首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maturation, histology and ultrastructure of the spermathecal accessory gland of Speonomus delarouzeei (Celeoptera : Catopidae) were studied. The functional units of the epithelium surrounding the gland cavity consist of 2 cells: one secretory cell and one ductile cell, which allows the secretory products to pass into the central lumen. The complete development of this gland takes 24 – 32 days after emergence. When the glandular cells are fully developed, their secretory products reach the pouch of the spermatheca. From then on a high percentage of females copulate.  相似文献   

2.
The functional anatomy of integumentary adjacent glands of the 4th male antennomere, termed male sex-antennomere (MSA4), of Amitus spiniferus (Brethes) (Hymenoptera : Platygastridae), is described. Externally, the lateral side of the MSA4 presents an elliptical, glabrous, and elevated plate with about 20 scattered pores. Internally, there is a glandular area consisting of some 20 isolated, 2-celled secretory units beneath the elevated plate. Each gland has a secretory cell, forming a cuticular receiving canal, and a canal cell, forming the conducting canal, which connects the receiving canal to the external glandular opening. The abundant secretion appears on the cuticular surface in cylindrical forms and as droplets, and probably acts as a recognition and/or an aphrodisiac pheromone during mating. This hypothesis is discussed with regard to behavioral observations reported for only 3 other known cases of similar glands in parasitoids. Modified antennomeres with specialized structures are briefly reviewed, and their secretory function and taxonomic importance in parasitic Hymenoptera, suggested.  相似文献   

3.
《Annals of botany》1999,83(1):87-92
This paper reports the results of a study of the morphology and development of glandular trichomes in leaves ofCalceolaria adscendensLidl. using light and electron microscopy. Secretory trichomes started as outgrowths of epidermal cells; subsequent divisions gave rise to trichomes made up of a basal epidermal cell, a stalk cell and a two-celled secretory head. Ultrastructural characteristics of trichome cells were typical of terpene-producing structures. Previous phytochemical studies had revealed thatC. adscendensproduces diterpenes. Comparison withC. volckmanni,which produces triterpenes, and has trichomes with eight-celled secretory heads, suggests that there could be a relationship between the type of glandular trichome and the class of terpene produced. Further work is needed to test the hypothesis and to develop trichome characters as taxonomic tools.  相似文献   

4.
The spermathecal complex of the bark beetle, Ips typographus, comprises the following elements: spermathecal duct, spermatheca and spermathecal gland. The spermathecal duct connects the vagina and the spermatheca and consists of a cuticular tube surrounded by an epithelial layer and circular muscles. The spermatheca is bottle-shaped and has a cuticle-lined lumen. Muscles are attached to both ends of the spermatheca. The spermathecal gland which is connected to the spermatheca possesses three cell types: glandular, hypodermal, and ductule. The glandular cells have different structural characteristics depending on the age and reproductive state of the females. After the emergence of the brood, two different kinds of secretory material are present in the glandular cells. There is evidence that one type of secretion is emitted during the first few days after brood emergence, while the other type accumulates to be secreted during later stages.  相似文献   

5.
The paired female accessory glands of Phlebotomus perniciosus (Diptera : Psychodidae) were investigated by light microscopy, and by scanning and transmission electron microscopy. These glands undergo morphological and functional changes during oocyte development. After the blood meal, the monostratified glandular epithelium differentiates and starts to secrete. Well-developed rough endoplasmic reticulum, Golgi complexes, and membrane-bounded exocytic vesicles suggest that these secretory cells are involved in protein synthesis. As the secretory cells differentiate, the glandular lumen increases in size and fills with secretory material, consisting of globular granules of different sizes in an amorphous electron-dense matrix. The granules have an electron-translucent core and an electron-dense cortex. The morphological characteristics of the glandular epithelium and the functional role of the glands are discussed in relation to their possible contribution to the reproductive process.  相似文献   

6.
木香薷腺毛形态结构发生发育规律的研究   总被引:1,自引:0,他引:1  
采用常规石蜡切片法及扫描电镜技术对木香薷(Elsholtzia stauntoni Benth)腺毛发生发育及其规律进行了研究。结果表明:木香薷表皮上主要有两种表皮毛:无分泌细胞的表皮毛与有分泌细胞的腺毛。前者包括单细胞乳头状毛、2~3细胞管状毛、分枝状毛及多细胞管状毛;后者包括头状腺毛与盾状腺毛。成熟头状腺毛头部由1、2或4个分泌细胞构成,头部呈圆球形或半圆球形;成熟盾状腺毛头部由8~12个分泌细胞构成,分泌细胞横向扩展形成盾状头部。木香薷腺毛主要在茎端幼叶处大量发生,从茎端第一对幼叶处开始产生;从幼叶期到成熟期均有腺毛发生,大部分腺毛在幼叶期发生发育,只有极少部分在叶的成熟期进行发生发育。  相似文献   

7.
Females of Chrysomya putoria (Diptera: Calliphoridae) have two sexual accessory glands, which are tubular and more dilated at the distal extremity. The glands open independently into the common oviduct. Two morpho-physiological regions were distinguished in the longitudinal semi-thin sections of the glands. The secretory region is constituted by three layers: a cuticular intima, lining the lumen, followed by a layer of small cells, and then a layer of very large secretory cells. The ductal region of the gland presents only two layers: the cuticular intima and a cellular layer. In both regions a basement membrane is present. Each secretory cell has in its apical region a reservoir, which enlarges throughout oogenesis; in its basal region there is a large nucleus. The ductal cells are cylindrical and smaller than the secretory cells. The glandular secretion is synthesized in the cytoplasm of the secretory cells, stored and/or modified in the reservoir, then drained to the lumen through an end apparatus seen in the apical region of the secretory cell. Histochemical tests indicate that this secretion is a glycoprotein. Measurements of the glands from females at different physiological conditions and fed on different diets correlate with the results obtained for changes in the ovary during oogenesis. Cell number averaged 561.2 ± 77.54 per gland. There was no increase in cell number during oogenesis.  相似文献   

8.
The ultrastructure of male reproductive accessory glands was investigated in the scorpionfly Sinopanorpa tincta (Navás, 1931) (Mecoptera: Panorpidae) using light and transmission electron microscopy. The male accessory glands comprise one pair of mesodermal glands (mesadenia) and six pairs of ectodermal glands (ectadenia). The former opens into the vasa deferentia and the latter into the ejaculatory sac. The mesadenia consist of a mono-layered elongated columnar epithelium, the cells of which are highly microvillated and extrude secretory granules by means of merocrine mechanisms. The epithelium of ectadenia consists of two types of cells: the large secretory cells and the thin duct-forming cells. These two types of cells that join with a cuticular duct constitute a functional glandular unit, corresponding to the class III glandular cell type of Noirot and Quennedey. The cuticular duct consists of a receiving canal and a conducting canal. The secretory granules were taken up by the receiving canal and then plunged into the lumen through the conducting canal.  相似文献   

9.
Robust glandular appendages are reported in legumes of the Caesalpinieae tribe. Most studies only attempt to describe the external morphology of these structures, without providing a distinction between glandular trichomes and emergences. This study employed ontogeny to resolve the terminology of these structures present in flowers of two tropical woody legumes of Caesalpinieae, Erythrostemon gilliesii and Poincianella pluviosa, through surface, anatomical and ultrastructural analyses. Flowers of both species exhibit branched and non-branched glandular trichomes since these structures originate from a single protodermal cell. Non-branched glandular trichomes occur on the inflorescence axis, pedicel, sepals and ovary; in P. pluviosa, they also occur in the unguicle of wings and standard, filaments, anthers and style. This type of trichome shows a non-secretory multiseriate stalk and a secretory multicellular head. Branched glandular trichomes, with similar morphology but exhibiting non-secretory branches, occur in the inflorescence axis, pedicel and sepals; in P. pluviosa, they also occur in the unguicle of wings. During the secretory phase, the trichome head cells have large nuclei, cytoplasm rich in vacuoles, oleoplasts, mitochondria, rough endoplasmic reticulum and free ribosomes. The content is released in the intercellular spaces of the head in a merocrinous mechanism and reaches the surface through cuticle rupture. We emphasized the importance of ontogenetic studies to clarify the terminology of secretory structures. This type of study should be performed in other caesalpinoids so that such robust glandular appendages can be correctly interpreted and used with phylogenetic value in the group.  相似文献   

10.
(1) alpha-amylase was extracted and purified from the stomach/digestive gland complex of the scallop Pecten maximus and an anti-serum was induced against the purified amylase by rabbit immunization. (2) The anti scallop amylase was used to localize the amylase-secreting cells in the stomach of Pecten maximus by immunofluorescence and immunogold labelling. The amylase-secreting cells are glandular cells particularly numerous in the main sorting area of the stomach. Their secretory granules were found strongly positive for anti-amylase. Three types of glandular cells were observed, actually corresponding to the three stages of the glandular-cell activity, synthesis, secretion and excretion. (3) The synthesizing cell shows the characteristic features of a protein-synthesizing cell: a conspicuous nucleolus and abundant granular endoplasmic reticulum. In the secretory cell, the secretory granules are formed by the Golgi apparatus and accumulate in the apical part of the cell. The secretory cell is filled with two types of secretory granules which are released in the stomach lumen by apocrine excretion. (4) The present study brings the first demonstration of the synthesis and extracellular release of amylase by glandular cells of the stomach epithelium of a bivalve.  相似文献   

11.
Orbital glands are found in many tetrapod vertebrates, and are usually separate structures, consisting of individual glands lying in the eyelids and both canthi of the orbit. In cetaceans, however, the orbital glandular units are less distinct and have been described by numerous authors as a single, periorbital mass. There are few histochemical and immunhistochemical studies to date of these structures. In this study, we examined the orbital glandular region of both the bowhead whale (Balaena mysticetus: Mysticeti) and the beluga whale (Delphinapterus leucas: Odontoceti) using histological, histochemical, and immunohistochemical techniques. Histologically, in the bowhead, three glandular areas were noted (circumorbital, including Harderian and lacrimal poles), palpebral (midway in the lower eyelid), and rim (near the edge of the eyelid). In the beluga, there was only a large, continuous mass within the eyelid itself. Histochemical investigation suggests neither sexual dimorphism nor age-related differences, but both whales had two cell types freely intermingling with each other in all glandular masses. Large cells (cell type 1) were distended by four histochemically distinct intracellular secretory granules. Smaller cells (cell type 2) were not distended (fewer granules) and had two to three histochemically distinct intracellular secretory granules. The beluga orbital glands had additional lipid granules in cell type 1. Counterintuitively, both lipocalin and transferrin were localized to cell type 2 only. This intermingling of cell types is unusual for vertebrates in whom individual orbital glands usually have one cell type with one to two different secretory granules present. The heterogeneity of the orbital fluid produced by cetacean orbital glands implies a complex function, or series of functions, for these orbital glands and their role in producing the tear fluid.  相似文献   

12.
Structurally, the milk gland of the sheep ked, Melophagus ovinus, is quite similar to that of the tsetse fly, Glossina morsitans. In both insects the highly branched gland consists of two cell layers. An extracellular reservoir associated with each secretory cell initially receives the secreted milk. Milk then passes into the gland lumen through a dense cuticular rete. Gram-negative bacteria, presumably symbionts, are abundant in the lumen. Unlike tsetse, the secretory reservoir of the sheep ked is bi-lobed, and the secretory cell nucleus remains centrally located throughout the pregnancy cycle. Lipid droplets are much more abundant in the cytoplasm of the ked secretory cell, and analysis of larval milk shows 5–6% higher lipid content in the sheep ked. Results of histochemical analysis of ked milk are consistent with the analysis of tsetse milk. Four major milk proteins are detectable with polyacrylamide gel electrophoresis. Changes in abundance of ER and sizes of the secretory cell nucleus and secretory reservoir reflect a dramatic cycle of glandular activity during pregnancy. Unlike tsetse, the sheep ked remains constantly on its host and appears to take frequent, but small, blood meals. This strategy implies that the demand for nutrient storage is less than in tsetse.  相似文献   

13.
为进行中药溪黄草基原植物的品种鉴定,采用光镜和电镜对线纹香茶菜(原变种)[Isodon lophanthoides var.lophanthoides]叶上腺毛的发育进行细胞学研究。结果表明,线纹香茶菜具有头状腺毛和盾状腺毛2种类型。头状腺毛无色透明,由1个基细胞、1个柄细胞和1或2个头部分泌细胞构成;盾状腺毛为红色,由1或2个基细胞、1个柄细胞和4~8个分泌细胞构成头部。2种腺毛均由原表皮细胞经两次平周分裂形成,后因柄细胞和头部细胞所处的分化状态不同而形成两类腺毛。2种腺毛超微结构表明,质体、高尔基体和粗面内质网为主要分泌物产生和运输的细胞器。当盾状腺毛成熟时,角质层下间隙充满了分泌物,其分泌物的性质很可能决定了线纹香茶菜腺毛的颜色。  相似文献   

14.
This study characterises the micromorphology, ultrastructure and main chemical constituents of the foliar glandular trichomes of Ocimum obovatum using light and electron microscopy and a variety of histochemical tests. Two types of glandular trichomes occur on the leaves: large peltate and small capitate. The head of each peltate trichome is made up of four broad head cells in one layer. The head of each capitate trichome is composed of two broad head cells in one layer (type I) or a single oval head cell (type II, rare). In peltate heads, secretory materials are gradually transported to the subcuticular space via fracture in the four sutures at the connecting walls of the head cells. Release to the head periphery occurs through opposite fracture in the four sutures in the head cuticle. In type I capitate trichomes, release of the secretions to the subcuticular space occurs via a pore between the two head cells, and release to the head periphery occurs through the opposite pore in the head cuticle. In type II capitate trichomes, the secreted material is released from the head cell through a ruptured particular squared area at the central part of the head cuticle. These secretion modes are reported for the first time in the family Lamiaceae. Histochemical tests showed that the secretory materials in the glandular trichomes are mainly essential oils, lipophilic substances and polysaccharides. Large peltate trichomes contain a large quantity of these substances than the small capitate trichomes. Ultrastructural evidence suggests that the plastids produce numerous lipid droplets, and the numerous polysaccharide small vesicles are derived from Golgi bodies.  相似文献   

15.
Each mandibular gland of the queen bee, Apis mellifera L. (Hymenoptera: Apidae) consists of an axial cavity lined with a thin cuticular intima, secreted by a flat epithelium, and numerous glandular units (type 3), each unit with one duct cell and a large polyploid glandular cell. Mitochondria and endoplasmic reticulum are preponderant organelles. During the ontogeny of the queen bee, the ultrastructure of the glandular cells evolves as her level of pheromonal activity. Variations mainly concern the mitochondrial system. Hence, at the beginning of the imaginal life, the homogeneous population of small mitochondria increases. Towards the 3rd–5th day of the queen's imaginal life, the pheromonal activity increases and the mitochondrial differentiation results in the appearance of giant forms. During the highest activity phase (6 to 18-month-old queens), giant mitochondria, associated with endoplasmic reticulum, invade cytoplasmic areas. In queens aged from 18 to 24 months, the reduction of pheromonal and secretory activities is associated with the reduction of mitochondrial population as well as with the accumulation of lipid droplets and various lytic structures.  相似文献   

16.
We examined the “rosette-like” structures (RS), found in Archaeognatha and Thysanura, in the compound eyes and the antennae of the machilid Petrobius brevistylis using SEM and TEM. The nature of the RS was unknown until now, and hypothesized to be either a sensillum or the opening of a gland. Our studies show that RS are the orifices of epidermal glands. A gland consists of a single glandular unit of 4 cells: a duct cell, a secretory cell, a ciliary cell and an enveloping cell. The glands are class 3 epidermal glands as defined by Noirot and Quennedey (1974).  相似文献   

17.
Social insects have numerous exocrine glands, but these organs are understudied in termites compared to hymenopterans. The tarsomere and distal tibial glands of the termites Heterotermes tenuis, Coptotermes gestroi and Silvestritermes euamignathus were investigated by scanning and transmission electron microscopy. Pore plates are visible in scanning micrographs on the distal tibial surfaces and on the ventral surface of the first and second tarsomeres of workers of H. tenuis and C. gestroi. In contrast, workers of S. euamignathus have isolated pores spread throughout the ventral surfaces of the first, second, and third tarsomeres and the distal tibia. In all three species each pore corresponds to the opening of a class-3 secretory unit, composed of one secretory and one canal cell. Clusters of class-3 glandular cells are arranged side by side underneath the cuticle. The main characteristics of these exocrine glands include their presence on all the legs and the electron-lucent secretion in the secretory cells. Possible functions of these glands are discussed.  相似文献   

18.
羽叶薰衣草表皮毛的发育解剖学研究   总被引:1,自引:0,他引:1  
对羽叶薰衣草(LavandulapinnataL.)茎和叶上两种表皮毛(腺毛和非腺毛)发育的解剖学观察表明,两者的发生都源于茎或叶的原表皮细胞,但外部形态、发育过程及功能明显不同。腺毛有头状腺毛和盾状腺毛两种类型,均由1个基细胞、1个柄细胞和头部细胞构成。头状腺毛的头部只有1个或2个分泌细胞,盾状腺毛由8个分泌细胞构成头部。非腺毛由3-20个细胞组成,可分为三种类型:单列不分枝、二叉分枝和三叉及三叉以上多分枝的树状分枝。非腺毛的顶部细胞由基部到顶部逐渐变细,先端成尖形。腺毛发育由原表皮细胞经两次平周分裂形成,由于柄细胞和头部细胞所处的分化状态不同而发育成两类腺毛。非腺毛由非腺毛原始细胞经二次或多次平周分裂和不均等分裂,再发育成数个至二十多个子细胞。  相似文献   

19.
The antennae of the ant nest beetle Paussus favieri are studied by using both SEM and TEM. In the myrmecophilous genus Paussus, these structures are composed of three joints: scape, pedicel and a wide third joint, the “antennal club”, resulting from the fusion of antennomeres A3–A11 (flagellum). The antennal club shows an exceptional glandular activity, with the presence of pores mostly crowded in special hairless cuticular areas, surrounding the base of single setae, grouped at the base of tufts of setae, or positioned inside deep pockets that store the secretions, with filiform material arising from them. The surface of A1 and A3 are covered by mechanoreceptors, modified to spread the glandular exudates, while the chemoreceptors are restricted to the apex of the club. The fine structural analysis shows a great number of antennal glands, that can be referred to three main typologies: type A (GhA) bi-cellular, composed of a large secretory cell and a small duct cell, positioned close to the antennal surface; type B (GhB), tri-cellular, composed of two secretory cells and one duct cell, less frequent and positioned deep inside the antennal club; type C (GhC), rare, located deeply within the antennal lumen, in the vicinity of the trophocytes. This complexity indicates that more than one substance could be released from the antennae. Possible functional aspects of the secretions dealing with symbiotic interaction with the host ants are discussed.  相似文献   

20.
The ultrastructure of the glandular trichomes and secretory ducts of Grindelia pulchella was studied. Plastids, mitochondria and endoplasmic reticulum are involved in the secretory process of both, trichomes and ducts. A special tissue with “transfer cells” is associated with the duct epithelial cells. The secretion is produced in the transfer cells and then is transferred to the duct epithelial cells where it accumulates in the vacuoles. The occurrence of cavities within the cell walls of the trichome cells and duct epithelial cells is described. The secretion is accumulated between the cell wall and the cuticle of these cells. When the cuticle is broken the secretion is released. We conclude that granulocrine secretion operates in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号