首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three storage proteins are synthesised by Spodoptera litura last-instar larvae as detected by an antiserum against pupal fat body proteins. The putative pupal storage proteins 1 and 2, appear in the haemolymph of the last-instar larvae 36 h after ecdysis under crowded rearing conditions: they appear 1 day later in isolated conditions. The appearance of these proteins in the haemolymph is prevented by juvenile hormone treatment and enhanced by allatectomy. Injection of 20-hydroxyecdysone into ligatured larvae does not induce appearance of these 2 proteins. Accumulation of protein 3 that reacts with Bombyx mori arylphorin antiserum is not blocked by juvenile hormone and is similar in both phases. It also accumulates to a small extent in the haemolymph during the moult to the final-larval instar and then disappears at ecdysis. One-hundred ng/ml ecdysteroid caused the sequestration of these proteins by the fat body, but a higher concentration of ecdysteroid (200 ng/ml) produced pupal cuticle in the isolated abdomens, suggesting that different ecdysteroid concentrations are necessary for these two events.  相似文献   

2.
Uric acid metabolism has been investigated during the pupal and adult stages of Pieris brassicae. Uric acid and its main metabolite, allantoic acid, have been quantified in various organs (fat body, gut, wings) during development, in order to determine synthesis, degradation, and transport phenomena. Both labelling experiments (using 2-14C uric acid, guanine, and guanosine) and enzymatic studies (xanthine dehydrogenase, guanine deaminase, and uricase) were performed.Labelled uric acid, when injected into a young pupa, accumulates preferentially into the fat body, and its degradation leads to an increase in allantoic acid, which is found chiefly in imaginal structures (wings, heads, body wall). Since uricase is present only in low levels through the pupal stage, only a small fraction of uric acid is metabolized.In the developing pharate adult, uric acid is transported via the haemolymph from fat body to the wings and gut. Male wings accumulate more uric acid than female wings. At emergence, a large amount of uric acid and most of the allantoic acid are excreted into the meconium, but not together; uric acid is excreted into the so-called ‘meconium 1’ containing ommochromes, whereas its metabolite is eliminated only after wing expansion into ‘meconium 2’, a colourless fluid. Shortly before emergence, the fat body recovers its ability to synthesize uric acid, a fraction of which is excreted within ‘meconium 1’.During adult life, the synthesis of uric acid occurs in the fat body and ovaries, where it is especially abundant. Ageing organs (wings, heads, testes) accumulate it markedly. A small fraction is excreted together with allantoic acid by the butterfly.Purine catabolism pathways have been investigated, showing that in guanine derivatives, the freebase state of guanine leads quickly to uric acid (and its metabolites), whereas 14C-guanosine may be transformed into nucleotide and incorporated efficiently into wing pteridines when it is injected at the time of adult pigmentation.Another purine derivative, identified as adenosine, has been shown to accumulate in male fat body just before adult emergence. Its amount increases during the first days of emerged adult life, and it corresponds to an alternative pathway of purine catabolism. Its absence in females is related to development of the ovaries.  相似文献   

3.
《Insect Biochemistry》1991,21(7):785-794
In the seasonally diphenic butterfly Araschnia levana14C-labelled tryptophan and 3-hydroxykynurenine, the principal precursors of ommochromes, injected into young pupae caused a pattern specific radiolabel of mature red scales. [14C]glucose and [35S]methionine also labelled red scales but only when injected shortly before or during the time of pigment synthesis in the wing. In developing non-diapause pupae contents of 3-hydroxykynurenine increased until an abrupt decrease when pigments appeared in the wings. In diapausing pupae 3-hydroxykynurenine remained low but increased after injection of 20-hydroxyecdysone which induced pupal-adult development. Supply of wing scale cells with ommochrome precursors via the haemolymph was analysed after injection of [3H]tryptophan. In developing pupae haemolymph contents of [3H]tryptophan and [3H]3-hydroxykynurenine increased at the time of wing pigment formation and decreased shortly before adult emergence. In diapausing pupae haemolymph contents of [3H]tryptophan and [3H]3-hydroxykynurenine were low compared to non-diapause pupae but increased at the time of wing pigment formation after injection of 20-hydroxyecdysone. Isolated wings incubated in Grace's medium containing [14C]tryptophan and [14C]3-hydroxykynurenine incorporated radiolabel specifically into red portions of the wing colour pattern due to labelling of ommatin. Incorporation into red wing areas occurred specifically depending on different colour patterns of the spring- and the summer-morph.The results demonstrate that both tryptophan as well as 3-hydroxykynurenine are delivered via the haemolymph, and both can serve as precursors of ommatin formation in the scale cells. Therefore, the complete set of enzymes for the tryptophan-ommatin pathway is present in scale-forming cells.  相似文献   

4.
From the first day of the last (fourth) larval instar no trace of juvenile hormone (JH) can be detected in the haemolymph by Galleria bioassay. Three specific diapause proteins, which are also found in diapausing adults, appear in the haemolymph. These proteins disappear towards the end of the pupal stage. Study of the ultrastructure of the fat body revealed the formation from lysosomes of proteinaceous bodies which are also characteristic for adult diapause. The behaviour of last instar larvae and pupae resembles that of prediapausing and diapausing adults respectively. Injection of synthetic JH delays the appearance of the diapause proteins in the haemolymph and of proteinaceous bodies in the fat body for 2 to 3 days. The absence of JH seems to trigger off these diapause phenomena.  相似文献   

5.
Toxicological data on silkworm Bombyx mori are quite comparable to those of other lepidopteran pest insects, therefore, it is considered as a suitable model for exploring effects of any new synthetic formulations. In this study, female V instar larvae of silk moth B. mori were chosen to evaluate the lethal and sublethal toxicity effects of RH-2485 (methoxyfenozide), a non-steroidal ecdysteroid agonist and to substantiate the ecdysteroid mimicking action of RH-2485 on ovary development, vitellogenin incorporation and egg production in isolated pupal abdomen (IPA). Probit analysis was carried out to find the median lethal dose (LD50) from 96 h cumulative mortality percent. Protein profile of haemolymph, fat body, ovary and eggs were separated in SDS-PAGE. Western blot analysis was carried out to confirm vitellogenin in the ovary. Sublethal effects on feeding, cocoon spinning, pupation, adult emergence and egg production were studied at doses of 1/5th, 1/10th and 1/20th of LD50. Significant changes were observed in all these parameters at all three sublethal doses. The morphological effects were related to underlying biochemical changes by finding the changes in haemolymph, fat body, ovary and egg protein profile. Marked changes were observed in storage proteins (80 kDa) and 30 kDa proteins in the haemolymph at all three sublethal doses. The larvae that escaped the sublethal effects at a dose of 1/20 of LD50 and emerged as adults with malformed wings produced significantly lower number of eggs. The isolated pupal abdomen (IPA) treated with RH-2485 did not metamorphose into adult but the oocyte development and vitellogenesis were normal but the egg precursor processing was incomplete leading to failure in choriogenesis.  相似文献   

6.
葱蝇非滞育、 冬滞育和夏滞育蛹发育和形态特征比较   总被引:1,自引:0,他引:1  
黎万顺  陈斌  何正波 《昆虫学报》2012,55(7):816-824
昆虫非滞育、 冬滞育和夏滞育蛹具有不同的生理和发育过程。本研究以葱蝇Delia antiqua作为模式种, 以黑腹果蝇Drosophila melanogaster蛹的发育形态特征和命名为参照, 用解剖、 拍照、 长度测量和图像处理等方法系统地比较研究了非滞育、 冬滞育和夏滞育蛹的发育历期和形态变化, 重点在头外翻和滞育相关发育和形态特征, 目的在于弄清非滞育、 冬滞育和夏滞育蛹发育和形态特征差异, 为滞育发育阶段的识别、 滞育分子机理研究奠定形态学基础。冬滞育蛹的滞育前期、 滞育期和滞育后期分别为4, 85和27 d, 夏滞育蛹的滞育前期、 滞育期和滞育后期分别为2, 8和22 d。从化蛹至头外翻完成为滞育前期, 头外翻完成约10 h内复眼中央游离脂肪体可见。头外翻的完成是滞育发生的前提, 非滞育、 夏滞育和冬滞育蛹头外翻发生在化蛹后的48, 36和83 h, 在头外翻过程中发育形态没有差异。头外翻的过程为: 首先, 头囊和胸部附肢从胸腔外翻, 头部形态出现; 然后, 腹部肌肉继续收缩, 将血淋巴和脂肪体推进头部及胸部附肢。葱蝇蛹在完成蛹期有效积温约15%时进入冬滞育或夏滞育。在滞育期, 蛹的形态一直停留在复眼中央游离脂肪体可见这一形态时期, 且冬滞育和夏滞育的蛹在形态上没有区别。在体长、 体宽和体重上, 冬滞育蛹最大, 夏滞育蛹次之, 非滞育蛹最小。在滞育后期, 在黄色体出现期间, 非滞育蛹的马氏管清楚可见, 呈绿色, 而滞育蛹的马氏管几乎不可见。本研究为认知昆虫滞育生理、 从发育历期和形态上推断滞育发育进程提供了依据。  相似文献   

7.
Programmed cell death is an integral and ubiquitous phenomenon of development that is responsible for the reduction of wing size in female moths of Orgyia leucostigma (Lymantriidae). Throughout larval and pupal life, cells of the wing epithelium proliferate and interact to form normal imaginal discs and pupal wings in both sexes. But at the onset of adult development, most cells in female O. leucostigma wings degenerate over a brief, 2-day period. Lysosomes and autophagic vacuoles appear in cells of the wing epithelium shortly after it retracts from the pupal cuticle. Hemocytes actively participate in removing the resulting cellular debris. By contrast, epithelial cells in wings of developing adult males of O. leucostigma do not undergo massive cell death. Wing epithelium of female pupae transferred to male pupal hosts behaves autonomously in this foreign environment. By pupation, cells of the female wing apparently are committed to self-destruct even in a male pupal environment. Normal interactions among epithelial cells within the plane of a wing monolayer as well as between the upper and lower monolayers of the wing are disrupted in female O. leucostigma by massive cell degeneration. Despite this disruption, the remaining cells of the wing contribute to the formation of a diminutive, but reasonably proportioned, adult wing with scales and veins.  相似文献   

8.
The female silkworm, Bombyx mori, rapidly accumulates two storage proteins, that are synthesized by the fat body, in the haemolymph during the feeding stage of the last-larval instar, and then sequesters them from the haemolymph into fat body during the larval-pupal transformation.The rapid synthesis and uptake of storage proteins by the fat body are shown to be induced by allatectomy in the early-penultimate larval instar. A juvenile hormone analogue, methoprene, is highly effective in inhibiting the allatectomy-induced synthesis, and, in a higher dosage, further blocks the uptake. Allatectomy in the late-penultimate larval instar shortly before moulting does not enhance the storage protein synthesis, but causes the uptake to occur two days earlier in the last-larval instar. Injection of 20-hydroxyecdysone is not stimulatory for synthesis of the proteins, but is effective to induce their uptake. Starvation during the early last-larval instar completely blocks the synthesis.From these results, it is suggested that storage protein synthesis is induced in the absence of juvenile hormone by some supplementary stimulus, possibly the supply of nutrient after feeding, and uptake is induced by ecdysteroids after a decline in the juvenile hormone level.  相似文献   

9.
Color patterns of butterfly wings are composed of single color points represented by each scale. In the case of Precis coenia, at the end of pupal development, different types of pigments are synthesized sequentially in the differently colored scales beginning with white (pterins) followed by red (ommatins) and then black (melanin). In order to explain how formation of these different colors is regulated, we examined the expression of an mRNA-encoding guanosine triphosphate-cyclohydrolase I (GTP-CH I; EC 3.5.4.16), the first key enzyme in the biosynthesis of pteridines, during pigment formation in the wings of P. coenia. The strongest positive signal was recognized around pigment formation one day before butterfly emergence. This GTP-CH I gene expression is paralleled by GTP-CH I enzyme activity measured in wing extracts. We also investigated the effect of 20-hydroxyecdysone on the expression of GTP-CH I mRNA and the enzyme activity during color formation. The results strongly suggest that the onset and duration of the expression of a GTP-CH I mRNA is triggered by a declining ecdysteroid hormone titer during late pupal development.  相似文献   

10.
Summary Half-way through the larval period in Dacus tryoni, the fat body cells begin to accumulate protein in the form of granules. Early in the pupal period, both the fat body cells and oenocytes become free in the body cavity. Meanwhile, an imaginal generation of hypodermal cells, while in the process of displacing the larval hypodermis, gives rise to an imaginal generation of oenocytes. Soon after, imaginal fat body cells also appear. A few days after emergence, the larval fat body cells and oenocytes disintegrate and their imaginal equivalents expand to fill the body cavity.This paper also describes the ultrastructure of the larval and imaginal fat body cells and of the imaginal oenocyte. In all three, tubular invaginations of the plasma membrane occupy the peripheral cytoplasm. At most stages, the fat body cells contain a considerable quantity of slightly distended, rough endoplasmic reticulum, which suggests that when these cells are not sequestering protein, they are secreting it into the blood. The imaginal oenocytes are packed with smooth endoplasmic reticulum, which supports other evidence that they participate in the synthesis of cuticular wax.For assistance with the electron microscopy, I thank Mr. Tony Webber and Miss Ann Miller of the Electron Microscopy Unit at Sydney University. For the loan of some sectioned material, I am grateful to Dr. D. T. Anderson.  相似文献   

11.
The concentrations of three storage proteins (SL-1,SL-2 and SL-3, hexamers of 70-80kDa subunits) and two biliverdin-binding proteins (BP-A and BP-B, dimers of 165kDa) in the haemolymph and fat body during larval and pupal development of Spodoptera litura were determined by immunodiffusion tests using polyclonal antisera. SL-1 and SL-2 (methionine-rich) first appeared in the haemolymph of one-day-old sixth (final) instar larvae, prominently increased in the haemolymph during the later feeding period and were almost totally sequestered by the fat body after gut purge. SL-3 (arylphorin) was first detected in the haemolymph during the molting period to the final larval ecdysis, increased in concentration throughout the entire feeding period of the final larval instar and was partly sequestered by the fat body several hours later than the other storage proteins. BP-A showed nearly the same pattern in the haemolymph as SL-3: BP-B increased during feeding period and decreased during molting period and attained a maximum level during the penultimate larval instar, however its concentration decreased considerably and remained low in the final larval instar. BP-A was partly and BP-B was almost totally sequestered by the fat body 8 h after sequestration of SL-1 and SL-2, rendering the fat body blue in colour. These facts suggest an additional function of biliverdin-binding proteins as amino acid storage proteins and the results show a differential uptake mechanism for these proteins by the fat body.  相似文献   

12.
Lipid composition of the fat body and haemolymph of male milkweed bug, Oncopeltus fasciatus, was determined. Triglycerides were the predominant lipids of the fat body while diglycerides accounted for the major lipid in the haemolymph. Sterols, sterol esters, and non-esterified fatty acids were present in both fat body and haemolymph besides triglycerides and diglycerides. Only traces of monoglycerides were detected.Gas chromatographic analysis of the fatty acids revealed a difference in the fatty acid composition between fat body and haemolymph glycerides and sterol esters. Oleate and linoleate were the predominant unsaturated fatty acids in both fat body and haemolymph lipids and in the milkweed seeds as well.When fat body was labelled in vivo and in vitro with 14C-palmitate, the fatty acid was incorporated largely into the triglycerides. When the prelabelled fat body was incubated with a medium containing haemolymph the fat body released lipids mainly as diglycerides. Some radioactivity was observed in the triglycerides and non-esterified fatty acids also.Electrophoretic analysis of the incubation medium containing the haemolymph revealed that the released lipids were bound to three haemolymph lipoprotein bands. Lipid mobilization, release, and transport in Oncopeltus are discussed in relation to studies on other insects.  相似文献   

13.
The mode of formation and fate of calcium salt deposits (calcospherites) appearing in the pupal midgut cells of the silkworm Bombyx mori was followed in the electron microscope. The larval midgut absorbs calcium ions from the haemolymph primarily via the goblet cells, while in the pupal midgut this occurs throughout the entire tissue. Part of the calcium absorbed by the pupal midgut accumulates in small vesicles, probably derived from the Golgi body and these develop into the concentrically laminated calcospherites. Late in the pupal period, these are discharged into the midgut lumen in a merocrine fashion. The midgut in the adult insect retains only a few poorly defined calcospherites in the cytoplasm.  相似文献   

14.
15.
Vitellogenins first appear in the fat body of Locusta migratoria during subphase I of vitellogenesis and increase to a constant level during subphase II. A second increase occurs shortly before the oöcyte attains maximal size. Vitellogenin content of fat body subsequently returns to that of subphase I, appropriate to the size of the subterminal oöcyte. The absolute amount of vitellogenin in the fat body is low compared to that found in the haemolymph. Fat body and haemolymph vitellogenins have immunological properties similar to oöcyte yolk proteins—when challenged with oöcyte protein antiserum. They exhibit similar electrophoretic mobility in polyacrylamide gel electrophoresis and are complex glyco-lipoproteins.  相似文献   

16.
Abstract. . Morphological colour adaptation of pupae of the butterfly Inachis io L. (Lepidoptera: Nymphalidae) is controlled by a factor which reduces cuticular melanization (Biickmann & Maisch, 1987). This so-called pupal melanization reducing factor (PMRF) is located throughout the entire central nervous system of prepupae (Stamecker et al. , 1994).
Extracts of abdominal ganglia also stimulated dose-dependently lutein incorporation into pupal cuticle. In the bioassay higher doses were required to increase cuticular lutein content than to reduce melanization. Ligatures during the prepupal stage demonstrated two different critical periods for these pigmentation effects: an early one for melanization reduction and a late one for lutein incorporation.
An initial chromatographic purification yielded only two adjacent fractions which contained both the PMRF and the stimulation of lutein incorporation activity. Therefore it is assumed that only one hormone with a dual function may be responsible for pupal pigmentation.
Lutein content was found in gut, fat body, epidermis and haemolymph of I.io. Lutein incorporation into cuticle occurred within 1.5 days of the pupal moult when the cuticle was not yet fully sclerotized. Lutein content is significantly higher in cuticle of yellow pupae than of black ones.  相似文献   

17.
Summary The developmental profile of the major haemolymph proteins (ceratitins) inCeratitis capitata was studied. Ceratitin concentration in the haemolymph decreases dramatically during the last days of pupal life, while the amounts of ceratitins in whole organism extracts remain unchanged. By electrophoretic, immunological and immunofluorescence techniques it was revealed that ceratitins are reabsorbed by the fat body and a fraction of them is deposited in the cuticle. The possible role of ceratitins is discussed.  相似文献   

18.
Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns.  相似文献   

19.
Neck-ligation, brain implantation, allatectomy, methoprene treatment, and ovariectomy indicated that the disappearance of pupal fat body cells in newly emerged adult female blow fly, Phormia regina, is controlled by the brain and the corpus allatum (CA). Absence of brain or CA greatly lowered the rate of fat body cell disappearance (i.e. death). Dependency on the CA decreased from 0 to 36h post-emregence, indicating that the CA was active during the earlier part of this timespan. Methoprene treatment enhanced pupal fat body cell disappearance in allatectomized females. Brain implantation restored the rate of pupal fat body cell disappearance in neck-ligated flies. Brains from day 1 sugar-fed flies proved to be more effective than those from day 2 sugar-fed flies, indicating that there may be a window after adult emergence that allows the brain to act directly or indirectly on the death of pupal fat body cells. Ovariectomy did not alter the rate of pupal fat body cell death in test animals. Dying pupal fat body cells were smaller in size, less dense (i.e. did not sink in saline like normal pupal fat body cells), and stickier (i.e. attached to other tissues tighter) than the healthy cells. A possible role played by ecdysteroids is also discussed.  相似文献   

20.
Investigations were carried out to determine the role of juvenile hormone (JH) and 20-hydroxy ecdysone in the synthesis and uptake of vitellogenins, which were earlier identified, purified and characterised, in Dysdercus koenigii. The concentration(s) of vitellogenin(s) in fat body, haemolymph and that of vitellin(s) in ovary were significantly lower after chemical allatectomy at eclosion. In addition, at 70 h after emergence, chemical allatectomy reduced ovarian vitellin concentration, but vitellogenin levels remained normal in the fat body and haemolymph. The haemolymph vitellogenins were not incorporated into oocytes in such insects. Administration of JH-III at 20 h after allatectomy restored vitellogenin levels in the fat body and haemolymph, but the ovary failed to incorporate the available vitellogenins from haemolymph in such insects. However, when JH-III was administered twice, one at 20 h and then at 70 h after allatectomy, vitellogenin concentrations in fat body and haemolymph and also vitellin concentrations in ovary approached control levels. It is suggested that JH has two separate roles, one in vitellogenin synthesis and the other in uptake. 20-hydroxy ecdysone had no apparent role in either vitellogenin synthesis or uptake in D. koenigii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号