首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From equilibrium molecular dynamics simulations we have determined single-channel water permeabilities for Escherichia coli aquaporin Z (AqpZ) and aquaglyceroporin GlpF with the channels embedded in lipid bilayers. GlpF's osmotic water permeability constant pf exceeds by 2-3 times that of AqpZ and the diffusive permeability constant (pd) of GlpF is found to exceed that of AqpZ 2-9-fold. Achieving complete water selectivity in AqpZ consequently implies lower transport rates overall relative to the less selective, wider channel of GlpF. For AqpZ, the ratio pf/pd congruent with 12 is close to the average number of water molecules in the channel lumen, whereas for GlpF, pf/pd congruent with 4. This implies that single-file structure of the luminal water is more pronounced for AqpZ, the narrower channel of the two. Electrostatics profiles across the pore lumens reveal that AqpZ significantly reinforces water-channel interactions, and weaker water-water interactions in turn suppress water-water correlations relative to GlpF. Consequently, suppressed water-water correlations across the narrow selectivity filter become a key structural determinant for water permeation causing luminal water to permeate slower across AqpZ.  相似文献   

2.
Comparative simulations of aquaporin family: AQP1, AQPZ, AQP0 and GlpF   总被引:4,自引:0,他引:4  
Hashido M  Ikeguchi M  Kidera A 《FEBS letters》2005,579(25):5549-5552
Molecular dynamics simulations were performed for four members of the aquaporin family (AQP1, AQPZ, AQP0, and GlpF) in the explicit membrane environment. The single-channel water permeability, pf, was evaluated to be GlpF approximately AQPZ > AQP1 > AQP0, while their relative pore sizes were GlpF > AQP1 > AQPZ > AQP0. This relation between pf and pore size indicates that water permeability was determined not only by the channel radius, but also another competing factor. Analysis of water dynamics revealed that this factor was the single-file nature of water transport.  相似文献   

3.
At present, the three‐dimensional structure of the multimeric paracellular claudin pore is unknown. Using extant biophysical data concerning the size of the pore and permeation of water and cations through it, two three‐dimensional models of the pore are constructed in silico. Molecular Dynamics (MD) calculations are then performed to compute water and sodium ion permeation fluxes under the influence of applied hydrostatic pressure. Comparison to experiment is made, under the assumption that the hydrostatic pressure applied in the simulations is equivalent to osmotic pressure induced in experimental measurements of water/ion permeability. One model, in which pore‐lining charged is distributed evenly over a selectivity filter section 10–16 Å in length, is found to be generally consistent with experimental data concerning the dependence of water and ion permeation on channel pore diameter, pore length, and the sign and magnitude of pore lining charge. The molecular coupling mechanism between water and ion flow under conditions where hydrostatic pressure is applied is computationally elucidated. Proteins 2016; 84:305–315. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
There has been a fair bit of understanding on the structure–function relationship of Aquaporins (AQPs) from plants and vertebrates obtained from available X-ray crystallography data. However, there is a lacuna in understanding the structure of AQPs from sanguinivorous insects like the mosquito where it plays a crucial role in survival. In this study, we have built homology models for the Aedes aegypti AQPs, identified key channel lining residues and compared the structure and sequence with orthodox AQPs. Although Ar/R filter residues of AaAQP1 were exactly similar to orthodox AQPs, AaAQP2 has a substitution at LE1position possibly making it less efficient in high capacity water transport. The huge difference in the selectivity filter region of AaAQP3 suggests a different transport property for this channel. The changes observed in the H5 position of the filter of AaAQP4 and AaAQP5 may explain the presence of a larger pore aperture to permit the passage of larger solute molecules. AaAQP6 possesses a completely hydrophobic filter like that in mammalian super aquaporins. The identified key residues are pivotal in understanding the mechanism of action and gating of these channels.  相似文献   

5.
Aquaporins are an important class of membrane channels selective for water and linear polyols but impermeable to ions, including protons. Recent computational studies have revealed that the relay of protons through the water-conduction pathway of aquaporin channels is opposed by a substantial free energy barrier peaking at the signature NPA motifs. Here, free-energy simulations and continuum electrostatic calculations are combined to examine the nature and the magnitude of the contribution of specific structural elements to proton blockage in the bacterial glycerol uptake facilitator, GlpF. Potential of mean-force profiles for both hop and turn steps of structural diffusion in the narrow pore are obtained for artificial variants of the GlpF channel in which coulombic interactions between the pore contents and conserved residues Asn68 and Asn203 at the NPA signature motifs, Arg206 at the selectivity filter, and the peptidic backbone of the two half-helices M3 and M7, which are arranged in head-to-head fashion around the NPA motifs, are turned off selectively. A comparison of these results with electrostatic energy profiles for the translocation of a probe cation throughout the water permeation pathway indicates that the free-energy profile for proton movement inside the narrow pore is dominated by static effects arising from the distribution of charged and polar groups of the channel, whereas dielectric effects contribute primarily to opposing the access of H+ to the pore mouths (desolvation penalty). The single most effective way to abolish the free-energy gradients opposing the movement of H+ around the NPA motif is to turn off the dipole moments of helices M3 and M7. Mutation of either of the two NPA Asn residues to Asp compensates for charge-dipole and dipole-dipole effects opposing the hop and turn steps of structural diffusion, respectively, and dramatically reduces the free energy barrier of proton translocation, suggesting that these single mutants could leak protons.  相似文献   

6.
BACKGROUND INFORMATION: In silico both orthodox aquaporins and aquaglyceroporins are shown to exclude protons. Supporting experimental evidence is available only for orthodox aquaporins. In contrast, the subset of the aquaporin water channel family that is permeable to glycerol and certain small, uncharged solutes has not yet been shown to exclude protons. Moreover, different aquaglyceroporins have been reported to conduct ions when reconstituted in planar bilayers. RESULTS: To clarify these discrepancies, we have measured proton permeability through the purified Escherichia coli glycerol facilitator (GlpF). Functional reconstitution into planar lipid bilayers was demonstrated by imposing an osmotic gradient across the membrane and detecting the resulting small changes in ionic concentration close to the membrane surface. The osmotic water flow corresponds to a GlpF single channel water permeability of 0.7x10(-14) cm(3).subunit(-1).s(-1). Proton conductivity measurements carried out in the presence of a pH gradient (1 unit) revealed an upper limit of the H(+) (OH(-)) to H(2)O molecules transport stoichiometry of 2x10(-9). A significant GlpF-mediated ion conductivity was also not detectable. CONCLUSIONS: The lack of a physiologically relevant GlpF-mediated proton conductivity agrees well with predictions made by molecular dynamics simulations.  相似文献   

7.
Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants.  相似文献   

8.
Voltage‐gated sodium channels are essential for electrical signalling across cell membranes. They exhibit strong selectivities for sodium ions over other cations, enabling the finely tuned cascade of events associated with action potentials. This paper describes the ion permeability characteristics and the crystal structure of a prokaryotic sodium channel, showing for the first time the detailed locations of sodium ions in the selectivity filter of a sodium channel. Electrostatic calculations based on the structure are consistent with the relative cation permeability ratios (Na+ ≈ Li+ ≫ K+, Ca2+, Mg2+) measured for these channels. In an E178D selectivity filter mutant constructed to have altered ion selectivities, the sodium ion binding site nearest the extracellular side is missing. Unlike potassium ions in potassium channels, the sodium ions in these channels appear to be hydrated and are associated with side chains of the selectivity filter residues, rather than polypeptide backbones.  相似文献   

9.
Aquaporin-4 (AQP4) is the predominant water channel in the central nervous system, where it has been reported to be involved in many pathophysiological roles including water transport. In this paper, the AQP4 tetramer was modeled from its PDB structure file, embedded in a palmitoyl-oleoyl-phosphatidyl-choline (POPC) lipid bilayer, solvated in water, then minimized and equilibrated by means of molecular dynamics simulations. Analysis of the equilibrated structure showed that the central pore along the fourfold axis of the tetramers is formed with hydrophobic amino acid residues. In particular, Phe-195, Leu-191 and Leu-75, form the narrowest part of the pore. Therefore water molecules are not expected to transport through the central pore, which was confirmed by MD simulations. Each monomer of the AQP4 tetramers forms a channel whose walls consist mostly of hydrophilic residues. There are eight water molecules in single file observed in each of the four channels, transporting through the selectivity filter containing Arg-216, His-201, Phe-77, Ala-210, and the two conserved Asn-Pro-Ala (NPA) motifs containing Asn-213 and Asn-97. By using Brownian dynamics fluctuation–dissipation-theorem (BD-FDT), the overall free-energy profile was obtained for water transporting through AQP4 for the first time, which gives a complete map of the entire channel of water permeation.  相似文献   

10.
Molecular dynamics (MD) simulations of an atomic model of the KcsA K(+) channel embedded in an explicit dipalmitoylphosphatidylcholine (DPPC) phospholipid bilayer solvated by a 150 mM KCl aqueous salt solution are performed and analyzed. The model includes the KcsA K(+) channel, based on the recent crystallographic structure of, Science. 280:69-77), 112 DPPC, K(+) and Cl(-) ions, as well as over 6500 water molecules for a total of more than 40,000 atoms. Three K(+) ions are explicitly included in the pore. Two are positioned in the selectivity filter on the extracellular side and one in the large water-filled cavity. Different starting configurations of the ions and water molecules in the selectivity filter are considered, and MD trajectories are generated for more than 4 ns. The conformation of KcsA is very stable in all of the trajectories, with a global backbone root mean square (RMS) deviation of less than 1.9 A with respect to the crystallographic structure. The RMS atomic fluctuations of the residues surrounding the selectivity filter on the extracellular side of the channel are significantly lower than those on the intracellular side. The motion of the residues with aromatic side chains surrounding the selectivity filter (Trp(67), Trp(68), Tyr(78), and Tyr(82)) is anisotropic with the smallest RMS fluctuations in the direction parallel to the membrane plane. A concerted dynamic transition of the three K(+) ions in the pore is observed, during which the K(+) ion located initially in the cavity moves into the narrow part of the selectivity filter, while the other two K(+) ions move toward the extracellular side. A single water molecule is stabilized between each pair of ions during the transition, suggesting that each K(+) cation translocating through the narrow pore is accompanied by exactly one water molecule, in accord with streaming potential measurements (, Biophys. J. 55:367-371). The displacement of the ions is coupled with the structural fluctuations of Val(76) and Gly(77), in the selectivity filter, as well as the side chains of Glu(71), Asp(80), and Arg(89), near the extracellular side. Thus the mechanical response of the channel structure at distances as large as 10-20 A from the ions in the selectivity filter appears to play an important role in the concerted transition.  相似文献   

11.
Extraordinary selectivity is crucial to all proton-conducting molecules, including the human voltage-gated proton channel (hHV1), because the proton concentration is >106 times lower than that of other cations. Here we use “selectivity filter scanning” to elucidate the molecular requirements for proton-specific conduction in hHV1. Asp112, in the middle of the S1 transmembrane helix, is an essential part of the selectivity filter in wild-type (WT) channels. After neutralizing Asp112 by mutating it to Ala (D112A), we introduced Asp at each position along S1 from 108 to 118, searching for “second site suppressor” activity. Surprisingly, most mutants lacked even the anion conduction exhibited by D112A. Proton-specific conduction was restored only with Asp or Glu at position 116. The D112V/V116D channel strikingly resembled WT in selectivity, kinetics, and ΔpH-dependent gating. The S4 segment of this mutant has similar accessibility to WT in open channels, because R211H/D112V/V116D was inhibited by internally applied Zn2+. Asp at position 109 allowed anion permeation in combination with D112A but did not rescue function in the nonconducting D112V mutant, indicating that selectivity is established externally to the constriction at F150. The three positions that permitted conduction all line the pore in our homology model, clearly delineating the conduction pathway. Evidently, a carboxyl group must face the pore directly to enable conduction. Molecular dynamics simulations indicate reorganization of hydrogen bond networks in the external vestibule in D112V/V116D. At both positions where it produces proton selectivity, Asp frequently engages in salt linkage with one or more Arg residues from S4. Surprisingly, mean hydration profiles were similar in proton-selective, anion-permeable, and nonconducting constructs. That the selectivity filter functions in a new location helps to define local environmental features required to produce proton-selective conduction.  相似文献   

12.
The superfamily of major intrinsic proteins (MIPs) includes aquaporin (AQP) and aquaglyceroporin (AQGP) and it is involved in the transport of water and neutral solutes across the membrane. Diverse MIP sequences adopt a unique hour-glass fold with six transmembrane helices (TM1 to TM6) and two half-helices (LB and LE). Loop E contains one of the two conserved NPA motifs and contributes two residues to the aromatic/arginine selectivity filter. Function and regulation of majority of MIP channels are not yet characterized. We have analyzed the loop E region of 1468 MIP sequences and their structural models from six different organism groups. They can be phylogenetically clustered into AQGPs, AQPs, plant MIPs and other MIPs. The LE half-helix in all AQGPs contains an intra-helical salt-bridge and helix-breaking residues Gly/Pro within the same helical turn. All non-AQGPs lack this salt-bridge but have the helix destabilizing Gly and/or Pro in the same positions. However, the segment connecting LE half-helix and TM6 is longer by 10–15 residues in AQGPs compared to all non-AQGPs. We speculate that this longer loop in AQGPs and the LE half-helix of non-AQGPs will be relatively more flexible and this could be functionally important. Molecular dynamics simulations on glycerol-specific GlpF, water-transporting AQP1, its mutant and a fungal AQP channel confirm these predictions. Thus two distinct regions of loop E, one in AQGPs and the other in non-AQGPs, seem to be capable of modulating the transport. These regions can also act in conjunction with other extracellular residues/segments to regulate MIP channel transport.  相似文献   

13.
Several recent ion channel structures have revealed large side portals, or ‘fenestrations’ at the interface between their transmembrane helices that potentially expose the ion conduction pathway to the lipid core of the bilayer. In a recent study we demonstrated that functional activity of the TWIK-1 K2P channel is influenced by the presence of hydrophobic residues deep within the inner pore. These residues are located near the fenestrations in the TWIK-1 structure and promote dewetting of the pore by forming a hydrophobic barrier to ion conduction. During our previous MD simulations, lipid tails were observed to enter these fenestrations. In this addendum to that study, we investigate lipid contribution to the dewetting process. Our results demonstrate that lipid tails from both the upper and lower leaflets can occupy the fenestrations and partially penetrate into the pore. The lipid tails do not sterically occlude the pore, but there is an inverse correlation between the presence of water within the hydrophobic barrier and the number of lipids tails within the lining of the pore. However, dewetting still occurs in the absence of lipids tails, and pore hydration appears to be determined primarily by those side-chains lining the narrowest part of the pore cavity.  相似文献   

14.
As a key regulator for hormone activity, human aldo‐keto reductase family 1 member C3 (AKR1C3) plays crucial roles in the occurrence of various hormone‐dependent or independent malignancies. It is a promising target for treating castration‐resistant prostate cancer (CRPC). However, the development of AKR1C3 specific inhibitors remains challenging due to the high sequence similarity to its isoform AKR1C2. Here, we performed a combined in silico study to illuminate the inhibitory preference of 3‐(3,4‐dihydroisoquinolin‐2(1H)‐ylsulfonyl)benzoic acids for AKR1C3 over AKR1C2, of which compound 38 can achieve up to 5000‐fold anti‐AKR1C3 selectivity. Our umbrella sampling (US) simulations together with end‐point binding free energy calculation MM/GBSA uncover that the high inhibition selectivity originates from the different binding modes, namely “Inward” and “Outward,” of this compound series in AKR1C3 and AKR1C2, respectively. In AKR1C3/38, the tetrahydroquinoline moiety of 38 is accommodated inside the SP1 pocket and interacts favorably with surrounding residues, while, in AKR1C2/38, the SP1 pocket is too small to hold the bulky tetrahydroquinoline group that instead moves out of the pocket with 38 transitioning from an “Inward” to an “Outward” state. Further 3D‐QSAR and energy decomposition analyses suggest that SP1 in AKR1C3 prefers to bind with a rigid bicyclic moiety and the modification of the R3 group has important implication for the compound''s activity. This work is the first attempt to elucidate the selectivity mechanism of inhibitors toward AKR1C3 at the atomic level, which is anticipated to propel the development of next‐generation AKR1C3 inhibitors with enhanced efficacy and reduced “off‐target” effect for CRPC therapy.  相似文献   

15.
Dynowski M  Mayer M  Moran O  Ludewig U 《FEBS letters》2008,582(16):2458-2462
Aquaporins and/or aquaglyceroporins regulate the permeability of plant membranes to water and small, uncharged molecules. Using molecular simulations with a plant plasma membrane aquaporin tetramer, the residues in the channel constriction region were identified as the crucial determinants of ammonia and urea conductance. The impact of these residues was experimentally verified using AtPIP2;1 pore mutants. Several, but not all, mutants with a NIP-like selectivity filter promoted yeast growth on urea or ammonia as sole sources of nitrogen. TIP-like mutants conducted urea but not NH(3), and a residue without direct contact to the pore lumen was critical for conduction in the mutants.  相似文献   

16.
BACKGROUND: The E. coli glycerol facilitator, GlpF, selectively conducts glycerol and water, excluding ions and charged solutes. The detailed mechanism of the glycerol conduction and its relationship to the characteristic secondary structure of aquaporins and to the NPA motifs in the center of the channel are unknown. RESULTS: Molecular dynamics simulations of GlpF reveal spontaneous glycerol and water conduction driven, on a nanosecond timescale, by thermal fluctuations. The bidirectional conduction, guided and facilitated by the secondary structure, is characterized by breakage and formation of hydrogen bonds for which water and glycerol compete. The conduction involves only very minor changes in the protein structure, and cooperativity between the GlpF monomers is not evident. The two conserved NPA motifs are strictly linked together by several stable hydrogen bonds and their asparagine side chains form hydrogen bonds with the substrates passing the channel in single file. CONCLUSIONS: A complete conduction of glycerol through the GlpF was deduced from molecular dynamics simulations, and key residues facilitating the conduction were identified. The nonhelical parts of the two half-membrane-spanning segments expose carbonyl groups towards the channel interior, establishing a curve-linear pathway. The conformational stability of the NPA motifs is important in the conduction and critical for selectivity. Water and glycerol compete in a random manner for hydrogen bonding sites in the protein, and their translocations in single file are correlated. The suggested conduction mechanism should apply to the whole family.  相似文献   

17.
The selectivity filter and adjacent regions in the bacterial KcsA and inwardly rectifying K+ (Kir) channels reveal significant conformational changes that cause the channel pore to transition from an activated to inactive state (C-type inactivation) once the channel is open. The meshwork of residues stabilizing the pore of KcsA involves Glu71–Asp80 carboxyl–carboxylate interaction ‘behind’ the selectivity filter. Interestingly, the Kir channels do not have this exact interaction, but instead have a Glu–Arg salt bridge where the Glu is in the same position but the Arg is one position N-terminal compared to the Asp in KcsA. Also, the Kir channels lack the Trp that hydrogen bonds to Asp80 in KcsA. Here, the sequence and structural information are combined to understand the dissimilarity in the role of the pore-helix Glu in stabilizing the pore structure in KcsA and Kir channels. This review illustrates that although Glu is quite conserved among both types of channels, the network of interactions is not translatable from one channel to the other; thereby suggesting a unique phenomenon of diverse gating patterns in K+ channels.  相似文献   

18.
The epithelial Na(+) channel (ENaC), located in the apical membrane of tight epithelia, allows vectorial Na(+) absorption. The amiloride-sensitive ENaC is highly selective for Na(+) and Li(+) ions. There is growing evidence that the short stretch of amino acid residues (preM2) preceding the putative second transmembrane domain M2 forms the outer channel pore with the amiloride binding site and the narrow ion-selective region of the pore. We have shown previously that mutations of the alphaS589 residue in the preM2 segment change the ion selectivity, making the channel permeant to K(+) ions. To understand the molecular basis of this important change in ionic selectivity, we have substituted alphaS589 with amino acids of different sizes and physicochemical properties. Here, we show that the molecular cutoff of the channel pore for inorganic and organic cations increases with the size of the amino acid residue at position alpha589, indicating that alphaS589 mutations enlarge the pore at the selectivity filter. Mutants with an increased permeability to large cations show a decrease in the ENaC unitary conductance of small cations such as Na(+) and Li(+). These findings demonstrate the critical role of the pore size at the alphaS589 residue for the selectivity properties of ENaC. Our data are consistent with the main chain carbonyl oxygens of the alphaS589 residues lining the channel pore at the selectivity filter with their side chain pointing away from the pore lumen. We propose that the alphaS589 side chain is oriented toward the subunit-subunit interface and that substitution of alphaS589 by larger residues increases the pore diameter by adding extra volume at the subunit-subunit interface.  相似文献   

19.
JGP modeling study suggests that selectivity filter constriction is a plausible mechanism for C-type inactivation of the Shaker voltage-gated potassium channel.

In response to prolonged activation, many K+ channels spontaneously reduce the membrane conductance by undergoing C-type inactivation, a kinetic process crucial for the pacing of cardiac action potentials and the modulation of neuronal firing patterns. In the pH-activated bacterial channel KcsA, C-type inactivation appears to involve constriction of the channel’s selectivity filer that prohibits ion conduction, but whether voltage-gated channels like Drosophila Shaker use a similar mechanism is controversial (1). In this issue of JGP, a computational study by Li et al. suggests that filter constriction is indeed a plausible mechanism for the C-type inactivation of Shaker (2).(Left to right) Jing Li, Benoît Roux, and colleagues use computational modeling to show that selectivity filter constriction, allosterically promoted by opening of the intracellular activation gate, is a plausible mechanism for the C-type inactivation of voltage-gated K+ channels such as Drosophila Shaker. The selectivity filter is conductive (left) when the intracellular gate is partially open, but adopts a constricted conformation (right) when the gate is open wide.Various structural approaches have shown that C-type inactivation of KcsA channels is associated with the symmetrical constriction of all four channel subunits at the level of the central glycine residue in the selectivity filter. Benoît Roux and colleagues at The University of Chicago used MD simulations to show that the KcsA pore can transition from the conductive to the constricted conformation on an appropriate timescale, and that this transition is allosterically promoted by the wide opening of the pore’s intracellular gate (3). Modeling by Roux and colleagues suggests that C-type inactivation of cardiac hERG channels could also involve selectivity filter constriction, though in this case it appears to be an asymmetric process in which only two of the channel’s subunits move closer together (4).“In view of the high similarity between the pore domains of Shaker and KcsA (almost 40% sequence identity), we wanted to examine if it’s possible for the Shaker selectivity filter to constrict and, if so, how similar it is to KcsA,” Roux explains. Led by first author Jing Li—now an assistant professor at the University of Mississippi—Roux and colleagues developed several homology models of the Shaker pore domain with the intracellular gate open to various degrees (2).MD simulations and free energy calculations revealed that the Shaker selectivity filter can dynamically transition from a conductive to a constricted conformation, and that this transition is allosterically coupled to the intracellular gate; the constricted conformation is stable when the gate is wide open. “Our computations strongly suggest that constriction is a plausible mechanism for the C-type inactivation of Shaker,” Roux says. “There’s no reason based on the currently available information to reject the existence of a constricted state in Shaker channels.”As with KcsA, Shaker channels appear to constrict symmetrically at the level of the selectivity filter’s central glycine. But Li et al.’s simulations revealed some small variations between the two channels, including differences in the number of water molecules bound to each channel subunit and the arrangement of the hydrogen-bond network they form to stabilize the constricted state.Li et al. also modeled the pore domain of the Shaker W434F mutant, which is widely assumed to be trapped in a C-type inactivated state. The simulation suggests that the mutant channel’s filter adopts a stable constricted conformation even when the intracellular gate is only partially open, although the constriction is asymmetric and occurs at the level of a different filter residue (2).Constriction may therefore be a universal mechanism of C-type inactivation, even if the exact conformation varies from channel to channel. But, says Roux, confirming this will require more experimental work using the right conditions and mutations to capture the structure of inactivated channels.  相似文献   

20.
The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号