia type 2A (MEN2A), multiple endocrine neoplasia type 2B, and familial medullary thyroid carcinoma (FMTC). The objective of the present study was the clinical and molecular characterization of the first two Greek Cypriot families diagnosed with MEN2A and FMTC. The clinical diagnosis of the probands was based on clinical presentation and supported with laboratory findings (calcitonin and carcinoembryonic antigen tumor marker levels). We screened the RET gene by direct DNA sequencing of exons 10, 11, and 16 using genomic DNA as templates. After identification of the mutation, we also developed the amplification refractory mutation system (ARMS) as an alternative method to direct sequencing for genetic diagnosis of 22 additional individuals from both families. We identified the germ-line missense mutation T --> C of codon 618 of exon 10 (C618R) in the probands of both families. By using ARMS, two members of the MEN2A family and five members of the FMTC family were also found positive for the C618R mutation. These are the first seemingly unrelated families in Cyprus investigated clinically and molecularly in detail and shown to transmit this common RET proto-oncogene mutation.  相似文献   

10.
The RET proto-oncogene encodes a receptor with tyrosine kinase activity (RET) that is involved in several neoplastic and non-neoplastic diseases. Oncogenic activation of RET, achieved by different mechanisms, is detected in a sizeable fraction of human thyroid tumors, as well as in multiple endocrine neoplasia types 2A and 2B (MEN2A and MEN2B) and familial medullary thyroid carcinoma tumoral syndromes. Germline mutations of RET have also been associated with a non-neoplastic disease, the congenital colonic aganglionosis, i.e. Hirschsprung's disease (HSCR). To analyse the impact of HSCR mutations on RET function, we have introduced into wild-type RET and activated RET(MEN2A) and RET(MEN2B) alleles three missense mutations associated with HSCR. Here we show that the three mutations caused a loss of function of RET when assayed in two model cell systems, NIH 3T3 and PC12 cells. The effect of different HSCR mutations was due to different molecular mechanisms. The HSCR972 (Arg972-->Gly) mutation, mapping in the intracytoplasmic region of RET, impaired its tyrosine kinase activity, while two extracellular mutations, HSCR32 (Ser32-->Leu) and HSCR393 (Phe393-->Leu), inhibited the biological activity of RET by impairing the correct maturation of the RET protein and its transport to the cell surface.  相似文献   

11.
12.
Gain-of-function mutations of ret receptor tyrosine kinase, the signaling receptor for glial cell line-derived neurotrophic factor, cause sporadic thyroid and adrenal malignancies as well as endocrine cancer syndromes, such as multiple endocrine neoplasia types 2A and 2B (MEN 2A and MEN 2B) and familial medullary thyroid carcinoma. Loss-of-function mutations of ret cause Hirschsprung's disease (HSCR) or colonic aganglionosis. In 20-30% of families with a mutation at residues 609, 611, 618, or 620 of RET, MEN 2A and familial medullary thyroid carcinoma cosegregate with HSCR. These mutations constitutively activate RET due to aberrant disulfide homodimerization and diminish the level of RET at the plasma membrane. It is not known how these mutations simultaneously lead to both gain- and loss-of-function RET-associated diseases. We provide an explanation for the dual phenotypic Janus mutation at Cys620 of RET. In Madin-Darby canine kidney (MDCK) cells, the Janus mutation impairs the glial cell line-derived neurotrophic factor-induced effects of RET on cell migration, differentiation, and survival but simultaneously promotes rapid cell proliferation.  相似文献   

13.
Hereditary C-cell carcinoma is encountered in multiple endocrine neoplasia type 2A (MEN 2A), MEN 2B, and familial medullary thyroid carcinoma (FMTC). Mutations of the RET proto-oncogene are associated with all three diseases. To obtain an insight into the molecular heterogeneity of MEN 2 syndromes and FMTC in the Netherlands, probands of 20 MEN 2A families, two FMTC families, and seven MEN 2B families were analyzed by the polymerase chain reaction (PCR), DNA sequencing, and restriction enzyme digestion for abnormalities in the RET proto-oncogene. RET mutations were found in all cases. All MEN 2A families had a mutation involving one of five cysteine codons in exons 10 and 11 of RET. Two novel dinucleotide mutations and a de novo mutation were found. Both FMTC families had a mutation of the Cys at codon 618. All MEN 2B probands carried a Met to Thr mutation in exon 16. All mutations could be confirmed by restriction enzyme digestion of PCR amplicons. Identification of the RET mutation in the Dutch population with hereditary C-cell carcinoma facilitates genetic testing for families or individuals at risk for MEN 2A, FMTC, and MEN 2B.  相似文献   

14.
Multiple endocrine neoplasia type 2A (MEN2A), type 2B (MEN 2B), and familial medullary thyroid carcinoma (FMTC) are three dominantly inherited disorders linked to the same disease locus on chromosome 10. Two types of germline mutation of the RET proto-oncogene, which codes for a transmembrane tyrosine kinase, are associated with MEN 2. Missense mutations at cysteine residues in the extra-cytoplasmic domain are exclusively associated with MEN 2A and FMTC. In MEN 2B patients, a single point mutation at codon 918 has recently been characterized, leading to the replacement of a methionine by a threonine within the RET tyrosine kinase domain. We now report the identification of a mutation at codon 918 in the germline of 16 patients out of 18 unrelated MEN 2B families analyzed. In these families we have been able to demonstrate that, in five cases, the mutation arose de novo, and that, in one kindred, it was coinherited with the disease. These results indicate that a unique mutation at codon 918 of the RET gene is the most prevalent genetic defect causing MEN 2B, but also that rare MEN 2B cases are associated with different mutations yet to be defined.  相似文献   

15.
Multiple endocrine neoplasia type 2A (MEN2A) is a dominantly inherited cancer syndrome characterized by medullary thyroid carcinoma, pheochromocytoma, and parathyroid hyperplasia. The gene responsible for MEN2A was localized by linkage analysis to chromosome 10q11.2 in 1987, and recently mutations in RET, a proto-oncogene in the candidate region, were discovered in patients with MEN. The majority of mutations found so far in MEN2A patients have been located in nucleotide sequences encoding cysteine residues in the extracellular domain of RET. To characterize MEN2A germline alterations in the Japanese population, we screened DNA from eight unrelated patients for mutations in exons 10 and 11 of the RET proto-oncogene and found mutations in all eight patients, at codons 618, 620, or 634; each of these sites encodes a cysteine residue in the extracellular domain of RET. The mutations were confirmed in other affected individuals in the respective families by digestion of polymerase chain reaction (PCR) products containing the mutated codons with restriction enzymes (RsaI, CfoI, or AluI) for which cleavage sites had been generated by the specific genetic alteration. These PCR-restriction enzyme systems will be useful for genetic diagnosis in members of families carrying these mutations.  相似文献   

16.
Glial cell line-derived neurotrophic factor (GDNF) binds to the GDNF family co-receptor alpha1 (GFRalpha1) and activates RET receptor tyrosine kinase. GFRalpha1 has a putative domain structure of three homologous cysteine-rich domains, where domains 2 and 3 make up a central domain responsible for GDNF binding. We report here the 1.8 A crystal structure of GFRalpha1 domain 3 showing a new protein fold. It is an all-alpha five-helix bundle with five disulfide bridges. The structure was used to model the homologous domain 2, the other half of the GDNF-binding fragment, and to construct the first structural model of the GDNF-GFRalpha1 interaction. Using site-directed mutagenesis, we identified closely spaced residues, Phe213, Arg224, Arg225 and Ile229, comprising a putative GDNF-binding surface. Mutating each one of them had slightly different effects on GDNF binding and RET phosphorylation. In addition, the R217E mutant bound GDNF equally well in the presence and absence of RET. Arg217 may thus be involved in the allosteric properties of GFRalpha1 or in binding RET.  相似文献   

17.
Mutations at aspartic acid 631 in Ret were reported in sporadic pheochromocytoma and medullary thyroid carcinoma. We replaced this aspartic acid with four other amino acids including tyrosine, glycine, asparagine, and alanine and investigated the transforming activity of these mutant cDNAs. Among them, RET cDNA with a mutation of aspartic acid to tyrosine (D631Y) that was reported in sporadic pheochromocytoma showed high transforming activity. The D631Y mutation activated Ret by inducing its disulfide-linked dimerization in the transfectant as observed for multiple endocrine neoplasia (MEN) 2A mutations at cysteine 609, 611, 618, 620, 630, or 634. Further mutation analysis suggested that cysteine 630 or 634 could be involved in the disulfide-linked Ret dimerization induced by the D631Y mutation.  相似文献   

18.
Objective: To evaluate the relationship of the cytomorphology of medullary thyroid carcinomas (MTC) between family members with the same RET proto-oncogene mutation. Study Design: Review of the fine-needle aspiration slides of 13 cases with MTC proven by surgery and pathology from 5 unrelated families with either multiple endocrine neoplasia (MEN) type 2A or familial MTC (FMTC). Results: Small, round, and abundant large oval-to-polygonal cells were major cytomorphologic findings in 66.7% of family members with exon 11, codon 634 TGC → CGC germline mutation. Small, round cells and only a few or no polygonal cells were found in 66.7% of family members with exon 11, codon 634 TGC → TTC germline mutation and in 100% of family members with codon 634 TGC → TGG germline mutations, as well as in 100% of family members with exon 10, codon 620 TGC → GGC germline mutation. Conclusions: The high rate of similarity of cytomorphology (66.7-100%) in the family members with MEN type 2A or FMTC might be related to the same etiology in the production of MTC in the same family. The relationship of the respective cytomorphology with the long-term prognosis is worth elucidating further.  相似文献   

19.
Dominant-activating mutations in the RET (rearranged during transfection) proto-oncogene, a receptor tyrosine kinase, are causally associated with the development of multiple endocrine neoplasia type 2A (MEN2A) syndrome. Such oncogenic RET mutations induce its ligand-independent constitutive activation, but whether it spreads identical signaling to ligand-induced signaling is uncertain. To address this question, we designed a cellular model in which RET can be activated either by its natural ligand, or alternatively, by controlled dimerization of the protein that mimics MEN2A dimerization. We have shown that controlled dimerization leaves proximal RET signaling intact but impacts substantially on the tuning of the distal AKT kinase activation (delayed and sustained). In marked contrast, distal activation of ERK remained unaffected. We further demonstrated that specific temporal adjustment of ligand-induced AKT activation is dependent upon a lipid-based cholesterol-sensitive environment, and this control step is bypassed by MEN2A RET mutants. Therefore, these studies revealed that MEN2A mutations propagate previously unappreciated subtle differences in signaling pathways and unravel a role for lipid rafts in the temporal regulation of AKT activation.  相似文献   

20.
Qi XP  Ma JM  Du ZF  Ying RB  Fei J  Jin HY  Han JS  Wang JQ  Chen XL  Chen CY  Liu WT  Lu JJ  Zhang JG  Zhang XN 《PloS one》2011,6(5):e20353

Background

Whole exome sequencing provides a labor-saving and direct means of genetic diagnosis of hereditary disorders in which the pathogenic gene harbors a large cohort of exons. We set out to demonstrate a suitable example of genetic diagnosis of MEN 2A/FMTC (multiple endocrine neoplasia type 2/familial medullary thyroid carcinoma) using this approach.

Methodology/Principal Findings

We sequenced the whole exome of six individuals from a large Chinese MEN2A/FMTC pedigree to identify the variants of the RET (REarranged during Transfection) protooncogene and followed this by validation. Then prophylactic or surgical thyroidectomy with modified or level VI lymph node dissection and adrenalectomy were performed for the carriers. The cases were closely followed up. Massively parallel sequencing revealed four missense mutations of RET. We unexpectedly discovered that the proband''s daughter with MEN 2A-related MTC presented a novel p.C634Y/V292M/R67H/R982C compound mutation, due to the involvement of p.C634Y in the proband with MEN 2A and p.V292M/R67H/R982C in the proband''s husband with FMTC. In the maternal origin, p.C634Y caused bilateral MTC in all 5 cases and bilateral pheochromocytoma in 2 of the 5; the earliest onset age was 28 years. In the paternal origin, one of the six p.V292M/R67H/R982C carriers presented bilateral MTC (70 years old), one only had bilateral C-cell hyperplasia (44 years), two had bilateral multi-nodules (46 and 48 years) and two showed no abnormality (22 and 19 years).

Conclusions/Significance

The results confirmed the successful clinical utility of whole exome sequencing, and our data suggested that the p.C634Y/V292M/R67H/R982C mutation of RET exhibited a more aggressive clinical phenotype than p.C634Y or p.V292M/R67H/R982C, while p.V292M/R67H/R982C presented a relatively milder pathogenicity of MTC and likely predisposed to FMTC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号