首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cancer stem cells (CSCs) have been associated with metastasis and therapeutic resistance and can be generated via epithelial mesenchymal transition (EMT). Some studies suggest that the hormone melatonin acts in CSCs and may participate in the inhibition of the EMT. The objectives of this study were to evaluate the formation of mammospheres from the canine and human breast cancer cell lines, CMT-U229 and MCF-7, and the effects of melatonin treatment on the modulation of stem cell and EMT molecular markers: OCT4, E-cadherin, N-cadherin and vimentin, as well as on cell viability and invasiveness of the cells from mammospheres. The CMT-U229 and MCF-7 cell lines were subjected to three-dimensional culture in special medium for stem cells. The phenotype of mammospheres was first evaluated by flow cytometry (CD44+/CD24low/- marking). Cell viability was measured by MTT colorimetric assay and the expression of the proteins OCT4, E-cadherin, N-cadherin and vimentin was evaluated by immunofluorescence and quantified by optical densitometry. The analysis of cell migration and invasion was performed in Boyden Chamber. Flow cytometry proved the stem cell phenotype with CD44+/CD24low/- positive marking for both cell lines. Cell viability of CMT-U229 and MCF-7 cells was reduced after treatment with 1mM melatonin for 24 h (P<0.05). Immunofluorescence staining showed increased E-cadherin expression (P<0.05) and decreased expression of OCT4, N-cadherin and vimentin (P<0.05) in both cell lines after treatment with 1 mM melatonin for 24 hours. Moreover, treatment with melatonin was able to reduce cell migration and invasion in both cell lines when compared to control group (P<0.05). Our results demonstrate that melatonin shows an inhibitory role in the viability and invasiveness of breast cancer mammospheres as well as in modulating the expression of proteins related to EMT in breast CSCs, suggesting its potential anti-metastatic role in canine and human breast cancer cell lines.  相似文献   

2.
3.
《Phytomedicine》2015,22(4):438-443
Although cancer stem-like cells (CSCs) are rare, they can enter a non-proliferative or dormant state and resist therapy. Furthermore, quiescent CSCs are responsible for metastases that can appear after curative surgical treatment of a primary tumor. Because of drug resistance of CSCs, the development of novel therapies is urgently required that specifically target CSCs.PurposeThe aim of the present study was to investigate the potential of a panel of natural products and derivatives to inhibit CSC-enriched mammospheres of MCF-7 breast cancer cells.MethodsCD44high/CD24low cells were identified by flow cytometry and maintained as mammospheres. As a control, we used two clinically established anticancer drugs (5-fluorouracil and docetaxel). A panel of natural products, shikonin, two cajanin stilbene acid (CSA) derivatives and artesunate were tested by resazurin assay on CSC-enriched mammospheres and MCF-7 monolayer cells. Besides, cellular shikonin uptake experiments were performed by flow cytometry.ResultsWe found two CSA derivatives (Nos. 6 and 19) to be active cancer stem-like MCF-7 mammospheres. Especially, CSA derivative No. 19 clearly showed collateral sensitivity in mammospheres compared to monolayer cells.ConclusionPhytochemicals which provoke collateral sensitivity in cancer-stem like cells are worth more detailed investigations in the future, since there is a great potential for improved chemotherapy to eradicate tumors and prolong cancer patients’ survival times.  相似文献   

4.
Resveratrol, a natural polyphenolic compound, is abundantly found in plant foods and has been extensively studied for its anti-cancer properties. Given the important role of CSCs (Cancer Stem Cells) in breast tumorigenesis and progression, it is worth investigating the effects of resveratrol on CSCs. The article is an attempt to investigate the effects of resveratrol on breast CSCs. Resveratrol significantly inhibits the proliferation of BCSCs (breast cancer stem-like cells) isolated from MCF-7 and SUM159, and decreased the percentage of BCSCs population, consequently reduced the size and number of mammospheres in non-adherent spherical clusters. Accordingly, the injection of resveratrol (100 mg/kg/d) in NOD/SCID (nonobese diabetic/severe combined immunodeficient) mice effectively inhibited the growth of xenograft tumors and reduced BCSC population in tumor cells. After the reimplantation of primary tumor cells into the secondary mice for 30 d, all 6 control inoculations produced tumors, while tumor cells derived from resveratrol-treated mice only caused 1 tumor of 6 inoculations. Further studies by TEM (Transmission electron microscopy) analysis, GFP-LC3-II puncta formation assay and western blot for LC3-II, Beclin1 and Atg 7, showed that resveratrol induces autophagy in BCSCs. Moreover, resveratrol suppresses Wnt/β-catenin signaling pathway in BCSCs; over-expression of β-catenin by transfecting the plasmid markedly reduced resveratrol-induced cytotoxicity and autophagy in BCSCs. Our findings indicated that resveratrol inhibits BCSCs and induces autophagy via suppressing Wnt/β-catenin signaling pathway.  相似文献   

5.
CD44 has shown prognostic values and promising therapeutic potential in multiple human cancers; however, the effects of CD44 silencing on biological behaviors of cancer stem cells (CSCs) have not been fully understood in colorectal cancer. To examine the contribution of siRNA‐induced knockdown of CD44 to the biological features of colorectal CSCs, colorectal CSCs HCT116‐CSCs were generated, and CD44 was knocked down in HCT116‐CSCs using siRNA. The proliferation, migration and invasion of HCT116‐CSCs were measured, and apoptosis and cell‐cycle analyses were performed. The sensitivity of HCT116‐CSCs to oxaliplatin was tested, and xenograft tumor growth assay was performed to examine the role of CD44 in HCT116‐CSCs tumorigenesis in vivo. In addition, the expression of epithelial–mesenchymal transition (EMT) markers E‐cadherin, N‐cadherin and vimentin was quantified. siRNA‐induced knockdown of CD44 was found to inhibit the proliferation, migration and invasion, induce apoptosis, promote cell‐cycle arrest at the G1/G0 phase and increase the sensitivity of HCT116‐CSCs to oxaliplatin in HCT116‐CSCs, and knockdown of CD44 suppressed in vivo tumorigenesis and intrapulmonary metastasis of HCT116‐CSCs. Moreover, silencing CD44 resulted in EMT inhibition. Our findings demonstrate that siRNA‐induced CD44 knockdown suppresses the proliferation, invasion and in vivo tumorigenesis and metastasis of colorectal CSCs by inhibiting EMT.  相似文献   

6.
Recent literature highlights the importance of pro-inflammatory cytokines in the biology of breast cancer stem cells (CSCs), unraveling differences with respect to their normal counterparts. Expansion of mammospheres (MS) is a valuable tool for the in vitro study of normal and cancer mammary gland stem cells. Here, we expanded MSs from human breast cancer and normal mammary gland tissues, as well from tumorigenic (MCF7) and non-tumorigenic (MCF10) breast cell lines. We observed that agonists for the retinoid X receptor (6-OH-11-O-hydroxyphenanthrene), retinoic acid receptor (all-trans retinoic acid (RA)) and peroxisome proliferator-activated receptor (PPAR)-γ (pioglitazone (PGZ)), reduce the survival of MS generated from breast cancer tissues and MCF7 cells, but not from normal mammary gland or MCF10 cells. This phenomenon is paralleled by the hampering of pro-inflammatory Nuclear Factor-κB (NF-κB)/Interleukin-6 (IL6) axis that is hyperactive in breast cancer-derived MS. The hindrance of such pathway associates with the downregulation of MS regulatory genes (SLUG, Notch3, Jagged1) and with the upregulation of the differentiation markers estrogen receptor-α and keratin18. At variance, the PPARα agonist Wy14643 promotes MS formation, upregulating NF-κB/IL6 axis and MS regulatory genes. These data reveal that nuclear receptors agonists (6-OH-11-O-hydroxyphenanthrene, RA, PGZ) reduce the inflammation dependent survival of breast CSCs and that PPARα agonist Wy14643 exerts opposite effects on this phenotype.  相似文献   

7.
Previous studies have demonstrated that a small subset of cancer cells is capable of tumor initiation. The existence of tumor initiating cancer stem cells (CSCs) has several implications in terms of future cancer treatment and therapies. However, recently, several researchers proposed that differentiated cancer cells (non-CSCs) can convert to stem-like cells to maintain equilibrium. These results imply that removing CSCs may prompt non-CSCs in the tumor to convert into stem cells to maintain the equilibrium. Interleukin-6 (IL-6) has been found to play an important role in the inducible formation of CSCs and their dynamic equilibrium with non-stem cells. In this study, we used CSC-like human breast cancer cells and their alternate subset non-CSCs to investigate how IL-6 regulates the conversion of non-CSCs to CSCs. MDA-MB-231 and MDA-MB-453 CSC-like cells formed mammospheres well, whereas most of non-stem cells died by anoikis and only part of the remaining non-stem cells produced viable mammospheres. Similar results were observed in xenograft tumor formation. Data from cytokine array assay show that IL-6 was secreted from non-CSCs when cells were cultured in ultra-low attachment plates. IL-6 regulates CSC-associated OCT-4 gene expression through the IL-6-JAK1-STAT3 signal transduction pathway in non-CSCs. Inhibiting this pathway by treatment with anti-IL-6 antibody (1 μg/ml) or niclosamide (0.5–2 μM)/LLL12 (5–10 μM) effectively prevented OCT-4 gene expression. These results suggest that the IL-6-JAK1-STAT3 signal transduction pathway plays an important role in the conversion of non-CSCs into CSCs through regulation of OCT-4 gene expression.  相似文献   

8.

Background

Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages.

Methodology

Single cell suspensions derived from human breast ‘organoids’ were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres) were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres.

Principal Findings

We show that primary mammospheres contain a distinct side-population (SP) that displays a CD24low/CD44low phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44high/CD24low cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1) mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated β-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture.

Conclusions

Thus, the self-renewal potential of human breast stem cells is exhausted within five in vitro passages of mammospheres, suggesting the need for further improvisation in culture conditions for their long-term maintenance.  相似文献   

9.
10.
The phenotypic diversity of breast carcinoma may be explained by the existence of a sub-population of breast cancer cells, endowed with stem cell-like properties and gene expression profiles, able to differentiate along different pathways. A stem cell-like population of CD44+CD24−/low breast cancer cells was originally identified using cells from metastatic pleural effusions of breast carcinoma patients. We have previously reported that upon in vitro culture as mammospheres under stem cell-like conditions, human MA-11 breast carcinoma cells acquired increased tumorigenicity and lost CD24 expression compared with the parental cell line. We now report that upon passage of MA-11 mammospheres into serum-supplemented cultures, CD24 expression was restored; the rapid increase in CD24 expression was consistent with up-regulation of the antigen, and not with in vitro selection of CD24+ cells. In tumors derived from subcutaneous injection of MA-11 mammospheres in athymic nude mice, 76.1 ± 9.7% of cells expressed CD24, vs. 0.5 ± 1% in MA-11 cells dissociated from mammospheres before injection. The tumorigenicity of sorted CD44+CD24 and CD44+CD24high MA-11 cells was equal. Single cell-sorted CD24 and CD24high MA-11 gave rise in vitro to cell populations with heterogeneous CD24 expression. Also, subcutaneous tumors derived from sorted CD24 sub-populations and single-cell clones had levels of CD24 expression similar to the unsorted cells. To investigate whether the high expression of CD24 contributed to the tumorigenic potential of MA-11 cells, we silenced CD24 by shRNA. CD24 silencing (95%) resulted in no difference in tumorigenicity upon s.c. injection in athymic nude mice compared with mock-transduced MA-11 cells. Since CD24 silencing was maintained in vivo, our data suggest that the level of expression of CD24 is associated with but does not contribute to tumorigenicity. We then compared the molecular profile of the mammospheres with the adherent cell fraction. Gene expression profiling revealed that the increased tumorigenicity of MA-11 mammospheres was associated with changes in 10 signal transduction pathways, including MAP kinase, Notch and Wnt, and increased expression of aldehyde dehydrogenase, a cancer-initiating cell-associated marker. Our data demonstrate that (i) the level of CD24 expression is neither a stable feature of mammosphere-forming cells nor confers tumorigenic potential to MA-11 cells; (ii) cancer-initiating cell-enriched MA-11 mammospheres have activated specific signal transduction pathways, potential targets for anti-breast cancer therapy.  相似文献   

11.
In human cancers, all cancerous cells carry the oncogenic genetic lesions. However, to elucidate whether cancer is a stem cell-driven tissue, we have developed a strategy to limit oncogene expression to the stem cell compartment in a transgenic mouse setting. Here, we focus on the effects of the BCR-ABLp210 oncogene, associated with chronic myeloid leukaemia (CML) in humans. We show that CML phenotype and biology can be established in mice by restricting BCR-ABLp210 expression to stem cell antigen 1 (Sca1)+ cells. The course of the disease in Sca1-BCR-ABLp210 mice was not modified on STI571 treatment. However, BCR-ABLp210-induced CML is reversible through the unique elimination of the cancer stem cells (CSCs). Overall, our data show that oncogene expression in Sca1+ cells is all that is required to fully reprogramme it, giving rise to a full-blown, oncogene-specified tumour with all its mature cellular diversity, and that elimination of the CSCs is enough to eradicate the whole tumour.  相似文献   

12.
Breast-conserving surgery for ductal carcinoma in situ (DCIS) is often combined with irradiation, reducing recurrence rates to 20% within 10 years; however, there is no change in overall survival. Evidence in the invasive breast indicates that breast cancer stem cells (CSCs) are radiotherapy-resistant and are capable of re-initiating a tumor recurrence; hence, targeting CSCs in high risk DCIS patient may improve survival. HER2 is overexpressed in 20% of DCIS and is known to be highly active in breast CSCs; we therefore investigated the effect of Lapatinib on DCIS CSC activity using 2 in vitro culture systems. Two DCIS cell lines DCIS.com (HER2 normal) and SUM225 (HER2 overexpressed) as well as DCIS cells from patient samples (n = 18) were cultured as mammospheres to assess CSC activity and in differentiated 3D-matrigel culture to determine effects within the non-CSCs. Mammosphere formation was reduced regardless of HER2 status, although this was more marked within the HER2-positive samples. When grown as differentiated DCIS acini in 3D-matrigel culture, Lapatinib only reduced acini size in the HER2-positive samples via decreased proliferation. Further investigation revealed lapatinib did not reduce self-renewal activity in the CSC population, but their proliferation was decreased regardless of HER2 status. In conclusion we show Lapatinib can reduce DCIS CSC activity, suggesting that the use of Lapatinib in high-risk DCIS patients has the potential to reduce recurrence and the progression of DCIS to invasive disease.  相似文献   

13.
14.
p97/VCP, an evolutionarily concerned ATPase, partakes in multiple cellular proteostatic processes, including the endoplasmic reticulum (ER)-associated protein degradation (ERAD). Elevated expression of p97 is common in many cancers and is often associated with poor survival. Here we report that the levels of p97 positively correlated with the histological grade, tumor size, and lymph node metastasis in breast cancers. We further examined p97 expression in the stem-like cancer cells or cancer stem cells (CSCs), a cell population that purportedly underscores cancer initiation, therapeutic resistance, and recurrence. We found that p97 was consistently at a higher level in the CD44+/CD24, ALDH+, or PKH26+ CSC populations than the respective non-CSC populations in human breast cancer tissues and cancer cell lines and p97 expression also positively correlated with that of SOX2, another CSC marker. To assess the role of p97 in breast cancers, cancer proliferation, mammosphere, and orthotopic growth were analyzed. Similarly as p97 depletion, two pharmacological inhibitors, which targets the ER-associated p97 or globally inhibits p97’s ATPase activity, markedly reduced cancer growth and the CSC population. Importantly, depletion or inhibition of p97 greatly suppressed the proliferation of the ALDH+ CSCs and the CSC-enriched mammospheres, while exhibiting much less or insignificant inhibitory effects on the non-CSC cancer cells. Comparable phenotypes produced by blocking ERAD suggest that ER proteostasis is essential for the CSC integrity. Loss of p97 gravely activated the unfolded protein response (UPR) and modulated the expression of multiple stemness and pluripotency regulators, including C/EBPδ, c-MYC, SOX2, and SKP2, which collectively contributed to the demise of CSCs. In summary, p97 controls the breast CSC integrity through multiple targets, many of which directly affect cancer stemness and are induced by UPR activation. Our findings highlight the importance of p97 and ER proteostasis in CSC biology and anticancer therapy.Subject terms: Breast cancer, Endoplasmic reticulum, ER-associated degradation  相似文献   

15.
Recent accumulating evidence has supported the notion that tumors have hierarchically organized heterogeneous cell populations and a small subpopulation of cells, termed cancer stem cells (CSCs), are responsible for tumor initiation, maintenance as well as drug resistance. Therefore, targeting the CSCs along with the other cancer cells has been the most important topic during the last decade. In the present study, we evaluated the cytotoxic activity of trans-[PtCl2(2-hepy)2] [2-hepy = 2-(2-hydroxyethyl) pyridine] complex and the mechanism of cell death in breast CSCs. Stemness markers, Oct-4 and Sox2, were determined in mammospheres by western blotting. Cytotoxicity was assessed using the ATP viability assay. Cell death was fluorescently visualized and further confirmed by flow cytometry as well as gene expression analysis. The Pt(II) complex significantly reduced the cell viability, prevented mammosphere formation and disrupted mammosphere structures in a dose-dependent manner (0–100 μM). The mode of cell death was apoptosis and it was shown by the presence of caspase 3/7 activity, Annexin V-FITC positivity, decreased mitochondrial membrane potential and increased expressions of pro-apoptotic genes (TNFRSF10A and HRK). Interestingly, necroptosis was also observed by the evidence of increased MLKL expression. In conclusion, the Pt(II) complex seems to be a highly promising anticancer compound due to its promising cytotoxic activity on CSCs. Therefore, it deserves in vivo further studies for the proof-of-concept.  相似文献   

16.
Breast cancer is the most common non-cutaneous malignancy in American women, and better preventative strategies are needed. Epidemiological and laboratory studies point to vitamin D3 as a promising chemopreventative agent for breast cancer. Vitamin D3 metabolites induce anti-proliferative effects in breast cancer cells in vitro and in vivo, but few studies have investigated their effects in normal mammary epithelial cells. We hypothesized that 1,25(OH)2D3, the metabolically active form of vitamin D3, is growth suppressive in normal mouse mammary epithelial cells. In addition, we have previously established a role for the cytokine interleukin-1 alpha (IL1α) in the anti-proliferative effects of 1,25(OH)2D3 in normal prostate cells, and so we hypothesized that IL1α is involved in the 1,25(OH)2D3 response in mammary cells. Evaluation of cell viability, clonogenicity, senescence, and induction of cell cycle regulators p21 and p27 supported an anti-proliferative role for 1,25(OH)2D3 in mammary epithelial cells. Furthermore, 1,25(OH)2D3 increased the intracellular expression of IL1α, which was necessary for the anti-proliferative effects of 1,25(OH)2D3 in mammary cells. Together, these findings support the chemopreventative potential of vitamin D3 in the mammary gland and present a role for IL1α in regulation of mammary cell proliferation by 1,25(OH)2D3.  相似文献   

17.
18.
19.
During breast cancer metastasis to bone, tumor cells home to bone marrow, likely targeting the stem cell niche, and stimulate osteoclasts, which mediate osteolysis required for tumor expansion. Although osteoblasts contribute to the regulation of the hematopoietic stem cell niche and control osteoclastogenesis through production of proresorptive cytokine RANKL (receptor activator of NF-κB ligand), their role in cancer metastases to bone is not fully understood. C57BL/6J mouse bone marrow cells were treated for 3–12 days with ascorbic acid (50 μg/ml) in the presence or absence of 10% medium conditioned by breast carcinoma cells MDA-MB-231, 4T1, or MCF7. Treatment with cancer-derived factors resulted in a sustained 40–60% decrease in osteoblast differentiation markers, compared with treatment with ascorbic acid alone, and induced an osteoclastogenic change in the RANKL/osteoprotegerin ratio. Importantly, exposure of bone cells to breast cancer-derived factors stimulated the subsequent attachment of cancer cells to immature osteoblasts. Inhibition of γ-secretase using pharmacological inhibitors DAPT and Compound E completely reversed cancer-induced osteoclastogenesis as well as cancer-induced enhancement of cancer cell attachment, identifying γ-secretase activity as a key mediator of these effects. Thus, we have uncovered osteoblasts as critical intermediary of premetastatic signaling by breast cancer cells and pinpointed γ-secretase as a robust target for developing therapeutics potentially capable of reducing both homing and progression of cancer metastases to bone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号